TEST SERIES UGC-CSIR-NET/JRF June 2016

BOOKLET SERIES A

Paper Code 01

Test Type: Test Series

CHEMICAL SCIENCES

Duration: 2:00 Hours

Date: 20-05-2016

Maximum Marks: 220

Read the following instructions carefully:

* Single Paper Test is divided into three Parts.

Part - A: This part shall carry 30 questions. Each question shall be of 2 marks.

Part - B: This part shall contain 40 questions. Each question shall be of 4 marks.

- * Darken the appropriate bubbles with HB pencil/Ball Pen to write your answer.
- * There will be negative marking @25% for each wrong answer.
- * The candidates shall be allowed to carry the Question Paper Booklet after completion of the exam.
- * For rough work, blank sheet is attached at the end of test booklet.

South Delhi Centre:

28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16 T: 011-26851008, 26861009

North Delhi Centre:

33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No.3), Delhi-09 T: 011-65462244, 65662255

E: info@careerendeavour.com, W: www.careerendeavour.com

PART-A

- 1. Arrange the following in increasing order of v_{C-O} stretching frequencies
 - (A) $\left[Mn \left(CO \right)_{6} \right]^{+}$ (B) $\left[Cr \left(CO \right)_{6} \right]$ (C) $\left[V \left(CO \right)_{6} \right]^{-}$ (D) CO free

- (a) D < B < C < A (b) C < B < D < A
- (c) C < B < A < D
- (d) D < A < B < C

 $Fe(CO)_5 \xrightarrow{I_2} (A) \xrightarrow{NaBH_4} (B)$ 2.

The product (A) and (B) are respectively

- (a) $\left[\text{Fe(CO)}_4 \right]^{2+}$, $\left[\text{Fe(CO)}_4 \right]^{2-}$ (b) $\left[\text{Fe(CO)}_5 \text{ I}_2 \right]$, $\left[\text{Fe(CO)}_5 \text{ H}_2 \right]$
- (c) $\lceil \text{Fe}(\text{CO})_4 \text{ I}_2 \rceil$, $\lceil \text{H}_2 \text{Fe}(\text{CO})_4 \rceil$ (d) $\lceil \text{H}_2 \text{Fe}(\text{CO})_4 \rceil$, $\lceil \text{Fe}(\text{CO})_4 \text{ I}_2 \rceil$
- The bond order of the cluster $\left[\text{Cp}_2\text{Cr}_2\left(\text{CO}\right)_4 \right]$ and $\left[\left(\text{SiR} \right) \text{Co}_3\left(\text{CO} \right)_9 \right]$ are respectively 3.
 - (a) 3, 2
- (b) 3, 3
- (c) 2, 3
- (d) 4, 3
- \rightarrow [(dmpe)₂RuH(C₁₀H₇) 4.

The above reaction is an example of

(a) Oxidative coupling

(b) Oxidative addition

(c) Reductive elimination

- (d) Oxidative addition followed by reductive elimination
- In the MO configuration of XeF₂, how many electrons are present in BMO, NBO, ABMO, respectively 5.
 - (a) 2, 0, 2
- (b) 2, 1, 1
- (c) 2, 2, 0
- (d) 1, 2, 1
- In which of following C–C bond length will be longest 6.
 - (a) H_3C — CF_3
- (b) FH_2C — CH_2F
- (c) F_2HC — CHF_2
- (d) $F_3C CF_3$
- 7. The number of peroxide linkages and oxidation state of Cr in CrO_s:
 - (a) 2, +6
- (b) 1, +6
- (c) 1, +8

- The correct order of thermal stability 8.
 - (a) LiBH₄ > LiAlH₄ > LiGaH₄ AREER ENDEAVOUR

 - (b) $B_2H_6 > Al_2H_6 > Ga_2H_6$ www.careerendeavour.com
 - (c) $Al_2Cl_6 > Al_2Br_6 > Al_2(MeS)_6$ (MeS = Mesityl)
 - (d) all are correct.
- Find the value of 'x' in $-[Na_3Ba_xSi_5O_{15}]_2$ 9.
 - (a) 7
- (b) $\frac{7}{2}$
- (c) 14
- (d) 2
- The electronegativity of As in AsF_3 and AsF_5 if $E_{As-As}=146$ kJ/mole, $E_{F-F}=155$ kJ/mole, 10. $E_{As-F}(AsF_5) = 484 \text{ kJ/mole}$, $E_{As-F}(AsF_3) = 406 \text{ kJ/mole}$
 - (a) 1.86, 2.37
- (b) 2.37, 1.86
- (c) 1.86, 1.86
- (d) 2.37, 2.37

- The easiest LMCT can occur in 11.
 - (a) ZnS
- (b) CdS
- (c) HgS
- (d) all are equal

The ESR spectrum of $\left[Cu(en)_{2} \right]^{2+}$ exhibits 12.

