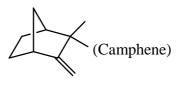
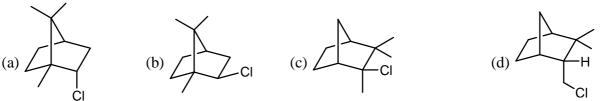
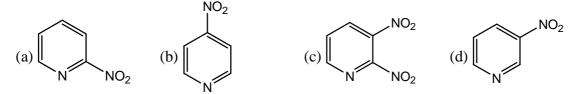
QUESTION PAPER

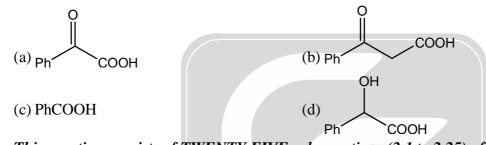
SECTION-A


1.	This question consists of TWENTY FIVE sub-questions (1.1 to 1.25) of ONE mark each. For each of these sub-questions, four possible answers (a, b, c and d) are given, out of which only one is correct. $[25 \times 2 = 50]$					
1.1.	Which among the follo (a) $[BF_4]Na^+$	owing molecules belong (b) XeOF ₄		(d) $[PtCl_4]^{2-}$		
1.2.	The ¹⁹ F NMR spectru (a) two triplets and tw (c) two doublets and c	o doublets	= $\frac{1}{2}$, I for ${}^{19}F = \frac{1}{2}$) show (b) two triplets and or (d) three triplets and o	ne doublet		
1.3.	The compound (SiH ₃ (a) pyramidal and mo (b) planar and less ba (c) pyramidal and less (d) planar and more b	re basic than $(CH_3)_3N$ sic than $(CH_3)_3N$ s basic than $(CH_3)_3N$				
1.4.	 The infrared and Raman spectrum BF₃ are expected to show (a) the same number of peaks (b) more absorption peaks in IR in comparison to Raman (c) more absorption peaks in Raman in comparison with IR (d) absorption peaks present in Raman are absent in R 					
1.5.	The complex with ma	ximum CFSE is				
	(a) $\left[\text{CoCl}_4 \right]^{2-}$	(b) $\left[Co \left(H_2 O \right)_6 \right]^{3+}$	(c) $\operatorname{CoF}_3(\operatorname{H}_2\operatorname{O})_3$	(d) $[CoF_6]^{3+}$		
1.6.						
	(a) $\operatorname{Fe}_2(\operatorname{CO})_9$	(b) $\operatorname{Co}_2(\operatorname{CO})_8$	(c) $\left[\operatorname{Re}_{2}\operatorname{Cl}_{8}\right]^{2-}$	(d) $\left[Ru_{3}(CO) \right]_{12}$		
1.7. The complex with spin-only magnetic moment of ~ 4.9 B.M. is						
	(a) $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+}$	(b) $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$	(c) $\left[\text{Fe}(\text{CN})_{6} \right]^{4-}$	(d) $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}$		
1.8.						
	(a) $\left[\operatorname{NiCl}_{4}\right]^{2-}$	(b) $\left[\operatorname{Ni} \left(\operatorname{H}_2 \operatorname{O} \right)_6 \right]^{2+}$	$(c) \left[Ni (CN)_4 \right]^2$	(d) $\left[Ni \left(CO \right)_4 \right]$		
1.9.	The system for which energy (E) increases quadratically with the quantum number (n) is(a) particle-in-a-one dimensional box(b) hydrogen atom(c) one dimensional harmonic oscillator(d) rigid rotor					
1.10.	Among the following	orbitals of a diatomic me	olecule, the bonding one	is		
1.11.	(a) $1 \sigma_u$ The population (N) di	(b) $2 \sigma_u$ stribution over states (n	(c) $1 \pi_u$) of a diatomic molecule	(d) $1 \pi_g$ corresponds to [GATE 2000]		
		$\bigcap_{i=1}^{N} \bigcup_{i=1}^{N} \bigcup_{i$				
	(a) Translation	(b) Vibration	(c) Rotation	(d) Electronic.		


