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Theory of Computation

Automata, Language Computability Complexity
Grammar

RUSSELL'SPARADOX:

According to naive set theory, any definable collectionisaset. Let R bethe set of all setsthat are not
members of themselves. If R qualifiesasamember of itsalf, it would contradict itsown definitionas a set
containing setsthat are not members of themselves. Onthe other hand, if such aset isnot amember of itsdlf, it
would qualify asamember of itself by the samedefinition. Thiscontradiction isRussell's paradox. Symboli-
caly:

R={x|xgx},thenReR<RgR

Noncomputability isdiscussed in computability section. Wherewe also discussed recursive and recursve
enumerable classes.
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FORMAL LANGUAGE CHAPTER-1

INTRODUCTION:

A formal languageisaset of words, i.e. finite trings of letters, symbols, or tokens. The set fromwhichthese
lettersare takenis cadled thealphabet over which the languageisdefined. A formal languageisoften defined
by means of aformal grammar (also called itsformation rules); accordingly, wordsthat belong to aformal
language are sometimes called well-for med for mulas. Formal languagesare studied in computer scienceand
linguigtics, thefield of formal languagetheory studiesthe purely syntactical aspects of such languages (that is,
ther interna structurd patterns).

A hierarchy isdefined for any language(or formal language)

An alphabet is a set of symbols

(v 3

Sentences are strings of symbols

a, b, aa, ab, ba, a..

A language is a set of sentences

L = (aaa, abaa, aaba, bbb)

A grammar is a finite list of rules defining a language

S= aA B=> bB
A= bA B—> aF
A—> aB F2 ¢

Computational Problems

Intheoretical computer science, acomputational problemisameathematical object representing acollection of
guestionsthat computersmight want to solve. For example, the problemof factoring “Givenapostiveinteger
n, find anontrivia primefactor of n.” isacomputational problem. Computational problemsare oneof themain
objectsof gudy intheoretical computer science. Thefied of dgorithmsstudies methods of solvingcomputationd
problemsefficiently. The complementary field of computational complexity attemptsto explain why certain
computational problemsareintractable for computers

Typesof computational problems

A decision problemisacomputational problemwherethe answer for every instance iseither yesor no. An

example of adecison problemisprimality testing: “ Given apositiveinteger n, determineif nisprime.”

A decision problem is typically represented as the set of all instances for which the answer is yes. For

example, primality testing can berepresented astheinfiniteset L ={2, 3,5, 7, 11, ...}

Inasearch problem, theanswerscan bearbitrary strings. For example, factoring isasearch problemwhere

theinstances are (string representations of) postiveintegers and the solutions are (string representations of)

collectionsof primes.

A search problemisrepresented asarelation over consisting of all theinstance-solution pairs, cdled asearch

relation. For example, primality can be represented astherelation
R={(4,2),(6,2),(6,3),(8,2),(8,4),(9,3), ...}

which consist of all pairsof numbers(n, p), where pisanontrivial primefactor of n.

G_ H.O.: 28-A/11, Jia Sarai, Near-1IT, New Delhi-16 , Ph : 011-26851008, 26861009 www.car eerendeavour.com
e B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991



(4)

A counting problem asksfor the number of solutionsto a given search problem. For example, the counting
problem associated with primdity is* Given apostiveinteger n, count the number of nontrivial prime factorsof
n’

A counting problem can berepresented by afunction f from{ 0, 1} * to the nonnegativeintegers. Forasearch
relation R, the counting problem associated to Risthefunction fR(x) = {y: (X, y) “ R}|.

Anoptimization problem asksfor finding the“best possble”’ solution among the set of dl possible solutions
to a search problem. One example is the maximum independent set problem: “Given agraph G, find an
independent set of G of maximumsize.”

Optimization problemscan be represented by their search relations.

Computational models

In computability theory and computational complexity theory, amode of computation isthe definition of the
st of alowableoperationsused in computation and their respective codts It isused for measuringthe complexity
of an algorithmin execution time and or memory space: by assuming a certain model of computation, it is
possibleto analyzethe computational resourcesrequired or to discussthelimitations of algorithmsor computers.
Someexamples of modelsinclude Turing machines, recur svefunctions, lambda calculus, and production
systems.

Automata:
An automaton isan abstract mode of acomputer, which accepts someinput (astring), produces output (yes/
no or astring) and may haveinternal, storage (usualy, astack or tape).

input string
HNEEEEREEEER
COh'FI’Ol Sorage
unit (stack or tape)
output

An automaton operates in adiscete time frame (like areal computer). A particular state of te autormeaton
including the state of the conrol unit, input, and storage, is called aconfiguration. The transaction froma
configurationto thenext oneisamove. If the output isyes/no, the automaton s called an acceptar. If theoutput
isstring, itiscalled atransducer.

