GS-2018-X (PHYSICS)

SECTION - A

Q. 1 to Q. 20 to be attempted by ALL candidates

PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER

The following questions ($\mathbf{1} \mathbf{- 1 0}$) are all of multiple-choice type. For every question, four options (a), (b), (c) and (d) are given, of which only one is correct. Indicate the correct option on the OMR by filling only one bubble. If more than one bubble is filled the question will be treated as not attempted.

3 marks will be awarded for each correct answer and 1 mark will be deducted for each incorrect answer. If the question is not attempted, no marks will be awarded or deducted.

1. Refer to the figure below. If the z-axis points out of the plane of the paper towards you, the triangle marked ' A ' can be transformed (and suitably re-positioned) to the triangle marked ' B ' by

(a) rotation about x-direction by $\pi / 2$, then rotation by $-\pi / 2$ in the $y z$-plane.
(b) rotation about z-direction by $\pi / 2$, then reflection in the $y z$-plane.
(c) reflection in the $y z$-plane, then rotation by $\pi / 2$ about z-direction.
(d) reflection in the $x z$-plane, then rotation by $-\pi / 2$ about z-direction.
2. If a 2×2 matrix \mathbb{M} is given by

then $\operatorname{det} \exp \mathbb{M}=$
(a) e
(b) e^{2}
(c) $2 i \sin \sqrt{2}$
(d) $\exp (-2 \sqrt{2})$
3. A small block B of mass m is quickly placed on an inclined plane P, which makes an angle θ with a horizontally cart C , on which P is rigidly fixed (see figure). The coefficient of friction between the block B and the plane C is μ. When the cart stays stationary the block slides down. If the cart C is moving in the horizontally direction with acceleration a, the minimum value of a for which the block remain static is

(a) $g(\cos \theta-\mu \sin \theta)$
(b) $g \frac{\tan \theta-\mu}{\mu \tan \theta+1}$
(c) $g \frac{1-\mu \tan \theta}{\mu+\tan \theta}$
(d) $g(\mu-\sin \theta \cos \theta)$
4. A particle of mass m moving in one-dimensional x is subjected to the Lagrangian $L=\frac{1}{2} m(\dot{x}-\lambda x)^{2}$, where λ is a real constant. If it starts at the origin at $t=0$, its motion corresponds to the equation (a is a constant).
(a) $x=a \exp \lambda t$
(b) $x=a\{1-\exp (-\lambda t)\}$
(c) $x=a \sin \lambda t$
(d) $x=a \sinh \lambda t$
5. The sketch below shows a radio antenna located at the edge of a calm lake, which has a receiver R at the centre of the dish at a height $a / 2$ above the ground. This is picking up a signal from a distant radio-emitting star which is just rising above the horizon. However, the receiver also picks up a reflected signal from the surface of the lake, which, at the relevant radio-wavelength, may be taken to be a plane.

If the instantaneous angle of the star above the horizon is denoted α, the receiver R will detect the first interference maximum when $\alpha=$
(a) $\arcsin \left(\frac{\lambda}{a}\right)^{1 / 3}$
(b) $\arcsin \left(\frac{\lambda}{2 a}\right)^{1 / 3}$
(c) $\arcsin \frac{\lambda}{a}$
(d) $\arcsin \frac{\lambda}{2 a}$
6. A particle is confined inside a one-dimensional box of length l and left undisturbed for a long time. In the most general case, its wave-function MUST be
(a) the ground state of energy
(b) periodic, where l equals an integer number of periods
(c) a linear superposition of the energy eigenfunctions
(d) any one of the energy eigenfunctions
7. A classical ideal gas of atoms with masses m is confined in a three-dimensional potential

$$
C A P V(x, y, z)=\frac{\lambda}{2}\left(x^{2}+y^{2}+z^{2}\right) \| R
$$

at a temperature T. If k_{B} is the Boltzmann constant, the root mean square (r.m.s.) distance of the atoms from the origin is
(a) $\left(\frac{3 k_{B} T}{\lambda}\right)^{1 / 2}$
(b) $\left(\frac{3 k_{B} T}{2 \lambda}\right)^{1 / 2}$
(c) $\left(\frac{2 k_{B} T}{3 \lambda}\right)^{1 / 2}$
(d) $\left(\frac{k_{B} T}{\lambda}\right)^{1 / 2}$
8. The characteristic impedance of a co-axial cable is independent of the
(a) core diameter
(b) outer diameter
(c) length of the cable
(d) dielectric medium between the core and the outer mesh
9. The figure below shows an unknown circuit, with an input and output voltage signal.