Given:
$$I_{Cu} = \frac{3}{2}, I_{N} = 1$$

- (a) 36 fine lines
- (b) 36 hyperfine lines (c) 45 fine lines
- (d) 60 hyperfine line

13. The number of Mössbauer lines in the presence and absence of magnetic field respectively for K_2 Fe(CN), NO

- (a) 6 and 1
- (b) 6 and 2
- (c) 2 and 6
- (d) 1 and 6

14. Which of the following statements are correct for Flame Photometry

- (a) the presence of atom-ion equilibrium in flames has a number of consequences
- (b) the intensity of atomic emission lines for the alkali metals are affected in a complex may be temperature
- (c) increased temperature causes an increase in the population of the excited atoms
- (d) all of the above are correct.

15. Using phenolphthalein indicator which of the following titration is possible?

(a) acetic acid with pyridine

- (b) oxalic acid with sodium hydroxide
- (c) hydrochloric acid with aniline
- (d) sulphuric acid with aqueous ammonia

The half-life of radioactive nucleus is 2.5 days. The percentage of the original substance which will disintegrate 16. in 7.5 days is

- (a) 8.75 %
- (b) 100%
- (c) 87.5%
- (d) 12.5%

Which of the following radioactive decay chains is it possible to observe? 17.

- (a) $_{82}^{206}Pb \rightarrow _{80}^{202}Hg \rightarrow _{79}^{202}Au$
- (b) $^{210}_{83}Bi \rightarrow ^{210}_{84}Po \rightarrow ^{206}_{82}Pb$
- (c) $^{214}_{88}Ra \rightarrow ^{210}_{86}Rn \rightarrow ^{207}_{82}Pb$
- (d) $^{206}_{82}Pb \rightarrow ^{202}_{80}Hg \rightarrow ^{202}_{72}Au$

18. The following is the example of

$$n \rightarrow p + e^- + \overline{v}$$

- (a) γ-decay
- (b) α -decay
- (c) β -decay
- (d) α , β & γ -decay

19. Select the pair of normal and inverse spinel from followings

- (a) ZnFe₂O₄ and MgAl₂O₄
- (b) FeAl₂O₄ and NiGa₂O
- (c) NiAl₂O₄ and NiGa₂O₄

(d) FeCr₂O₄ and NiCr₂O

The equilibrium constant for following reaction of ethylenediammine with Co²⁺, Ni²⁺ and Cu²⁺ are k₁, k₂ and k₃ 20. respectively.

$$\left[M(H_2O)_2(AA)_2\right]^{2+} \xrightarrow{AA} \left[M(AA)_3\right]^{2+}$$

then select the correct statement from the following

- (a) $k_2 > k_1 > k_3$ (b) $k_3 > k_2 > k_1$ (c) $k_2 > k_3 > k_1$ (d) $k_2 \approx k_3 > k_1$

The intense red color of an $\left[\operatorname{Fe}(\operatorname{phen})_3\right]^{2+}$ solution is replaced by pale blue when cerium (IV) sulfate is 21. added to its. The colour of reactant and product is due to respectively

- (a) d-d transition in both
- (b) MLCT in reactant while LMCT in product
- (c) MLCT in reactant and d-d transition in product
- (d) d-d transition in reactant while MLCT in product

- 22. Correct statement for oxyhemerythrin is
 - (a) both the Fe are same

(b) oxyhemerythrin is paramagnetic in nature

(c) O_2 is present as HO_2^-

- (d) it is colourless
- 23. Which of followings are involve in electron transfer processes
 - (A) Cytochrome

(B) Plastocyanin

(C) Ferredoxin

(D) Azurin

(a) A, C

- (b) A, B, C, D
- (c) A, C, D
- (d) A, B, C
- Total number of stereoisomers of $\left\lceil \text{CoCl}_3 \left(\text{NO}_2 \right)_3 \right\rceil^{2-}$ and $\left\lceil \text{Co} \left(\text{gly} \right)_2 \text{Cl}_2 \right\rceil^-$ are (only geometrical) 24.
 - (a) 2, 3
- (b) 2.4
- (c) 3, 5
- (d) 2, 5
- 25. Which of following oxides have highest Neel temperature
- (b) NiO
- (c) FeO
- (d) CoO