Basic concepts:
Sring: Analphabet isanon-empty finite set of symbolsdeonted 3,

eg. T={ab,c} isanalphabet
A gring isafinite sequence of symbols, stringsareusualy deonted by u, v and w.
eg. U=abcabisastringon = ={a,b,c}

The empty string (no symbolsat all) isdenoted A

A part of astring isasubstring.

eg. Bcaisasubstring of abcab.

A begininning of astring (up to any symbol) isaprefix, and an ending isa suffix.
abcab abcab

—_ —_
— —

prefixes suffixes
Note: A stringisaprefix and suffix of itself. A isaprefix and suffix of any string.
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Sring Operations.
Concatenation: wv —appending v to theend of w.

eg. w=abc,v=ab; wv = abc ab

Note: Aw =wi=w

Reverse: w® — w inreverseorder

eg. w = abc, wF =cba

Length of astring: number of symbols

eg. |abc| =3

Note:  [1|=0; | |=[u; [wyi=w|+}y

w" — w repeated ntimes, that is, W~ = WWW....W

n times
eg. (abc)2 = abcabcabc

Note: wo=2; ‘W" =n.|w|

Languages: 3" istheset of al stringson y .
eg. =={aB,c}; T ={rab,caaabachba,....... }

>* istheset of all stringsexcept .
Note: ¥ and >+ areinfinite.

A langauageisasubset of 3", usually denoted L.
It may befinite oninfinite.

If astringw isinL, we say that w isasentenceof L.

Operationson language:
Union, intersection and difference-same ason s&ts.

eg. {abaabcin{raaaaam,.....|={a}
Complementation: L= —L
eg. L={raaaam,....}

L={w:w includesbor c}
Reverse: L* ={w":weL|—theset of reversed strings

eg. L={abaabc}; L ={aab,chal
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Determinastic FiniteAutomata (DFA):
Where, Q = st of internd sate

g, € Q =initial/start symbol of FA

y =1, Palphabet @
§ =trandston function

F<Q =Find state.

d:QxX — Q |— tota function

Why called deterministic at astatefor given |/P because we have only one choice either moveto anather state
or itsdf.

Example 1.1

Thefollowingisan FA with 3 statescaled A, B and C. Thestart stateisA, and Cistheonly accept state.

= :
xogoac
1

1

Congder itsbehavior whentheinput string is 101001
Current State  Symbol Read New State

A 1 A
A 0 B
B 1 A
A 0 B
B 0 C
C 1 C

Here, thefina gateisC. Similarly, thefinal statefor 11101 isA, and for 0001 it isC.
What doesit take to get the accept state? Thismachine acceptsal stringsof 0’sand 1’ swith two consecutive
zeroessomewhere.

Example 1.2

Consider thefollowing FA

1
5o

This FA accepts strings like 100 and 0101001 and 11111, and rejects strings like 000 and 0110.
Canyou describe exactly which stringsthis FA accepts?
ThisFAignoresthe symbol O (it doesn't change state). It only worries about the symbol 1; hereit alternates
dates. Thefirst 1 takesit to state B, the second 1 takesit to stateA, thethird to state B, and so on. Soitisin
state B whenever an odd number of 1's have beenread.

That is, this machine acceptsall strings of 0’'sand 1’swith an odd number of 1's.
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Example 1.3

All binary stringsstarting with 00.
Theapproachisto read thefirst two symbols, and that gives onetheanswer. Therest of thestringisignored
(which correspondsto the automaton never changing state).

(D@, ,

1 1

01

Example 1.4

All the binary stringsending in 00

Well, thefirst thing you might do isto think about what happensif thefirst two symbolsare0.Tha must take
youto anaccept state. So, thereare at least threestates: A, B, and C, whereA isthe start state, Cisan accept
state, and a0 takes you fromA to B, and fromB to C.

But what happensif you read a1?Well, if you think about it, thisshould take the FA back to thedart state, no
matter what stateit isin. Another question is, what happensif you get a0in state C?Well, staying in C seems
reasonable. Thisyieldsthefollowing FA:

A commontype of Sateisatrap. Thisisastatethat, once entered, you can never leave. For example, state C
of example 1.1 isatrap. How can you recognize atrap fromthe picture?A trap hasno arrow out. Trapscan
be used intwo ways:

(8) Asargject state for partly read stringsthat will never be accepted

(b) Asan accept statefor partly read stringsthat will definitely be accepted.

Example 1.5

AnFA that acceptsall binary stringswhere0’'sand 1'salternate

Themainideaisapair of statesthat oscillate: O takesyou to one and 1 takesyou back again. Wealso need a
trap if ever two consecutive symbolsarethe same.