From the form of the input and output signals, one can infer that the circuit is likely to be
(a)

(b)

(c)

(d)

10. In Boolean terms, $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$ is equal to
(a) ABC
(b) $(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{B})$
(c) $\mathrm{A}(\mathrm{B}+\mathrm{C})$
(d) $A+B C$

SECTION - A continues (to be answered by ALL candidates)

PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER
The answers to the following questions $(11-20)$ are all integers of 3 (three) digits each. You may round off decimal parts, e.g. $122.5 \leq x<123.5$, as $x=123$ and e.g. $123.5 \leq x<124.5$ as $x=124$ and so on.

Use only values of constants given in the table 'USEFUL CONSTANTS'.
Answer these questions on the OMR by filling in bubbles as you did for your reference code. Note that if the answer is, e.g. 25, you must fill in 025 and if it is, e.g. 5, you must fill in 005. If it is 0 , must fill in 000 . If these preceding zeros are not filled in (where required), the question will be treated as not attempted.

5 marks will be awarded for every correct answer. There are NO NEGATIVE MARKS for these question.
11. Consider the two equations
$\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$ and $x^{3}-y=1$
How many simultaneous real solutions does this pair of equations have?
12. A heavy steel ball is struck by a small steel pellet moving horizontally with velocity $20 \mathrm{~m} \mathrm{~s}^{-1}$. If the pellet bounces off the steel ball with no slippage, and then rises vertically to a height 10 m above the point of contact, then what is 100 times the elastic coefficient of restitution (e) i.e. 100e?
13. A particle is in the ground state of a cubical box of side. Suddenly one side of the box changes from l to $4 l$. If p is the probability of finding the particles in the ground state of the new box, what is $1000 p$?
14. The wave-function Ψ of a particle in a one-dimensional harmonic oscillator potential is given by

$$
\Psi=\left(\frac{1}{\pi l^{2}}\right)^{1 / 4}\left(1+\frac{\sqrt{2} x}{l}\right) \exp \left(-\frac{x^{2}}{2 l^{2}}\right)
$$

where $l=100 \mu \mathrm{~m}$. Find the expectation value of the position x of this particle, in $\mu \mathrm{m}$.
15. Consider a dipole antenna with length l, charge q and frequency ω. The power emitted by the antenna at a large distance r is P. Now suppose the length l is increased to $\sqrt{5} \omega$. By what factor is the reflected power increased?
16. Calculate the self-energy, in joules, of a spherical conductor of radius 8.5 cm , which carries a charge $100 \mu \mathrm{C}$.
17. A heat engine is operated between two bodies that are kept at constant pressure. The constant pressure heat capacity C_{p} of the reservoirs is independent of temperature. Initially the reservoirs are at temperature 300 K and 402 K . If, after some time, they come to a common final temperature T_{f}, the process remaining adiabatic, what is the value of T_{f} (in Kelvin)?
18. N-particles are distributed among three energy levels having energies: $0, k_{B} T$ and $2 k_{B} T$ respectively. If the total equilibrium energy of the system is approximately $42.5 k_{B} T$ then find the value of N (to the closest integer).
19. A realistic voltmeter can be modelled as an ideal voltmeter with an input resistor in parallel as shown below.