GATE-CY 2000

GATE	E-CY 2000	QUES	FION PAPER	(2)	
1.12.	$^{2}\mathrm{P}_{_{3/2}}$ is the ground s	tate of			
	(a) H	(b) Li	(c) B	(d) F	
1.13.	solution of these co		's law, the mole fract	rr and 100 torr respectively. Assuming a ion of component 'A' in vapour phase in (d) 0.50	
1.14.	order of the reactio	n is		4 mol ⁻¹ are 200s and 50s respectively. The	
	(a) 0	(b) 1	(c) 2	(d) 3	
1.15.	The pH of a buffer respectively will be (a) 6.76	solution containing 4×10 (b) 4.76	- ³ and 0.4 moles of acc (c) 2.76	etic acid ($pK_a = 4.76$) and sodium acetate (d) 0.76	
1.16.	Under the equilibrium conditions for the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the total pressure is 12 atm. The value of K_p is				
	(a) 16	(b) 0.5	(c) 2	(d) 32	
1.17.	An aqueous solution containing <i>m</i> moles of non-volatile solute freeezes at -0.186° C. The elevation in the boiling point of the same aqueous solution ($K_f = 1.86^{\circ}$, $K_b = 0.512^{\circ}$) would be (a) 0.186 (b) 0.512 (c) 0.0512 (d) 0.512/1.86				
1.18.	The two H's at C-2 (a) enantiotopic	and C-3 in (2R, 3S) tart (b) diastereotopic	aric acid (c) homotopic	(d) constitutionally heterotopic	
1.19.	Oxymercuration-demercuration reaction of 1-methylcyclohexene gives(a) cis-2-methylcyclohexanol(b) trans-2-methylcyclohexanol(c) 1-methylcyclohexanol(d) mixture of cis and trans-2-methylcyclohexanol				
1.20.	(a) (2R, 3S)-2, 3-di	Bromination of (E)-2-butenedioic acid givesa) (2R, 3S)-2, 3-diboromosccinic acid(b) (2R, 3R)-2, 3-dibromosuccinic acid(c) 5-iodo-tetrahydropyran-2-one(d) 4-pentenoyliodide			
1.21.	4-Pentenoic acid when treated with I ₂ and NaHCO ₃ gives (a) 4, 5-diiodopentanoic acid (b) 5-iodomethyl-dihydrofuran-2-one (c) 5-iodo-tetrahydropyran-2-one (d) 4-pentenoyliodide				
1.22.	The following tetrae	ene upon photolysis gives			
	(a) Me	(b) Me	$ \begin{array}{c} H \\ hv \\ Me \end{array} $ $ \begin{array}{c} \text{hv} \\ \text{Me} \end{array} $ $ \begin{array}{c} \text{Me} \end{array} $	(d) Me	
1 23	The product former	Me	Me	✓ [−] ′′Me	


1.23. The product formed upon heating camphene with HCl is



1.24. Pyridine undergoes electrophilic nitration at elevated temperature to give the following as a major product:

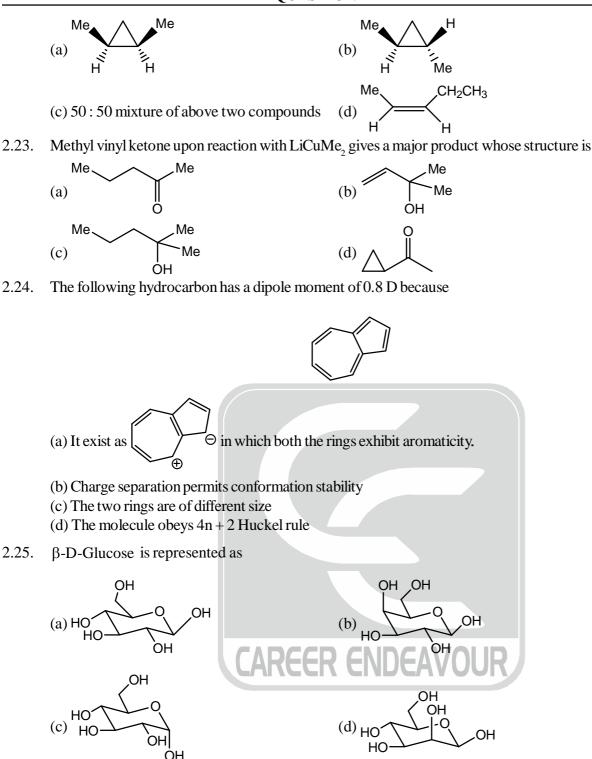
1.25. Among the following, the acid which undergoes fastest decarboxylation is

- 2. This question consists of TWENTY FIVE sub-questions (2.1 to 2.25) of ONE mark each. For each of these sub-questions, four possible answers (a, b, c and d) are given, out of which only one is correct. $[25\times2=50]$
- 2.1. Which of the following statements about the molecule NOCl is correct?
 (a) It has a linear structure
 (b) It belongs to the point group C_s
 (c) It does not have a dipole moment
 (d) It is a chiral molecule
- 2.2. Which of the following is an *arachno* borane?