- Which of the following protein is hemeprotein 26.
 - (a) Hemocyanin
- (b) Hemerythrin
- (c) Ferritin
- (d) Cytochrome

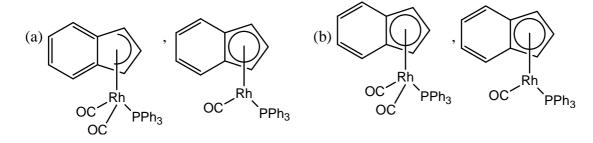
- Which noble gas is used in crysoscopy 27.
 - (a) He
- (b) Ne
- (c) Ar
- (d) Xe
- The correct order of second ionization potential of carbon, nitrogen, oxygen and fluorine is: 28.
 - (a) C > N > O > F

(b) O > N > F > C

(c) O > F > N > C

- (d) F > O > N > C
- 29. The series with the correct order of decreasing ionic size is:
 - (a) $K^+ > Ca^{2+} > S^{2-} > Cl^-$

(b) $S^{2-} > Cl^- > K^+ > Ca^{2+}$


(c) $K^+ > Cl^- > Ca^{2+} > S^{2-}$

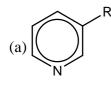
- (d) $Cl^- > K^+ > S^{2-} > Ca^{2+}$
- For an odd nucleon in 'f' nuclear orbital and parallel to I spin and parity are 30.
 - (a) $\frac{7}{2}$ and (+) (b) $\frac{7}{2}$ and (-)
- (c) $\frac{9}{2}$ and (+) (d) $\frac{9}{2}$ and (-)

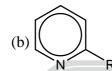
OC 00

The intermediate P and the product Q are respectively

31.

$$(c) \begin{picture}(c){\cite{Ah}}\cite{Ah} \end{picture} \begin{picture}(c){\cite{A$$

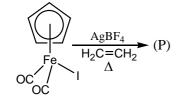

(d)
$$P = Q = \bigcirc$$


$$OC \xrightarrow{Rh}_{PPh_3}$$

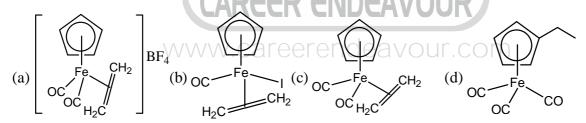
32. The structure of the cluster anion $\left[\text{HCo}_6 \left(\text{CO} \right)_{15} \right]^-$ in the crystal shows Co_6 octahedron holds ten terminal CO ligand, four unsymmetrical CO bridges and one symmetrical 'CO' bridges. The H-atom readily leaves the center of Co_6 octahedron as the pH value increases. The ¹H NMR of this cluster shows chemical shift at (a) +23 ppm (b) -7.5 (c) -19.5 (d) 2.90 ppm

33.
$$2H-C \equiv C-H + R-C \equiv N \xrightarrow{CpCo(COD)} (P)$$

The major product (P) in the above reaction is


34. $\left[\text{CpRu}(\text{CO})_2 \text{Me} \right] \xrightarrow{\text{PPh}_3} (\text{P})$

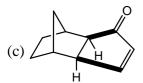
The major product of the reaction is

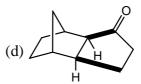

- (a) $\left[\text{CpRu} \left(\text{CO} \right) \left(\text{PPh}_3 \right) \text{Me} \right]$
- (b) \[CpRu(CO)(COMe)(PPh₃)\]

(c) $\lceil \text{CpRu}(\text{CO})(\text{COMe}) \rceil$

(d) $\left\lceil \text{CpRu}\left(\text{CO}\right)_{2}\left(\text{PPh}_{3}\right)\left(\text{Me}\right)\right\rceil$