One approachisto have agtart state that diptsinto two sub-machines. This givesthe following solution:
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But actually, you cando it with fewer states:

0,1
Although agiven FA correspondsto only one language, agiven language can have many FAsthat acceptit.
Notethat you must always be careful about the empty string: should the FA accept or not. Inthe preceding
example, theempty string isaccepted becausethe start state isaso an accept state.

Another ussful techniqueis remembering specific symbols. Inthe next exampleyou must forever remenrber the
first symbol; so the FA splitsinto two pieces after thefirst symbol.

Example 1.6

An FA that acceptsal binary stringsthat begins and end with the same symbol.
Itisclear that the automaton must beintwo different statesbased onthefirst symbol thet isread. After that, you
need to keep track of thecurrent symbol just read, in caseit turnsout to bethefina symbol. But that isenough.

Notethat theremust not be any connection between the top and bottom halves, since otherwisethe FA might
forget thefirst symbol read.

Formal defintion of FA:

FA isof two types: Deterministic and Nondeterministic. The FA discussed so far are deterministic one. The
formal definition ofa DFA(Deterministic Finite Automata) is given as a 5-tuple (Q,Z, q,, T,d) where:

e Qisthefinite set of states

¢ X is an alphabet of input symbols

e g, isthestart state

e T isasubset of Q giving the accept states

e § is the trangition function that mapsasymbol to agtate(6: Qx X’'1Q)

Transitiontable:
It isamatrix that liststhe new state given the current state and the symbol read.
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(o)

ANs.

ANs.

ANs.

Example 1.7

Hereisthetrangtion table for the FA that acceptsall binary stringsthat begin and end with thesame symbol.

I nput
160
S[A C
AlA B
% B|A B
%clp c
Dl D C

Example 1.8 GATE-2002

Thesmallest DFA acceptsthelanguageL = x € {a,b}, lengthof nismultipleof 3.

@ O®)

(@2 (b)3 (4 (d)5
(b)
Consider themachineM
b
a

The language recognized by above machineis:

(a {W e{a, b}* / every ainw, isfollowed by exactly two b's}

(b) {W e{a b}* every ain w, isfollowed by at least two b's}

(c) {w e{a,bl" w contains the substring 'abb'}
{we{ab}

(d) \wWe " w does not contain 'ad as asubstring}

()

Example 1.10

If thefinal state and non-fina statein DFA below are interchanged then which of
() Set of al string that doesnot end withaand b.

(b) Set of all string that beginwithaand b.

(c) Set of all gring that doesnot count.

(d) The set describe by b* aa* (ba)

@)
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REGULAR EXPRESSIONS CHAPTER-2

Soin.

Soin.

Regular Expression:: Aregular expression (RE) correspondsto aset of strings, that is, aregular expression
describes alanguage. It isbuilt up using the threeregular operations called union concatenation, and star,
described inthefollowing paragraphs. A regular expression uses normal symbols aswell asfour speda symbols.
A regular expressionsisinterpreted using thefollowing rules:

The parentheses (and) are used for grouping, just asinnormal math.

Theplussign (+) meansunion. Thus, writing 0+ 1

Means either azero or aone. We also refer to the+ asor.

The concentration of two expressonsisobtained by smply writing one after the other without spacing between
them. For example, (0+ 1)0

correspondsto the pair of strings00 and 10.

Theasterisk (*) ispronounced star and means zero or more copies.

For example, theregular expresson..... &

correspondsto any string of @'s: {¢,a,aa,aaa, ......}. Also, (0+ 1)*
correspondsto all binary strings. (Its ¢ +(0+1)+ (0+1) (0+1+.......)

Primitiveregular expression: If R and R, areregular expressionthen

(1) R, +R,isdsoaregular expression.

(2) RR,isalso aregular expression

(3) R* isdsoaregular expression

(4) (R) isalso aregular expression.

(5) Any expression that is obtained by using the above asarule and any number of timesisalso a Regular
expression.

eg. Now, Z={ab}

(a) aisregular expresson b*, a* isaregular expression
(b) bisregular expression ab, isaregular expression

(c) a+bisregular expression. baisaregular expresson

Problem: Writetheregular expresson for

(2) All binary string which end with 110

(2) All binary string whose start and end issame value.
(3) All binary string whose start and end isdifferent value.
(4) All binary string containing even number of zero’'s

(5) All binary string containing 1101 as substring.

(1) (0+1)" 110

(2) 111 (O+1)°

(3) 1(0+1) 1+0(0+1) 0+1
(4) 1(0+1) 0+0(0+1) 1
(5) (10+10)

Problem: Write Regular Expressionfor

(@ {a"b™ [n=0, m>0} (b) {a0" [n>0, m>1}  (¢) {a'b"[n=2, m=>3|
{a"bm|n20, mzo} {a"bm|n20, mzl} {a"bm|n22, mzs}
@ _(ap) (b) _(ab) © (s bbb
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