(a)
$$[B_6H_6]^{2-}$$
 (b) $[B_5H_9]$ (c) $[B_2H_6]$ (d) $[B_8H_{14}]$

- 2.3. C₆₀ has

 (a) 14 pentagons and 18 hexagons
 (b) 12 pentagons and 20 hexagons
 (c) 10 pentagons and 20 hexagons
 (d) 12 pentagons and 18 hexagons


 2.4. The order of acidity in boron trihalides is
 - (a) $BF_3 > BCl_3 > BBr_3$ (b) $BBr_3 > BCl_3 > BF_3$
 - (c) $BF_3 > BBr_3 > BCl_3$ (d) $BBr_3 > BF_3 > BCl_3$
- 2.5. The compound which obeys 18-electron rule is:
- (a) $\operatorname{Mn}(\operatorname{CO})_3$ (b) $\operatorname{Fe}(\operatorname{CO})_4$ (c) $\operatorname{V}(\operatorname{CO})_6$ (d) $\operatorname{Cr}(\operatorname{CO})_6$ 2.6. The Si–O–Si bond angle in Me₃SiOSiMe₃ is (a) ~ 120° (b) ~ 180° (c) ~ 90° (d) ~ 109°
- 2.7. The compound which exhibits Jahn-Teller distortion is:

(a) $\left[Mn \left(H_2 O \right)_6 \right]^{2+}$ (b) $\left[Mn \left(H_2 O \right)_6 \right]^{3+}$ (c) $\left[Cr \left(H_2 O \right)_6 \right]^{3+}$ (d) $\left[Fe \left(CN \right)_6 \right]^{4-}$

GATE	E-CY 2000	QUEST	'ION PAPER	4		
2.8.	The orange colour of (a) metal to ligand cha (c) crystal-field transit	arge transfer transition	(b) ligand to metal cha (d) charge-transfer co	0		
2.9.	Among the following diatomic molecules, the shortest bond length is to be found in					
	(a) C ₂	(b) N ₂	(c) O ₂	(d) F ₂		
2.10.	Among the following (a) Li_2	diatomic molecules, the (b) B ₂	one that shows EPR sign (c) C ₂	nal is (d) N ₂		
2.11.	Among the following (a) C	elements, the one that a (b) Si	cts as the major compon (c) Ga	ent in a semiconductor is (d) As		
2.12.	Among the singlet (S tween (a) S and S), doublet (D) and triplet (b) D and D	t (T) electronic states, pl (c) T and T	(d) S and T		
0.10						
2.13.	In a system, when the said to be(a) metastable equilibric (c) composition equili	rium	(b) thermal equilibriun (d) mechanical equilib			
2.14.	· · · ·		8.21 container at 380 to			
	(a) 1.0×10 ²³	(b) 1.0×10^{22}	(c) 6.02×10^{23}			
2.15.		pontaneity of a process				
	(a) $\Delta S_{sys} > 0$		(c) $\Delta S_{sys} + \Delta S_{surr} > 0$	(d) $\Delta S_{sys} - \Delta S_{surr} > 0$		
2.16.	ΔH and ΔE for the related as	reaction $Fe_2O_3(s) + 3H$	$_{2}(s) \longrightarrow 2Fe(s) + 3H_{2}$	$_{2}O(\ell)$ at constant temperature are re-		
	(a) $\Delta H = \Delta E$	(b) $\Delta H = \Delta E + RT$	(c) $\Delta H = \Delta E + 3RT$	(d) $\Delta H = \Delta E - 3RT$		
2.17.	For an ideal gas follow	wing adiabatic reversible	expansion, plot of $\log P$	versus $\log V$ is linear with a slope equal		
	to $(\gamma = C_P / C_V)$:					
	(a) 1/γ	(b) -1/γ-AREE		(d) -γ		
2.18.	Toluene when refluxe (a) o-bromotoluene (c) mixture of o- and	d with Br_2 in the presence	e of light mainly gives (b) p-bromotoluene (d) benzyl bromide			
2.19.	Optically active 2-oct (a) dilute acid	anol rapidly loses its opt (b) dilute base	ical activity when expos (c) light	ed to (d) humidity		
2.20.			e followed by oxidation (c) hexanal	•		
2.21.	(E)-3-bromo-3-hexer (a) 3-hexyne	ne when treated with CI (b) 2-hexyne	H_3O^- in CH ₃ OH gives (c) 2, 3-hexadiene	(d) 2, 4-hexadiene		
2.22.	The major product for	The major product formed in the following reaction is:				
		Me H H	+ : CH ₂ (singlet) –			