The major product (P) in the above reaction is

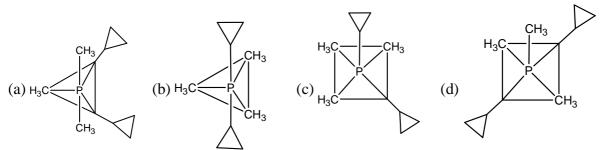


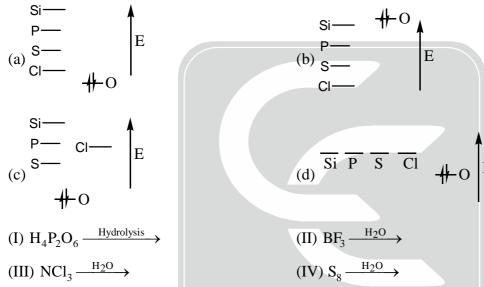

36.
$$+ C_2H_2 + CO \xrightarrow{10\% Co_2(CO)_8} (P)$$

The major product (P) in the above reactions

(a) $\left[\text{Co} \left(\text{CO} \right)_4 \left(\text{C}_2 \text{H}_2 \right) \right]$

(b) $\left[\text{Co}(\text{CO})_{4} \right]$




35.

The correct structure of $\left[P(C_3H_5)_2(CH_3)_3 \right]$ is 37.

- 38. Find the correct order of bond angles
 - (I) $H_3O^+ > NH_3$
- (II) $BCl_3 > COF_2$
- (III) $\stackrel{\oplus}{N}_{H_4} = \stackrel{\oplus}{N}_{Me_4}$
- (IV) $AsH_3 > AsF_3$

- (a) I, II
- (b) I, II, III, IV
- (c) I, II, III
- (d) III only
- The correct matching of MO for the π -back donation in Si–O, P–O, S–O, Cl–O units 39.

- 40.
 - (V) Br₂ $\xrightarrow{\text{H}_2\text{O}}$

In how many hydrolysis reactions two types of acids are formed

- (a) 5
- (b) 4

- The correct order of acidic strength. Careeren deavour. Com 41.
 - (a) $P_2O_3 < SO_2$ (c) $XeOF_4 > XeF_4$ (d) all are correct.
- 42. The number of correct orders of ionisation energies in
 - (I) $NH_3 > PH_3$
- (II) $S^- > O^-$
- (III) $C^- > B^-$
- $(IV) Al^- > B^-$

- (V) NO > N > O
- (VI)HF < HCl > HBr
- (a) 4
- (b) 3
- (c) 2
- (d) 5

43. At low aqueous concentrations and at ordinary temperature the extent of exchange of ions in exchanger coloumn is

(a)
$$Li^+ < H^+ < Na^+ < NH_4^+ < K^+ < Rb^+ < Cs^+$$

(b)
$$Li^+ > H^+ > Na^+ > NH_4^+ > K^+ > Rb^+ > Cs^+$$

(c)
$$H^+ < Li^+ < Na^+ < NH_4^+ < K^+ < Rb^+ < Cs^+$$

(d)
$$Li^+ < Na^+ < NH_4^+ < K^+ < Rb^+ < Cs^+ < H^+$$

44.
$$P_2I_4 + PI_3 \xrightarrow{DCM} [P_3I_6]^+$$

Which is correct for $[P_3I_6]^+$

- (a) it gives two ³¹P-NMR signals with triplet and doublet patterns
- (b) it gives one ³¹P-NMR signals with triplet
- (c) it gives three ³¹P-NMR signals with singlet
- (d) it gives two ³¹P-NMR signals with singlet-doublet pattern.
- 45. Which of the following is not the neutralization reaction(s)?

(i)
$$NH_4Cl + KNH_2 \xrightarrow{liq. NH_3} KCl + 2NH_3$$

(ii)
$$SOCl_2 + Cs_2SO_3 \xrightarrow{liq. SO_2} 2CsCl + 2SO_2$$

(iii) NaOH + HCl
$$\xrightarrow{\text{H}_2\text{O}}$$
 NaCl + H₂O

(iv) Na + H₂O
$$\longrightarrow$$
 NaOH + $\frac{1}{2}$ H₂(g)

- (a) only (i)
- (b) only (i) and (ii)
- (c) only (i), (ii), (iv)
- (d) only (iv)
- 46. Arrange the following aqua ions in the order of increasing acid strength

$$\left[\text{Cr} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}, \left[\text{Sc} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}, \left[\text{Al} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} \text{ and } \left[\text{Hg} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+} \right]^{3+}$$

(a)
$$\left[\text{Cr} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Al} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Sc} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Hg} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+}$$

(b)
$$\left[Al(H_2O)_6 \right]^{3+} < \left[Sc(H_2O)_6 \right]^{3+} < \left[Cr(H_2O)_6 \right]^{3+} < \left[Hg(H_2O)_6 \right]^{2-}$$

$$\text{(c)} \left[\text{Hg} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+} < \left[\text{Al} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Sc} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Cr} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}$$

$$(d) \left[Hg (H_2O)_6 \right]^{2+} < \left[Sc (H_2O)_6 \right]^{3+} < \left[Cr (H_2O)_6 \right]^{3+} < \left[Al (H_2O)_6 \right]^{3+}$$

- 47. The ground state term and the magnetic moment of the Ho³⁺ ion is
 - (a) ⁵H and 10.60 B.M.

