
B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

1

Coregroup:

Finite Automata, Pushdown Automata. Non-determinism and NFA, DPDA, and PDAs and languges ac-
cepted by these structures. Grammars, Languages-types of grammers-type 0, type 1, type 2 and type 3. The
relationship between types of grammars, and finite machines. Pushdown automata and context free grammars.
Conversion of NFA to DFA. Minimzing the number of states in a DFA.
Context free grammars. Parsing and parse trees. Representation of parse (derivation) trees as rightmot and
leftmost derivations.

Elective:

Theory of Computation: Formal language, Need for formal computational models, Non-computational prob-
lems, diagonal argument and Russel’s paradox.

Deterministic Finite Automaton (DFA), Non-deterministric Finite Automaton (NFA). Regular languages and
regular sets, Equivalence of DFA and NFA. Minimizing the number of states of a DFA. Non-regular languages,
and Pumping lemma.

Pushdown Automaton (PDA), Deterministic Pushdown Automaton (DPDA), Non-equivalence of PDA and
DPDA.

Context-free Grammars: Greibach Normal Form (GNF) and Chomsky Normal form (CNF), Ambiguity,
Parse Tree Representation of Derivations. Equivalence of PDA’s and CFG’s. (Parsing techniques for parsing
of general CFG’s – Early’s, Cook-Kassami-Younger (CKY), and Tomita’s parsing.) * Compiler.

Linear Bounded Automata(LBA): Power of LBA, Closure properties.

Turing Machine (TM): One tape, multitape. The notions of time and space complexity in terms of TM.
Construction of TM for simple problems. Computational complexity.

Chomsky Hierarchy of languages: Recursive and recursively-enumerable languages.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

2

Theory of Computation

Automata, Language
 Grammar

Computability Complexity

RUSSELL'S PARADOX:

According to naive set theory, any definable collection is a set. Let R be the set of all sets that are not
members of themselves. If R qualifies as a member of itself, it would contradict its own definition as a set
containing sets that are not members of themselves. On the other hand, if such a set is not a member of itself, it
would qualify as a member of itself by the same definition. This contradiction is Russell's paradox. Symboli-
cally:

 | , then R R R R    R x x x

Noncomputability is discussed in computability section. Where we also discussed recursive and recursive
enumerable classes.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

3

FORMAL LANGUAGE CHAPTER-1

INTRODUCTION:
A formal language is a set of words, i.e. finite strings of letters, symbols, or tokens. The set from which these
letters are taken is called the alphabet over which the language is defined. A formal language is often defined
by means of a formal grammar (also called its formation rules); accordingly, words that belong to a formal
language are sometimes called well-formed formulas. Formal languages are studied in computer science and
linguistics; the field of formal language theory studies the purely syntactical aspects of such languages (that is,
their internal structural patterns).
A hierarchy is defined for any language(or formal language)

Computational Problems
In theoretical computer science, a computational problem is a mathematical object representing a collection of
questions that computers might want to solve. For example, the problem of factoring “Given a positive integer
n, find a nontrivial prime factor of n.” is a computational problem. Computational problems are one of the main
objects of study in theoretical computer science. The field of algorithms studies methods of solving computational
problems efficiently. The complementary field of computational complexity attempts to explain why certain
computational problems are intractable for computers

Types of computational problems

A decision problem is a computational problem where the answer for every instance is either yes or no. An
example of a decision problem is primality testing: “Given a positive integer n, determine if n is prime.”
A decision problem is typically represented as the set of all instances for which the answer is yes. For
example, primality testing can be represented as the infinite set L = {2, 3, 5, 7, 11, ...}
In a search problem, the answers can be arbitrary strings. For example, factoring is a search problem where
the instances are (string representations of) positive integers and the solutions are (string representations of)
collections of primes.
A search problem is represented as a relation over consisting of all the instance-solution pairs, called a search
relation. For example, primality can be represented as the relation

 R = {(4, 2), (6, 2), (6, 3), (8, 2), (8, 4), (9, 3), ...}
which consist of all pairs of numbers (n, p), where p is a nontrivial prime factor of n.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

4

A counting problem asks for the number of solutions to a given search problem. For example, the counting
problem associated with primality is “Given a positive integer n, count the number of nontrivial prime factors of
n.”
A counting problem can be represented by a function f from {0, 1}* to the nonnegative integers. For a search
relation R, the counting problem associated to R is the function fR(x) = |{y: (x, y) “ R}|.
An optimization problem asks for finding the “best possible” solution among the set of all possible solutions
to a search problem. One example is the maximum independent set problem: “Given a graph G, find an
independent set of G of maximum size.”
Optimization problems can be represented by their search relations.

Computational models
In computability theory and computational complexity theory, a model of computation is the definition of the
set of allowable operations used in computation and their respective costs. It is used for measuring the complexity
of an algorithm in execution time and or memory space: by assuming a certain model of computation, it is
possible to analyze the computational resources required or to discuss the limitations of algorithms or computers.
Some examples of models include Turing machines, recursive functions, lambda calculus, and production
systems.