Such a realistic voltmeter, with input resistance $1 \mathrm{k} \Omega$, gives a reading of 100 mV when connected to a voltage source with source resistance 50Ω. What will a similar voltmeter, with input resistance $1 \mathrm{M} \Omega$, read in mV , when connected to the same voltage source?
20. An electron enters a linear accelerator with a speed $v=10 \mathrm{~m} \mathrm{~s}^{-1}$. Avertical section of the accelerator tube is shown in the figure, where the lengths of the successive sections are designed such that the electron takes the same time $\tau=20 \mathrm{~ms}$ to traverse each section.

If the momentum of the electron increases by 2% every time it crosses the narrow gap between two sections, what is the length (in km) of the collider which will be required to accelerate it to $100 \mathrm{~km}-\mathrm{s}^{-1}$?

GS-2018-X (PHYSICS)
 SECTION - B

Q. 21 to Q. 35 to be attempted only by all candidates for Integrated M.Sc.-Ph.D. programme
(Candidates for Ph.D. programme will get NO credit for attempting this section)

PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER

The following questions $(21-30)$ are all of multiple-choice type. For every question, four options (a), (b), (c) and (d) are given, of which only one is correct. Indicate the correct option on the OMR by filling only one bubble. If more than one bubble is filled the question will be treated as not attempted.

3 marks will be awarded for each correct answer and 1 mark will be deducted for each incorrect answer. If the question is not attempted, no marks will be awarded or deducted.
21. If $y(x)$ satisfies the differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with boundary conditions $y(0)=1$ and $y^{\prime}(0)=0$, then $y\left(-\frac{1}{2}\right)=$
(a) $\frac{2}{e}$
(b) $\frac{1}{2}\left(e+\frac{1}{e}\right)$
(c) $\frac{1}{e}$
(d) $-\frac{e}{2}$
22. Given the following $x y$ data

x	1.0	2.0	3.0	4.0	5.0
y	0.002	0.601	0.948	1.21	1.42

Which of the following would be the best curve, with constant positive parameters a and b, to fit this data ?
(a) $y=a x-b$
(b) $y=a+\exp b x$
(c) $y=a \log _{10} b x$
(d) $y=a-\exp (-b x)$
23. The Hamiltonian of a dynamical system is equal to its total energy, provided that its Lagrangian
(a) does not contain velocity-dependent terms.
(b) is separable in generalized coordinates and velocities.
(c) does not have terms which explicitly depend on the coordinates.
(d) has no explicit time dependence.
24. A particle in a one-dimensional harmonic oscillator potential is described by a wave-function $\psi(x, t)$. If the wavefunction changes to $\psi(\lambda x, t)$, then the expectation value of kinetic energy T and the potential energy V will change, respectively, to
(a) $\lambda^{2} T$ and V / λ^{2}
(b) T / λ^{2} and V / λ^{2}
(c) T / λ^{2} and $\lambda^{2} V$
(d) $\lambda^{2} T$ and $\lambda^{2} V$
25. An electron is in the $2 s$ level of the hydrogen atom, with the radial wave-function

$$
\psi(r)=\frac{1}{2 \sqrt{2} a_{0}^{3 / 2}}\left(2-\frac{r}{a_{0}}\right) \exp \left(-\frac{r}{2 a_{0}}\right) .
$$

The probability $P(r)$ of finding this electron between distances r to $r+d r$ from the centre is best represented by the sketch
(a)

(b)

(d)

26. An atom of atomic number Z can be modelled as a point positive charge surrounded by a rigid uniformly negatively charged solid sphere of radius R. The electric polarisability α of this system is defined as

$$
\alpha=\frac{p_{E}}{E}
$$

where p_{E} is the dipole moment induced on application of electric field E which is small compared to the binding electric field inside the atom. It follows that $\alpha=$
(a) $\frac{8 \pi \varepsilon_{0}}{R^{3}}$
(b) $\frac{4 \pi \varepsilon_{0}}{R^{3}}$
(c) $8 \pi \varepsilon_{0} R^{3}$
(d) $4 \pi \varepsilon_{0} R^{3}$
27. A many-body system undergoes a phase transition between two phases A and B at a temperature T_{c}. The temperature-dependent specific heat at constant volume C_{V} of the two phases are given by $C_{V}^{(A)}=a T^{3}+b T$ and $C_{V}^{(B)}=c T^{3}$. Assuming negligible volume change of the system, and no latent heat generated in the phase transition, T_{c} is
(a) $\sqrt{\frac{2 b}{c}}$
(b) $\sqrt{\frac{b}{c-a}}$
(c) $\sqrt{\frac{3 b}{c-a}}$
(d) $\sqrt{\frac{4 b}{c-a}}$
28. Consider the following circuits $\mathrm{C}-1$ and $\mathrm{C}-2$.