(b) ⁶I and 4.9 B.M.

(c) ⁵I and 10.60 B.M.

- (d) ⁵I and 4.9 B.M.
- 48. The order of separation of tripositive lanthanide ions is
 - (a) Ce^{3+} . Nd^{3+} . Eu^{3+} . Er^{3+} . Yb^{3+}
- (b) Yb^{3+} . Er^{3+} . Eu^{3+} . Nd^{3+} . Ce^{3+}
- (c) Nd^{3+} , Eu^{3+} , Er^{3+} , Yb^{3+} , Ce^{3+}
- (d) Ce^{3+} , Nd^{3+} , Er^{3+} , Eu^{3+} , Yb^{3+}
- 49. Total number of expected ESR lines for NH₂ radical will be

[Given: $A_M = 30.0 \text{ m T}$ and $A_H = 15.0 \text{ mT}$]

- (a) 5 lines
- (b) 9 lines
- (c) 7 lines
- (d) 10 lines

50. Consider the following

Volumetric Method for Ag(I)	Indicator used
(i) Fajans method	Chromate
(ii) Mohr's method	Fluorescein
(iii) Vohlard method	Ferric salt

The method and indicator matched correctly is

- (a) I and II only
- (b) II and III only
- (c) III only
- (d) II only

51. Find the incorrect statement

- (a) the dipole moment of NHF₂ is 1.92D and that of NF₃ is 0.24D.
- (b) the dipole moment of H₂O is greater than that of HF
- (c) HCOOH is stronger acid than H₂CO₃.
- (d) HF₂ has 3c-4e bonding
- 52. Select the correct statement from following?
 - (A) spin multiplicity allowed transition are broad while spin multiplicity forbidden are usually sharp
 - (B) spin multiplicity allowed transitions are sharp while spin multiplicity allowed transition are usually broad
 - (C) Genrally $f \leftarrow f$ transition have more molar extinction coefficient than d-d transition.
 - (D) Generally d-d transition have more molar extinction coefficient than $f \leftarrow f$ transition
 - (a) A and D
- (b) A and C
- (c) B and C
- (d) B and D

53. The number of stereoisomers and pairs of isomers for compound having formula Ma bcde is

- (a) 12, 6
- (b) 15, 6
- (c) 10, 5
- (d) 9, 3

54. Select the correct option from following

(A)
$$d_{z^2} > d_{x^2-y^2} > d_{xz} > d_{xy} = d_{yz}$$
 {energy of d-orbital for square pyramidal}

(B)
$$d_{z^2} > d_{x^2 - y^2} > d_{xz} = d_{yz} > d_{xy}$$
 {energy of d-orbital in z-in}

(C)
$$d_{xz} > d_{yz} > d_{xy} \approx d_{x^2-y^2} > d_{z^2}$$
 {energy of d-orbital in square antiprismatic}

(D)
$$\frac{\Delta_{sp}}{\Delta_C}$$
 is approximately ≈ 2

- (a) A, B, C
- (b) B, C A REER (c) A, C, D (d) C, D

55. Correct statement regarding uranium is

- (1) most stable oxidation state of uranium is +6-rendeavour.com
- (2) in uranocene its oxidation state is +4
- (3) in UO₂ colour is due to LMCT
- (4) Electronic configuration of uranium corresponds (Rn)5f³6d¹7s²
- (a) 1, 2
- (b) 1, 2, 4
- (c) 1, 2, 3, 4
- (d) 2, 3, 4

56. Among $(CH_3)_3 N - SO_3$ and $H_3N - SO_3$, correct statement is

- (a) S-N bond length in first is greater than II
- (b) N-S-O bond angle in I is less than II
- (c) N-S bond length in I is smaller than II and N-S-O bond angle in I is larger than II
- (d) none of these