Automata:
An automaton is an abstract model of a computer, which accepts some input (a string), produces output (yes/
no or a string) and may have internal, storage (usually, a stack or tape).

input string

control
 unit

output

 storage
(stack or tape)

An automaton operates in a discete time frame (like a real computer). A particular state of te automaton
including the state of the conrol unit, input, and storage, is called a configuration. The transaction from a
configuration to the next one is a move. If the output is yes/no, the automaton is called an acceptor. If the output
is string, it is called a transducer.

Basic concepts:
String: An alphabet is a non-empty finite set of symbols deonted 

e.g.  a,b,c is an alphabet 

A string is a finite sequence of symbols, strings are usually deonted by u, v and w.

e.g. U = abcab is a string on  a, b,c 

The empty string (no symbols at all) is denoted 
A part of a string is a substring.
e.g. Bca is a substring of abcab.
A begininning of a string (up to any symbol) is a prefix, and an ending is a suffix.

a b c a b a b c a b

prefixes suffixes

Note: A string is a prefix and suffix of itself.  is a prefix and suffix of any string.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

5

String Operations:
Concatenation: wv – appending v to the end of w.

e.g. w = abc, v = ab; 
w v

wv abc ab

Note: w w w   

Reverse: Rw w in reverse order

e.g. Rw abc, w cba 
Length of a string: number of symbols

e.g. abc 3

Note: 0  ; Rw w ; wv w v 

nw w repeated n times, that is,
n

n times

w www.....w

e.g.  2
abc abcabcabc

Note: 0w   ; nw n. w

Languages: * is the set of all strings on  .

e.g.    *a, B,c ; ,a, b,c,aa,ab,ac, ba,.............    
 is the set of all strings except  . an

Note: * and  are infinite. and

A langauage is a subset of * , usually denoted L.
It may be finite on infinite.

Example:  a, ba,abc ;  , a,aa,aaa,........... , 
If a string w is in L, we say that w is a sentence of L.

Operations on language:
Union, intersection and difference-same as on sets.

e.g.      a, ba,abc ,a,aa,aaa,........ a  

Complementation: *L L  

e.g.  L ,a,aa,aaa,....... 

 L w : w includes b or c

Reverse:  R RL w : w L the set of reversed strings  

e.g.  L a, ba,abc ;  L a,ab,cba

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

6

Determinastic Finite Automata (DFA):

Where, Q = set of internal state

0q Q = initial/start symbol of FAA

q0

q1

q2

 = I, P alphabet

 = transiston function

F Q = Final state.

: Q Q total function  

Why called deterministic at a state for given I/P because we have only one choice either move to another state
or itself.

Example 1.1

The following is an FA with 3 states called A, B and C. The start state is A, and C is the only accept state.

A B C

1
0

0

1

0

1

Consider its behavior when the input string is 101001:

Current State Symbol Read New State

A 1 A

A 0 B

B 1 A

A 0 B

B 0 C

C 1 C

Here, the final state is C. Similarly, the final state for 11101 is A, and for 0001 it is C.
What does it take to get the accept state? This machine accepts all strings of 0’s and 1’s with two consecutive
zeroes somewhere.

Example 1.2

Consider the following FA

A B

1

0
1

0

This FA accepts strings like 100 and 0101001 and 11111, and rejects strings like 000 and 0110.
Can you describe exactly which strings this FA accepts?
This FA ignores the symbol 0 (it doesn’t change state). It only worries about the symbol 1; here it alternates
states. The first 1 takes it to state B, the second 1 takes it to state A, the third to state B, and so on. So it is in
state B whenever an odd number of 1’s have been read.

That is, this machine accepts all strings of 0’s and 1’s with an odd number of 1’s.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

7

Example 1.3

All binary strings starting with 00.
The approach is to read the first two symbols, and that gives one the answer. The rest of the string is ignored
(which corresponds to the automaton never changing state).

A B C
0 0

1

0, 1

D

1

0, 1

Example 1.4

All the binary strings ending in 00
Well, the first thing you might do is to think about what happens if the first two symbols are 0.That must take
you to an accept state. So, there are at least three states: A, B, and C, where A is the start state, C is an accept
state, and a 0 takes you from A to B, and from B to C.
But what happens if you read a 1? Well, if you think about it, this should take the FA back to the start state, no
matter what state it is in. Another question is, what happens if you get a 0 in state C? Well, staying in C seems
reasonable. This yields the following FA:

A B C

0 0

1
1

0

1

A common type of state is a trap. This is a state that, once entered, you can never leave. For example, state C
of example 1.1 is a trap. How can you recognize a trap from the picture? A trap has no arrow out. Traps can
be used in two ways:
(a) As a reject state for partly read strings that will never be accepted
(b) As an accept state for partly read strings that will definitely be accepted.