C-1

C-2

You can apply the golden rules of an ideal op-amp to
(a) Only C-1
(b) Only C-2
(c) Both C-1 and C-2
(d) Neither C-1 nor C-2
29. The current i flowing through the following circuit is

(a) 0.5 A
(b) 0.6 A
(c) 0.75 A
(d) 1.0 A
30. Two students A and B try to measure the time period T of a pendulum using the same stopwatch, but following two different methods. Students A measures the time taken for one oscillation, repeats this process $N(\gg 1)$ times and computes the average. On the other hand, Students B just once measures the time taken of N oscillations and divides that number by N.
Which of the following statements is true about the errors in T as measured by A and by B ?
(a) The measurement made by A has a larger error than that made by B.
(b) The measurement made by A has a smaller error than that made by B.
(c) A and B will measure the time period with the same accuracy.
(d) It is not possible to determine if the measurement made by A or B has the larger error.

SECTION - B continues

(to be attempted by all candidates for Integrated M.Sc.-Ph.D. programme)

PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER
Each of the following questions (31-35) must be answered by a word or a number or a simple mathematical expression, which must be written down clearly and legibly using only black/blue ballpoint pen. Use only values of constants given in the table 'USEFUL CONSTANTS'.

5 marks will be awarded for each correct answer. There are no NEGATIVE MARKS for these questions. But if there are any cancellations, overwritting or erasures, the question will be considered as not answered.
31. Evaluate the integral $\int_{-\infty}^{\infty} d x \exp \left(-x^{2}\right) \cos (\sqrt{2} x)$.
32. From an observational post E on the Earth, two ballistic missiles, each of rest length l from nose-tip to tail-end, are observed to fly past each other, with the same uniform relativistic speed $c / 2$, in opposite directions, as shown below.

What is the time taken for the tail-end of one of the missiles to cross the tail-end of the other missile, as measured from the post E ?
33. A statistical system, kept at a temperature T, has n discrete energy levels with equal level spacing ε, starting from the energy 0 . If, now, a single particle is placed in the system what will be the mean energy of the system in the limit as $n \rightarrow \infty$? [The answer should not be left as a summation].
34. Consider an infinite plane with a uniform positive charge density σ as shown below :

A negative point charge $-q$ with mass m is held at rest at a distance d from the sheet and released. It will then undergo oscillatory motion. What is the time period of this oscillation?
[You may assume that the point charge can move freely though the charged plane without disturbing the charge density].
35. Given a particle confined in a one-dimensional box between $x=-a$ and $x=+a$, a student attempts to find the ground state by assuming a wave-function

$$
\psi(x)=\left\{\begin{array}{ccc}
A\left(a^{2}-x^{2}\right)^{3 / 2} & \text { for } & |x| \leq a \\
0 & \text { for } & |x|>a
\end{array}\right.
$$

The ground state energy E_{m} is estimated by calculating the expectation value of energy with this trial wavefunction. If E_{0} is the true ground state energy, what is the ratio E_{m} / E_{0} ?

GS-2018-X (PHYSICS)
 SECTION - C

Q. 36 to Q. 45 to be attempted only by candidates for Ph.D. programme.
(Candidates for integrated M.Sc.-Ph.D. programme will get NO credit for attempting this section).

PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER

The following questions ($36-45$) are all of multiple-choice type. For every question, four options (a), (b), (c) and (d) are given, of which only one is correct. Indicate the correct option on the OMR by filling only one bubble. If more than one bubble is filled the question will be treated as not attempted.