In a complex trans- $\left[CuX_4Y_2\right]^{2+}$ the Cu-X bond is larger than that of Cu-Y bond, what is correct electron 57. arrangement of complex

(a)
$$(d_{xy})^2 (d_{yz})^2 (d_{xz})^2 (d_{x^2-y^2})^2 (d_{z^2})$$

(a)
$$\left(d_{xy}\right)^2 \left(d_{yz}\right)^2 \left(d_{xz}\right)^2 \left(d_{x^2-y^2}\right)^2 \left(d_{z^2}\right)^1$$
 (b) $\left(d_{xy}\right)^1 \left(d_{yz}\right)^2 \left(d_{xz}\right)^2 \left(d_{x^2-y^2}\right)^2 \left(d_{z^2}\right)^2$

(c)
$$(d_{xy})^2 (d_{yz})^2 (d_{xz})^2 (d_{x^2-y^2})^1 (d_{z^2})^2$$
 (d) $(d_{xy})^2 (d_{yz})^2 (d_{xz})^1 (d_{x^2-y^2})^2 (d_{z^2})^2$

(d)
$$(d_{xy})^2 (d_{yz})^2 (d_{xz})^1 (d_{x^2-y^2})^2 (d_{z^2})^2$$

- Which of the following show strong emission spectra? 58.
 - (a) Gd^{3+} , Tb^{3+}
- (b) Eu^{3+} . Tb^{3+}
- (c) Lu^{3+} , Eu^{3+} (d) Nd^{3+} , Tb^{3+}
- 59. Which of the following statement is not correct about hemerythrin
 - (a) The structure consists of two differently co-ordinated Fe-atoms joined by μ-oxo and two bridiging carboxylato group.
 - (b) The oxidized form is diamagnetic.
 - (c) Deoxy hemerythrin contains two high-spin ferrous ions as established by Mossbauer and EPR spectros-
 - (d) The deoxy or oxy hemerythrin undergo two electron oxidation and reduction reaction.
- 60. Which of the following statement is not correct
 - (a) In deoxy Hb, the Fe(+2) is high spin (S = 2)
 - (b) Addition of O_2 on deoxy Hb to form the $Fe^{(III)} O_2^-$
 - (c) In both Hb and Mb, there is a histidine situated in O2, binding pocket on the side way from co-ordinated imidazole base.
 - (d) The Co-ordination of dioxygen to deoxy Hb or Mb is accompanied by electron transfer to form peroxide ion, which in turn is stabilized by H-bonding to distal imidazole proton.
- 61. Consider the following statements
 - (A) The ruberdoxin active site consist of a high spin Fe(II, III) ion
 - (B) It is co-ordinated to four cysteinate sulfur atoms in an approximally tetrahedral arrays.
 - (C) The oxidised form of ruberdoxin is coloured due to d-d transition
 - (D) The oxidised form at [2Fe2S] ferrodoxin contains two Fe(+3) ions.
 - (E) Blue copper proteins such as plastocyanin involved atom transfer reaction.

Which of the following statements are correct

- (a) A and C
- (b) B and C
- (c) A, B, C
- (d) A and B only
- The **FALSE** statement for a polarographic measurement procedure is: 62.
 - (a) O₂ is removed
 - (b) Dropping mercury electrode is working electrode
 - (c) I₄ is proportional to concentration of electroactive species.
 - (d) Residual current is made zero by adding supporting electrolyte.
- Red and yellow isomers exist for the coordination complex [Co (NH₂)₅NO₂]²⁺. If the red isomer has v_{NO} 63. bands at 1470 and 1065 cm⁻¹ and the yellow isomer has v_{NO} band at 1430 and 1310 cm⁻¹. What will be the coordination mode of NO₂.
 - (a) Yellow Co ONO
- red Co NO₂.
- (b) Yellow Co NO₂
- red Co ONO
- (c) Red Co-NO₂
- yellow Co-NO
- (d) Red Co-ONO
- vellow Co-ONO