SECTION-B

This section consists of TWENTY questions of FIVEmarks each. ANY FIFTEEN out of thesequestions have to answered on the Answer Book provided.[75 Marks]

3.1. Write the structures of the following compounds

(A) S_4N_4 (B) $1, 2 = B_4C_2H_6$ (C) SF_4CH_2

- 3.2. Account in about 10 lines the fact that the IR stretching frequency of the P-O bond increases in the order $(CH_3)_2 PO < Cl_3 PO < F_3 PO$
- 4. Complete the following reactions supplying the missing reactant or product

5

(a)
$$n[(CH_3)_2 SiO_4] + (CH_3)_3 SiOSi(CH_3)_3 \xrightarrow{H_2SO_4} (A)$$

(b) $Al_2(CH_3)_6 + 6H_2O \longrightarrow (B) + (C)$
(c) $3BCl_3 + 3NH_4Cl \longrightarrow (D)$
(d) $E \xrightarrow{hv, 270 \text{ nm}} (MeS)_2 Si = Si(MeS)_2$ (MeS = 2, 4, 6-trimethylphenyl)
(e) $SbF_5 + BrF_3 \longrightarrow (F) + (G)$
5.1. State whether the following is true or false and explain your choice in about 3 lines. "The Ni-C bond length in nickelocene is longer than the Fe-C bond length in ferrocene".

5.2. Write the structure of $CO_4(CO)_{12}$. Using the isolobal analogy show which of the following fragments you would use to replace one of the cobalt fragments in the above cluster? Write the structure of the cluster so formed

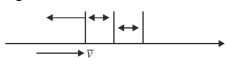
(i) CH_2 (ii) CH (iii) NH_2 (iv) CH_3

6.1. From among the following reactions identify the type of reaction involved viz., oxidative-addition, reductive elimination, insertion or addition. Justify your choice

(i)
$$\left[\operatorname{RhI}_{3}(\operatorname{CO})_{2}(\operatorname{CH})_{3} \right] \longrightarrow \left[\operatorname{RhI}_{3}\operatorname{CO}(\operatorname{solvent})(\operatorname{COCH}_{3}) \right]$$

(ii) $\left[\operatorname{Co}_{2}(\operatorname{CO})_{8} \right] + \operatorname{H}_{2} \longleftrightarrow 2 \left[\operatorname{CoH}(\operatorname{CO})_{4} \right]$

(iii) $Mn_2(CO)_{10} + Br_2 \rightarrow 2MnBr(CO)_5$


6.2. Write the structures of the products formed in the following reactions, keeping in view the 18-electron rule (i) $\eta^4 C_4 H_6 Fe(CO)_3 + HCl \rightarrow$

(ii) $(\eta^5 Cp)_2 Fe + HBF_4 \rightarrow$

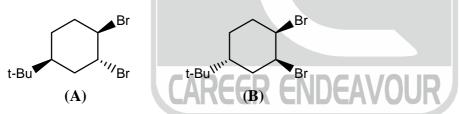
- 7.1. Lower the symmetry of a complex, closer is its magnetic moment, to the spin-only value. Explain in 2-3 sentences.
- 7.2. Write the d-orbital splitting diagrams for a square pyramidal and a trigonal bipyramidal complex
- 8.1. Draw the active site structure of rubredoxin and two common forms of ferredoxins.
- 8.2. Cytochrome C is a redox protein but myoglobin is an oxygen storage protein. Justify in 2-3 sentences.
- 9.1. The complex $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{2+}$ displays two overlapping absorption bands at ~1000 nm. Provide an explanation in 2-3 sentences.
- 9.2. Comment in 5-6 lines on the metal-olefin bonding in $K[PtCl_3(C_2H_4)]$
- 10. O_3 molecule has bent geometry in its ground electronic state. Using Huckel approximation, derive the eigen values of the π molecular orbitals of O_3 and write down the electronic configuration. Also how schematically all the three π molecular orbitals and label them bonding, non-bonding and antibonding.
- 11.1. Show how would you distinguish between propanal and acetone using NMR spectroscopy. Label the axes properly and schematically show all the important features in the spectrum.
- 11.2. Using Raman spectrum and IR spectrum, show how you will determine whether a substance is trans-or cis-1, 2-dichloroethylene (without knowing the frequencies at which different vibrational modes occur)