3 marks will be awarded for each correct answer and 1 mark will be deducted for each incorrect answer. If the question is not attempted, no marks will be awarded or deducted.
36. The Fourier series which reproduces, in the interval $0 \leq x<1$, the function

$$
f(x)=\sum_{n=-\infty}^{+\infty} \delta(x-n)
$$

where n is an integer, is
(a) $\cos \pi x+\cos 2 \pi x+\cos 3 \pi x+\cdots$ (to ∞)
(b) $1+2 \cos 2 \pi x+2 \cos 4 \pi x+2 \cos 6 \pi x+\cdots+$ (to ∞)
(c) $1+\cos \pi x+\cos 2 \pi x+\cos 3 \pi x+\cdots$ (to ∞)
(d) $(\cos \pi x+\sin \pi x)+\frac{1}{2}(\cos 2 \pi x+\sin 2 \pi x)+\frac{1}{3}(\cos 3 \pi x+\sin 3 \pi x)+\cdots($ to $\infty)$
37. The value of the integral $\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\cos x}{x^{2}+a^{2}}$ is
(a) $1 / 2 a$
(b) $1 / 2 \pi a$
(c) $\pi a \exp (-a)$
(d) $\exp (-a) / a$
38. A dynamical system with one degree of freedom is described by canonical coordinates (p, q). The generator F of the canonical transformation $(p, q) \rightarrow(-q, p)$ is
(a) $F=-p \dot{q}$
(b) $F=p \dot{q}$
(c) $F=-\dot{p} q$
(d) $F=p q$
39. The electrostatic charge density $\rho(r)$ corresponding to the potential $\varphi(r)=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r}\left(1+\frac{\alpha r}{2}\right) \exp (-\alpha r)$ is $\rho=$
(a) $q \delta(r)-2 q \alpha^{3} \exp (-\alpha r)$
(b) $q \delta(r)-q \frac{\alpha^{3}}{4} \exp (-\alpha r)$
(c) $q \delta(r)-q \frac{\alpha^{3}}{2} \exp (-\alpha r)$
(d) $-q \delta(r)-2 q \alpha^{3} \exp (-\alpha r)$
40. The Hamiltonian of a particle of charge q and mass m in an electromagnetic field is given by

$$
H=\frac{1}{2 m}|\vec{p}-q \vec{A}(\vec{x}, t)|^{2}+q \varphi(\vec{x}, t)
$$

where (φ, \vec{A}) are the electromagnetic potentials. Clearly this Hamiltonian changes under a gauge transformation

$$
\varphi \rightarrow \varphi-\frac{\partial \chi}{\partial t} \quad \vec{A} \rightarrow \vec{A}+\vec{\nabla} \chi
$$

where $\chi(\vec{x}, t)$ is a gauge function. Nevertheless the motion of the particle is not affected because
(a) the Lagrangian does not change under the gauge transformation.
(b) the motion of the particle is correctly described only in the Lorentz gauge.
(c) the action of the particle changes only by surface terms which do not vary.
(d) the Lorentz force is modified to balance the effect of the gauge transformation.
41. The electron of a free hydrogen atom is initially in a state with quantum numbers $n=3$ and $l=2$. It then makes an electric dipole transition to a lower energy state. Which one of the given states could it be in after the transition?
(a) $n=2, \quad l=1$
(b) $n=2, \quad l=2$
(c) $n=3, \quad l=0$
(d) $n=3, \quad l=1$
42. Consider a monatomic solid lattice at a low temperature $T \ll T_{D}$, where T_{D} is the characteristic Debye temperature of the solid ($T_{D}=\hbar \omega_{m} / k_{B}$ is the maximum possible frequency of the lattice vibrations). The heat capacity of the solid is proportional to
(a) T / T_{D}
(b) $\left(T / T_{D}\right)^{3}$
(c) T_{D} / T
(d) $\left(T_{D} / T\right)^{2}$
43. A signal $\mathrm{V}_{\text {in }}(t)=5 \sin (100 \pi t)$ is sent to both the circuits sketched below :

