TEST SERIES CSIR-NET/JRF June 2017

BOOKLET SERIES

PHYSICAL CHEMISTRY

Paper Code 01

Test Type: Test Series

CHEMICAL SCIENCES

Duration: 2:00 Hours

Date: 27-05-2017 Maximum Marks: 180

> OR ONLINE TEST WELCOME ΤO Ę

> > ER ENDEAVOUR

Read the following instructions carefully:

* Single Paper Test is divided into THREE Parts.

Part - A: This part shall carry 10 questions. Each question shall be of 2 marks.

Part - B: This part shall carry 20 questions. Each question shall be of 2 marks.

Part - C: This part shall contain 30 questions. Each question shall be of 4 marks.

* Darken the appropriate bubbles with HB pencil/Ball Pen to write your answer.

* There will be negative marking @25% for each wrong answer.

* The candidates shall be allowed to carry the Question Paper Booklet after completion of the exam.

* For rough work, blank sheet is attached at the end of test booklet.

AREER ENDEAVOUR Best Institute for IIT-JAM, NET & GATE

CORPORATE OFFICE : 33-35, Mall Road, G.T.B. Nagar, Opp. G.T.B. Nagar Metro Station Gate No. 3, Delhi-110 009 T: 011-65462244, 65662255

E: info@careerendeavour.com w:www.careerendeavour.com

REGISTERED OFFICE : 28-A/11, Jia Sarai, Near-IIT, Hauz Khas Metro Station Delhi-110 016 T: 011-26851008, 26861009

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

CAREER ENDEAVOUR

The pH of solution on the electrolysis of 10L of aqueous solution of Na, SO₄ when 1F of electricity is passed 35. through it is 4

(a)
$$4.6$$
 (b) 7 (c) 8.3 (d) 10.4

The $E_{\text{reduction}}^0$ for Cu|CuS electrode is 36.

Given :
$$K_{sp}$$
 of CuS = 8×10^{-36;} $E_{Cu^{2+}|Cu}^{0} = 0.34V$
(a) 0.56 (b) -0.43 (c) 0.23V (d) -0.71V

37. The change in enthalpy is 40 kJ mol⁻¹. The temperature at which change in molar volume is 0.0567 m³.

(c) 529 K

(d) 423 K

(b) 300K 38. For a gas α (isobaric expansion coefficient) can be expressed as

(a)
$$\left(\frac{\partial U}{\partial T}\right)_{P} - C_{V}$$
 (b) $\frac{\left\{\left(\frac{\partial U}{\partial T}\right)_{P} - C_{V}\right\}}{\pi V}$ (c) $\left(\frac{\partial U}{\partial T}\right)_{P}$ (d) $\frac{\left\{\left(\frac{\partial U}{\partial T}\right)_{V} - C_{V}\right\}}{\pi V}$

39. Which of the following is correct statement

(a) 600 K

(a)
$$n_1 dY_{1,m} + n_2 dY_{2,m} + Y_{1,m} dn_1 + T_{2,m} dn_2 = 0$$

(b) Gibb's-Duhem equation is studied for chemical potential

(c) In Gibbs-Duhem equation, assumption was made that number of moles of components remain constant even though mole fraction can be changed

(d) Gibbs-Duhem equation was derived at constant temperature and pressure

40. The necessary condition for a molecule to be vibrationally RAMAN active. (I) It should show oscillation of polarizability ellipsoid during vibration of the bond.

(II) It should follow the condition
$$\frac{\partial \alpha}{\partial \xi} \neq 0$$

(III) It should follow the condition $\frac{\partial \alpha}{\partial \xi} = 0$
(IV) Molecule should be anisotropically polarizable.
(a) IV (b) I and III (c) I and IV (d) II
Low resolution vibrational rotational spectrum of CO molecule is shown below

Rotational constant for CO is 5 cm⁻¹. The value of
$$J_{max}$$
 is
(a) 7 (b) 6 (c) 5 (d) 4

41.