Example 1.5

An FA that accepts all binary strings where 0’s and 1’s alternate
The main idea is a pair of states that oscillate: 0 takes you to one and 1 takes you back again. We also need a
trap if ever two consecutive symbols are the same.
One approach is to have a start state that slipts into two sub-machines. This gives the following solution:

D

A

D

E

F

C 1

1

1 1

0

0

0

0
0

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

8

But actually, you can do it with fewer states:

10

A

B D

F

1

0
0 1

0, 1

Although a given FA corresponds to only one language, a given language can have many FAs that accept it.
Note that you must always be careful about the empty string: should the FA accept or not. In the preceding
example, the empty string is accepted because the start state is also an accept state.
Another useful technique is remembering specific symbols. In the next example you must forever remember the
first symbol; so the FA splits into two pieces after the first symbol.

Example 1.6

An FA that accepts all binary strings that begins and end with the same symbol.
It is clear that the automaton must be in two different states based on the first symbol that is read. After that, you
need to keep track of the current symbol just read, in case it turns out to be the final symbol. But that is enough.

S

A B

DC

0

1

0

1

0

0

0

1

1 1

Note that there must not be any connection between the top and bottom halves, since otherwise the FA might
forget the first symbol read.

Formal defintion of FA:
FA is of two types: Deterministic and Nondeterministic. The FA discussed so far are deterministic one. The
formal definition of a DFA(Deterministic Finite Automata) is given as a 5-tuple (Q,Σ, q

0
, T,δ) where:

Q is the finite set of states
Σ is an alphabet of input symbols
q

0
 is the start state

T is a subset of Q giving the accept states
δ is the transition function that maps a symbol to a state (δ: Qx Σ ’!Q)

Transition table:
It is a matrix that lists the new state given the current state and the symbol read.

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

9

Example 1.7

Here is the transition table for the FA that accepts all binary strings that begin and end with the same symbol.

Input
0 1
A C
A B
A B

D C
D C

A

B

C

D

S

St
at

e

Example 1.8 GATE-2002

The smallest DFA accepts the language L =  *
,x a b , length of n is multiple of 3.

q0 q1 q2
a,b a,b

(a) 2 (b) 3 (c) 4 (d) 5
Ans. (b)

Example 1.9 GATE-2005

Consider the machine M

b

a b

a b

aa

a,b

The language recognized by above machine is:

(a)   *
w a, b / every a in w, is followed by exactly two b's

(b)   *
w a, b every a in w, is followed by at least two b's

(c)   *
w a, b w contains the substring 'abb'

(d)   *
w a, b w does not contain 'aa' as a substring

Ans. (b)

Example 1.10

If the final state and non-final state in DFA below are interchanged then which of
(a) Set of all string that does not end with a and b.
(b) Set of all string that begin with a and b.
(c) Set of all string that does not count.
(d) The set describe by b* a a*(ba)

Ans. (a)

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16 , Ph : 011-26851008, 26861009 www.careerendeavour.com

10

REGULAR EXPRESSIONS CHAPTER-2

Regular Expression:: A regular expression (RE) corresponds to a set of strings, that is, a regular expression
describes a language. It is built up using the three regular operations called union concatenation, and star,
described in the following paragraphs. A regular expression uses normal symbols as well as four special symbols.
A regular expressions is interpreted using the following rules:

 The parentheses (and) are used for grouping, just as in normal math.
 The plus sign (+) means union. Thus, writing 0 + 1

Means either a zero or a one. We also refer to the + as or.
 The concentration of two expressions is obtained by simply writing one after the other without spacing between

them. For example, (0 + 1)0
corresponds to the pair of strings 00 and 10.

• The asterisk (*) is pronounced star and means zero or more copies.
For example, the regular expression..... a*

corresponds to any string of a’s:  , , , ,...... . Alsoa aa aaa , (0 + 1)*

corresponds to all binary strings. (Its      0 1 0 1 0 1      

Primitive regular expression: If R
1
 and R

2
 are regular expression then

(1) R
1
 + R

2
 is also a regular expression.

(2) R
1
R

2
 is also a regular expression

(3) R
1
* is also a regular expression

(4) (R
1
) is also a regular expression.

(5) Any expression that is obtained by using the above as a rule and any number of times is also a Regular
expression.
e.g. Now,  a, b 
(a) a is regular expression b*, a* is a regular expression
(b) b is regular expression ab, is a regular expression
(c) a + b is regular expression. ba is a regular expression

Problem: Write the regular expression for
(1) All binary string which end with 110
(2) All binary string whose start and end is same value.
(3) All binary string whose start and end is different value.
(4) All binary string containing even number of zero’s
(5) All binary string containing 1101 as substring.

Soln. (1) (0 + 1)* 110
(2) 111 (0+1)*

(3)    * *
1 0 1 1 0 0 1 0 1   

(4)    * *
1 0 1 0 0 0 1 1  

(5)  * *1 0 1 0

Problem: Write Regular Expression for

1. (a)  n ma b | n 0, m 0  (b)  n ma b | n 0, m 1  (c)  n ma b | n 2, m 3 

Soln. (a)
 
 

n m

* *

a b | n 0, m 0

a b

 

 (b)
 

 

n m

*

a b | n 0, m 1

a b

 

 (c)
 

 

n m

* *

a b | n 2, m 3

aaa bbb

 