12.1. H_2 has one of the largest rotational constants $(B_e = h / 8\pi^2 Ic \sim 60 cm^{-1})$ for a diatomic molecule. Predict the spacing between the lines in the rotational Raman spectrum indicated. Rayleigh line

- 12.2. Predict the spacing between the same set of lines in the rotational Raman spectrum of HD.
- 13. Two half cells of hydrogen-oxygen fuel cell under basic conditions can be depicted as $OH^-/O_2(g)/Pt$ and $OH^-/H_2(g)/Pt$ and their standard electrode potentials at 25°C are 0.4009 and -0.8279 V respectively. Write the half cell reactions and the complete cell reaction. Depict the complete cell and calculate the emf of the cell.
- 14. The solubility of Ag_2CrO_4 in water is 8×10^{-5} mol kg⁻¹ at 25°C and its solubility in 0.04 mol kg⁻¹ NaNO₃ solution is 8.84×10^{-5} mol kg⁻¹. What is the mean ionic activity coefficient of Ag₂CrO₄ in 0.04 mol kg⁻¹ NaNO₃?
- 15. The formation of phosgene by the reaction $CO + Cl_2 \rightarrow COCl_2$ appears to follow the mechanism:

$$Cl_{2} \xrightarrow{k_{1}} 2Cl$$

$$Cl + CO \xrightarrow{k_{2}} COCl$$


$$COCl + Cl_{2} \xrightarrow{k_{3}} COCl_{2} + Cl$$

$$COCl \xrightarrow{k_{4}} CO + Cl$$

$$2Cl \xrightarrow{k_{5}} Cl_{2}$$

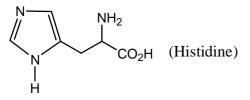
Assuming that the intermediates COCl and Cl are in a steady state, find the rate law for the formation of COCl₂.

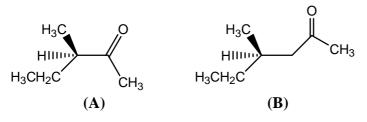

16.1. Account for the fact that only one of the following compounds A and B give the expected elimination product with KI in acetone

- 16.2. Account for the fact that aniline is not a suitable substrate in the Friedel-Crafts alkylation reaction
- 17. Suggest a suitable method and write all the steps for the following transformations(i) anisole to 2-cyclohexenone

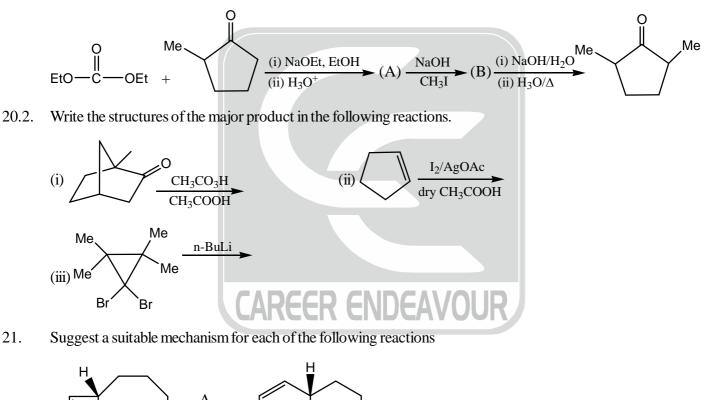
(ii) malonic ester to cyclobutanecarboxylic acid

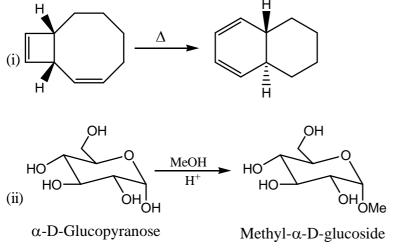
- 18.1. An industrial preparation of phenol and acetone makes use of cumene and atmospheric oxygen as starting materials to produce cumene hydroperoxide which is then converted to products. Suggest what steps are involved in the process.
- 18.2. Suggest a plausible mechanism for the following hydrolysis reaction




21.

8


19.1. Explain briefly which nitrogen of the side chain ring of histidine is protonated in the monocationic form?



19.2. Optically active ketone A undergoes racemization in basic solution. Suggest a mechanism for this process. Explain whether ketone B would also racemize in basic solution?

Write the missing products, A and B in the following reaction scheme 20.1.

22.1. Predict the approximate chemical shifts and multiplicities for the absorptions in the ¹H NMR spectrum of the following compound.

22.2. Explain how the peaks at m/z 115, 101 and 73 arise in the mass spectrum of 3-methyl-3-heptanol.

***** END OF THE QUESTION PAPER *****