42. The masses recorded when a substance is weighed 4 times are 16.8, 16.4, 16.6 and 17.0 mg. The variance (square of the standard deviation) and standard deviation closest to (a) $\sqrt{0.10}$ and 0.10 (b) 0.05 and $\sqrt{0.05}$ (c) $\sqrt{0.05}$ and 0.05 (d) 0.10 and $\sqrt{0.10}$ In an ideal monoatomic gas the speed of sound is given by $\sqrt{\frac{4}{3}\frac{RT}{M}}$. If the speed of sound in argon at 43. 25°C is 1260 km/h. The root mean square velocity is (1) 1890 km/h (2) 1245 km/h (3) 1890 m/s (4) 525 m/s (c) 3, 4 (d) 2.4 (a) 1, 4 (b) 1, 2 The M–X bond length is 200 pm in MX_4 (spherical rotor). The moment of inertia of MX_4 would be close 44. to (masses of M = 1.9×10^{-27} kg and masses of X = 2.5×10^{-27} kg respectively) (2) $2.67 \times 10^{-51} \, \text{kgmtr}^2$ (1) $2.67 \times 10^{-46} \, \text{kgmtr}^2$ (3) $2.67 \times 10^{-42} \text{ kgcm}^2$ (4) $3.67 \times 10^{-51} \text{ kgcm}^2$ (a) 1, 3 (b) 2, 3 (c) 3, 4 (d) 1, 4 45. Following two reactions, $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$ $COCl_2(g) \Longrightarrow CO(g) + Cl_2(g)$ are simultaneously at equilibrium in a container at constant volume. A few moles of CO(g) is added into the vessel, the new equilibrium concentration of (a) PCl₅ remain unchanged (b) Cl₂ will be greater (d) PCl_5 become less (c) PCl_5 become greater If θ_r denotes the characteristics temperature of rotation then the magnitude of $\frac{\left[\theta_r(HD)\right]^2}{\left[\theta_r(H_2)\theta_r(D_2)\right]}$ is 46. [Bond length for HD = 2 mtr, $H_2 = 4mtr$, $D_2 = 3mtr$] (a) $\frac{81}{8}$ (b) $\frac{8}{2}$ (c) $\frac{8}{81}$ (d) $\frac{9}{8}$ The surface tension of dilute solution of a solute is given by 47. $\gamma = \gamma_0 - ae^{ac_2}$ where γ_0 is surface tension of pure solvent and 'a' is some arbitrary constant and c_2 is concentration of solute. Using Gibbs adsorption equation, the surface excess per unit surface area is given by (c) $\frac{ac_2(\gamma_0 - \gamma)}{PT}$ (d) None of these (a) $\frac{\gamma_0 - \gamma}{PT}$ (b) $\frac{ac_2}{BT}$ The ground state energy of 6 identical spin-1/2 particles which are subject to a 1-D simple harmonic 48. oscillator potential of frequency ω is (a) $\left(\frac{15}{2}\right)\hbar\omega$ (b) $\left(\frac{13}{2}\right)\hbar\omega$ (c) $\left(\frac{1}{2}\right)\hbar\omega$ (d) 9*ħ*ω

6

CAREER ENDEAVOUR

infinite square well potential of width L is

(a) $14\pi^2\hbar^2/\text{mL}^2$ (b) $91\pi^2\hbar^2/\text{mL}^2$ (c) $7\pi^2\hbar^2/\text{mL}^2$ (d) $3\pi^2\hbar^2/\text{mL}^2$

50. In the adsorption of 5.2g of an acid (molar mass = 100 gmole^{-1}) on an adsorption site, the total surface area covered was found to be 150 cm^2 . The area corresponding to 1 molecule is (in cm²)

(a)
$$478.93 \times 10^{-21}$$
 (b) 478.93×10^{-20}
(c) 4.78×10^{-23} (d) 4.78×10^{-21}

51. Consider the reactions

49.

$$A(g) + B(g) \longrightarrow Pdt(g) \qquad \dots (1)$$

$$C(g) + D(g) \longrightarrow Pdt(g) \qquad \dots (2)$$

According to Collision theory the squares of pre-exponential factors of reaction (1) and reaction (2) is