- 64. Which of the following pairs match the correct v_{NO} (cm⁻¹) frequencies? (A) $N \equiv O^+$ (1) 1880 (B) NO (2) 886 (C) NO^- (3) 1366 (D) NO^{-2} (4) 2273 (a) A-1, B-2, C-3, D-4 (b) A-4, B-1, C-3, D-2 (c) A-2, B-4, C-3, D-1 (d) A-3, B-4, C-1, D-2
- What will be the correct order of $\nu(O-O)/cm^{-1}$ (absorption frequency) for the compounds $O_2[AsF_6]$, $O_2(g)$, KO_2 , Na_2O_2 is
 - (a) $O_2[AsF_6] > O_2 > KO_2 > Na_2O_2$ (b) $O_2[AsF_6] < O_2 < KO_2 < Na_2O_2$ (c) $O_2[AsF_6] > KO_2 > Na_2O_2 > O_2$ (d) $O_2 > O_2[AsF_6] > KO_2 > Na_2O_2$
- 66. An aqueous solution of $Ni(NO_3)_2$ is treated with Cl^- ions to give a compound for which $K_4 > K_3$. The compound is:
 - (a) $\left[\operatorname{Ni}\left(\operatorname{H}_{2}\operatorname{O}\right)_{6}\right]\operatorname{Cl}_{2}$ (b) $\left[\operatorname{NiCl}_{4}\right]^{2^{-}}$ (c) $\left[\operatorname{Ni}\left(\operatorname{H}_{2}\operatorname{O}\right)_{4}\operatorname{Cl}_{2}\right]$ (d) $\left[\operatorname{NiCl}_{6}\right]^{4^{-}}$
- 67. The crystal field stabilization energy (CFSE) value for $\left[\text{Co}\left(\text{NH}_{3}\right)_{6}\right]^{3+}$ that has an absorption maximum at 690 nm
- (a) 415.56 kJ/mole (b) 69.260 kJ/mole (c) 455.56 kJ/mole (d) 84.26 kJ/mole 68. Substitution of Cl^- by H_2O in $cis- \left[Co(en)_2 Cl_2\right]^+$ and trans- $\left[Co(en)_2 Cl_2\right]^+$ leads to formation of
 - (a) cis and trans product respectively
 - (b) cis-product in both
 - (c) mixer of cis and trans-isomer in both
 - (d) cis and mixture of cis-and trans-product respectively
- 69. Select the correct order regarding rate of electron transfer process (outer sphere) for following complex
 - $(A) \left[\text{Co} \left(\text{NH}_3 \right)_6 \right]^{2+} | \left[\text{Co} \left(\text{NH}_3 \right)_6 \right]^{3+}$ $(B) \left[\text{Co} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+} | \left[\text{Co} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} | \left[\text{Co} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} | \left[\text{Co} \left(\text{H}_3 \text{O} \right)_6 \right]^{3+} | \left[\text{Co} \left(\text$
 - (C) $\left[\operatorname{Co}(\operatorname{phen})_{3}\right]^{2+} \left[\operatorname{Co}(\operatorname{phen})_{3}\right]^{3+}$ EER ENDEAVOUR
 - (a) A > B > C (b) A > C > B (c) C > A > B (d) C
- 70. The number of ambident ligand from following
 - $SO_3^{2-}, CIO_3^-, CO, CN^-, CNO^-, S_2O_3^{2-}, PO_4^{3-}, CIO_4^-, SCN^-, NO_2^-, NO_2^+$ (a) 5 (b) 7 (c) 8 (d) 6

Space for rough work

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

CHEMICAL SCIENCES TEST SERIES-I

Date: 20-05-2016

ANSWER KEY PART-A								
1. (c) 8. (d) 15. (b) 22. (c)	2. (c) 9. (a) 16. (c) 23. (b)	3. (a) 10. (a) 17. (b) 24. (d)	4. (b) 11. (c) 18. (c) 25. (b)	5. (c) 12. (b) 19. (b) 26. (d)	6. (b) 13. (b) 20. (a) 27. (a)	7. (a) 14. (d) 21. (c) 28. (c)		
29. (b)	30. (b)		PART-B					
31. (a) 38. (c) 45. (d) 52. (a) 59. (d) 66. (b)	32. (a) 39. (a) 46. (b) 53. (b) 60. (d) 67. (a)	33. (b) 40. (c) 47. (c) 54. (b) 61. (c) 68. (d)	34. (b) 41. (d) 48. (b) 55. (c) 62. (d) 69. (d)	35. (a) 42. (a) 49. (c) 56. (c) 63. (b) 70. (a)	36. (c) 43. (a) 50. (c) 57. (a) 64. (b)	37. (b) 44. (a) 51. (d) 58. (b) 65. (a)		
		CARE	ER END	EAVOUR				

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255