In the DCoutput voltage of the top circuit has a value $\mathrm{V}_{\mathrm{dc} 1}$ and the bottom circuit has a value $\mathrm{V}_{\mathrm{dc} 2}$, then which of the following statements about the relative value of $\mathrm{V}_{\mathrm{dc} 1}$ and $\mathrm{V}_{\mathrm{dc} 2}$ is correct?
(a) $\mathrm{V}_{\mathrm{dc} 1}>\mathrm{V}_{\mathrm{dc} 2}$
(b) $\mathrm{V}_{\mathrm{dc} 1}<\mathrm{V}_{\mathrm{dc} 2}$
(c) $\mathrm{V}_{\mathrm{dc} 1}=\mathrm{V}_{\mathrm{dc} 2}$
(d) It will depend on the slew rate of the op-amp.
44. Consider the circuit shown on the right, which involves on op-amp and two resistors, with an input voltage marked INPUT.

Which of the following circuit components, when connected across the input terminals, is most likely to create a problem in the normal operation of the circuit?
(a) A voltage source with very high Thevenin resistance.
(b) A current source with a very high Norton resistance.
(c) A voltage source with a very low Thevenin resistance.
(d) A current source with a very low Norton resistance.
45. Which one of the following circuits, constructed only with resistors and voltmeters, will allow you to obtain the correct value of resistance r_{s} using the voltmeter readings ? Note that the value of R_{B} is known while $r_{1}, r_{2}, r_{3}, r_{4}$ and r_{s} are all unknown.
[Assume that the voltmeters and resistance are ideal].

SECTION - C continues
(to be attempted by all candidates for Ph.D. programme)
PLEASE READ CAREFULLY BEFORE PROCEEDING FURTHER
Each of the following questions ($46-50$) must be answered by a word or a number or a simple mathematical expression, which must be written down clearly and legibly using only black/blue ballpoint pen. Use only values of constants given in the table 'USEFUL CONSTANTS'.

5 marks will be awarded for each correct answer. There are no NEGATIVE MARKS for these questions. But if there are any cancellations, overwritting or erasures, the question will be considered as not answered.
46. A fourth rank Cartesian tensor $T_{i j k l}$ satisfies the following identities.
(i) $T_{i j k l}=T_{j i k l}$
(ii) $T_{i j k l}=T_{i j k}$
(iii) $T_{i j k l}=T_{k l i j}$

Assuming a space of three-dimensional (i.e. $i, j, k=1,2,3$), what is the number of independent components of $T_{i j k l}$?
47. If the velocity of the Earth in its orbit is v, find $\delta E / E$, where E is the translational (non-relativistic) kinetic energy of the Earth and δE is its relativistic correction to the lowest order in v / c.
48. A plane electromagnetic wave, which has an electric field

$$
\vec{E}(\vec{x}, t)=(P \hat{i}+Q \hat{j}) \exp i \omega\left(t-\frac{z}{c}\right)
$$

is passing through vacuum. Here P, Q and ω are all constants, while c is the speed of light in vacuo. What is the average energy flux per unit time (in SI units) crossing a unit area placed normal to the direction of propagtion of this wave, in terms of the above constants ?
49. The state $|\Psi\rangle$ of a spin-1 particle is given by

$$
|\Psi\rangle=\frac{1}{\sqrt{3}}\left(|1,-1\rangle+|1,0\rangle \exp \frac{i \pi}{3}+|1,1\rangle \exp \frac{2 i \pi}{3}\right)
$$

where $\left|S, M_{s}\right\rangle$ denote the spin eigenstates with eigenvalues $\hbar^{2} S(S+1)$ and $\hbar M_{s}$ respectively. Find $\left\langle S_{x}\right\rangle$, i.e. the expectation value of the x-component of the spin.
50. A particle of mass m moves in a two-dimensional space (x, y) under the influence of a Hamiltonian

$$
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{4} m \omega^{2}\left(5 x^{2}+5 y^{2}+6 x y\right)
$$

Find the ground state energy of this particle in a quantum-mechanical treatment.

CAREER ENDEAVOUR