Species $M(g/mole)$ Diameter (nm) A 2 1 B 4 3 C 6 2 D 8 4 3 C 6 2 D 8 4 4 (a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ 52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) $e^{2.5}$ 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a - x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a - x)}$ (c) $kt = \frac{x}{a^2}(1 + akt)$ (d) $kt = a^2(1 + akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10A$ (b) $-10A$ (c) $6A$ (d) $- 6A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0.08 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64 0.31						-			
$\begin{array}{ c c c c c c c } \hline A & 2 & 1 \\ \hline B & 4 & 3 \\ \hline C & 6 & 2 \\ \hline D & 8 & 4 \\ \hline \end{array}$ (a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ 52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) e^{25} 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10A$ (b) $-10A$ (c) $6A$ (d) $-6A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0.08 (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$			Species	M(g/mole)	Diameter(nm)				
$\frac{B}{C} = \frac{4}{6} = \frac{3}{2}$ (a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ 52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio $\frac{k_{400K}}{k_{200K}}$ is approxin (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) $e^{2.5}$ 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a - x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a - x)}$ (c) $kt = \frac{x}{a^2}(1 + akt)$ (d) $kt = a^2(1 + akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product. For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10A$ (b) $-10A$ (c) $6A$ (d) $-6A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0.0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31			A	2	1				
$\frac{C}{D} = \frac{6}{8} = \frac{2}{4}$ (a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ (e) $\frac{189}{96}$ (f) $\frac{189}{96}$ (h) $\frac{189}{96}$ (h) $\frac{96}{149}$ (h) $\frac{96}{189}$ (h) $\frac{189}{96}$ (h) $\frac{189}{21}$ (h) $\frac{189}{25}$ (h) 18			B	4	3				
$D = 8 = 4$ (a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ (e) $\frac{96}{96}$ (f) $\frac{96}{189}$ (f) $\frac{189}{96}$ (g) $\frac{189}{16}$ (g) $\frac{189}$			С	6	2				
(a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ 52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio $\frac{k_{400K}}{k_{200K}}$ is approximation (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) $e^{2.5}$ (e) $e^{2.5}$ (f) $e^{2.5}$ 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10A$ (b) $-10A$ (c) $6A$ (d) $-6A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0.0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (c) 0.64, 0.31			D	8	4				
(a) $\frac{149}{96}$ (b) $\frac{96}{149}$ (c) $\frac{96}{189}$ (d) $\frac{189}{96}$ 52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) e^{25} 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10 A$ (b) $-10 A$ (c) $6 A$ (d) $-6 A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0.0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64 + 0.31$									
52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio $\frac{k_{400K}}{k_{200K}}$ is approximation (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) e^{25} 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10 A$ (b) $-10 A$ (c) $6 A$ (d) $-6 A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0, 0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$		(a) $\frac{149}{96}$	(b) $\frac{96}{149}$	(c) $\frac{9}{18}$	<u>6</u> 39	(d) $\frac{189}{96}$			
52. A first order reaction involves energy of activation to be 2 kcalmole ⁻¹ . The ratio $\frac{k_{400K}}{k_{200K}}$ is approximation (a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) e^{25} 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) -6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0.0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$						k			
(a) 0.0025 (b) $e^{0.0025}$ (c) $e^{2.5}$ (d) $e^{2.5}$ 53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10 A$ (b) $-10 A$ (c) $6 A$ (d) $-6 A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0, 0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$	52.	A first order reaction in	wolves energy o	of activation to	be 2 kcalmole ⁻¹ . T	The ratio $\frac{k_{400K}}{k_{200K}}$	is approximate		
53. For the elementary bimolecular reaction involving same reactants. The correct rate law is (a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) $10 A$ (b) $-10 A$ (c) $6 A$ (d) $-6 A$ 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed for ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0.0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$		(a) 0.0025	(b) e ^{0.0025}	(c) e ²	5	(d) e ²⁵			
(a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{a}{x(a-x)}$ (c) $kt = \frac{x}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) -6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0, 0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$	53.	For the elementary bim	olecular reaction	n involving sam	ne reactants. The c	correct rate law	is		
(a) $kt = \frac{1}{a-x} + \frac{1}{a}$ (b) $kt = \frac{1}{x(a-x)}$ (c) $kt = \frac{1}{a^2}(1+akt)$ (d) $kt = a^2(1+akt)$ 54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) -6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) $0, 0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$		1 1							
54. For the reaction, $2A^{++} + B^{} + C^{+++} \longrightarrow$ Product . For the ionic strengths, $I_1 = 25$ unit and I_2 the ratio of $\log\left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) - 6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31		(a) $kt = \frac{1}{a-x} + \frac{1}{a}$	(b) $kt = \frac{1}{x(a-b)}$	(c) kt	$=\frac{1}{a^2}(1+akt)$	(d) $kt = a^2 (1 + a^2)^2$	+ akt)		
the ratio of $\log \left(\frac{k_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) - 6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31	54.	For the reaction, $2A^{++}$	$+B^{}+C^{+++}-$	\longrightarrow Product	. For the ionic strer	ngths, $I_1 = 25 u$	<i>nit</i> and $I_2 = 16$ unit	it,	
the ratio of $\log \left(\frac{\kappa_{I_2}}{k_{I_1}}\right)$ is (in units of Debye Hückel constant) (a) 10 A (b) -10 A (c) 6 A (d) - 6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31		(1)							
(a) 10 A (b) -10 A (c) 6 A (d) -6 A 55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31		the ratio of $\log \left(\frac{k_{I_2}}{k_{I_1}} \right)$ is (in units of Debye Hückel constant)							
55. If $\psi = 0.6\psi_A + x\psi_B$ is a normalized molecular orbital of a diatomic molecule AB. Constructed from ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31		(a) 10 A	(b) -10 A	(c) 6 <i>L</i>	A	(d) - 6A			
ϕ_B which are also normalized. The overlap between ϕ_A and ϕ_B and value of x are (a) 0, 0.8 (b) 0.31, 0.64 (c) 0.8, 0.31 (d) 0.64, 0.31	55.	If $\psi = 0.6\psi_A + x\psi_B$ is	a normalized m	olecular orbita	l of a diatomic mo	lecule AB. Con	structed from ϕ_A a	nd	
(a) $0, 0.8$ (b) $0.31, 0.64$ (c) $0.8, 0.31$ (d) $0.64, 0.31$		ϕ_{R} which are also normalized. The overlap between ϕ_{A} and ϕ_{R} and value of x are							
		(a) 0, 0.8	(b) 0.31, 0.64	(c) 0.3	8, 0.31	(d) 0.64, 0.31			

56. In a fcc lattice, the sin² θ values obtined from X-ray powder diffraction pattern of a solid are observed at
(a) 1K, 2K, 3K,
(b) 3K, 4K, 6K,
(c) 3K, 4K, 8K,
(d) 3K, 5K, 9K,

57.	In a cubic crystal, the value of interplanar spacing for (444) planes is 25 pm. The cell constant is					
	(a) 100 pm	(b) $100\sqrt{3}$ pm	(c) $\frac{100}{\sqrt{3}}$ pm	(d) none of these		
58.	In admantane molecule, two irreducible representations are of one dimensions and one irreducible representa- tion of two dimension. The number of three dimensional irreducible representation is/are					
	(a) 1	(b) 2	(c) 3	(d) 4		
59.	For a certain particle e doubled and the width	encountering a barrier, to of the barrier is halved, a	the tunnelling probability	y is approximately e^{-10} . If the mass is tunnelling probability will be		

8

(a)
$$e^{-10/\sqrt{2}}$$
 (b) $e^{-10\sqrt{2}}$ (c) $e^{-20\sqrt{2}}$ (d) $e^{-20/\sqrt{2}}$

60. The angle from z-direction is 60°. If the value of ℓ is 1. Then the value of m_{ℓ} will be

(a) 1 (b) 2 (c)
$$\sqrt{3}$$
 (d) none of these

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

9

CSIR-UGC-NET/JRF | GATE CHEMISTRY

CHEMICAL SCIENCES TEST SERIES-B

Date : 27-05-2017

ANSWER KEY

		P	PART-A			
1. (c)	2. (c)	3. (d)	4. (b)	5. (d)	6. (d)	7. (a)
8. (a)	9. (b)	10. (b)				
		F	PART-B			
11. (b)	12. (c)	13. (d)	14. (b)	15. (b)	16. (b)	17. (a)
18. (c)	19. (b)	20. (a)	21. (a)	22. (b)	23. (c)	24. (c)
25. (c)	26. (b)	27. (a)	28. (d)	29. (b)	30. (b)	
		F	PART-C			
31. (b)	32. (c)	33. (b)	34. (d)	35. (b)	36. (d)	37. (c)
38. (b)	39. (d)	40. (d)	41. (b)	42. (b)	43. (a)	44. (a)
45. (d)	46. (a)	47. (c)	48. (d)	49. (a)	50. (d)	51. (d)
52. (c)	53. (c)	54. (a)	55. (a)	56. (c)	57. (b)	58. (b)
59. (a)	60. (d)					

