

CAREER ENDEAVOUR ACADEMY PRIVATE LIMITEE Best Institute for NET-JRF, GATE & IIT-JAM Exams

CHEMICAL SCIENCES (NET-JRF/GATE)

Unit Test: Chemical Kinetics

Time : 00: 50 Hour

Date : 06-02-2014 M.M. : 60

Instructions:

- 1. Question Paper contains two parts: Part-A and Part-B. Part-A contains 10 objective type questions, each question carry 2 marks. Part-B contains 10 objective type questions, each question carry 4 marks.
- 2. There is nagative marking, 0.5 mark will be deducted for each wrong answer in Part-A and 1 marks for Part-B.
- 3. Attempt all the questions, use of calculator is not allowed.

PART-A									
1.	The concentration of R in the reaction $R \rightarrow P$ was measured as a function of time and the following da						function of time and the following data is		
	obtained								
	[R] (molar)	1.0	0.75 (0.40	0.10				
	t (min) (0.0	0.05 (0.12	0.18				
	The order of reaction is:								
	(a) Zero		(b) One			(c) Two	(d) Three		
						1			
2.	For the reaction	n aA —	\longrightarrow Pro	ducts t	he plot	of $\overline{[A]^2}$ versus tin	ne gives a straight line. The order of the		
	reaction is:								
	(a) 0		(b) 1 = 1			(c)	(d) 3		
	(a) 0			RE	ER	EDEAV			
3.	For a reaction w	ith rate	equation	l					
	dC dC								
	$-\frac{1}{dt} = kC^2$								
	C_a and C are the concentration at time t = 0 and 't' respectively. If 10 min were required for C _a to become C _a /								
	2, the time required for C_0 to become $C_0/4$ is:								
	(a) 10 min		(b) 20 m	in		(c) 30 min	(d) 40 min		
4.	The molar extind	ction c	oefficient	oface	mplexi	s 12000 L mol ⁻¹ cm ⁻	¹ and the minimum detectable absorbance		
	is 0.01. Calculate the minimum concentration of the complex that can be detected in a Lambert-Beer law cell								
	of path length 1.	00 cm.				-			
	(a) 8 33×10 ⁻⁷ M	1	(b) 1 20	×10 ⁻⁵	М	(c) 1 20×10 ⁻⁴ M	(d) 1 20×10 ⁻³ M		
	(u) 0.55/(10 10	1	(0) 1.20			(0) 1.20/10 101	(a) 1.20/(10/10)		
5.	For a reaction $2A \rightarrow$ Product the initial concentration of A is 0.1 M and the rate consta						A is 0.1 M and the rate constant is		
	$2 \times 10^{-3} \text{ dm}^3 \text{mol}^{-1} \text{s}^{-1}$. The half life period of the reaction is:								
	(a) 5 sec		(b) 50 se	ec		(c) 500 sec	(d) 5000 sec		
	(,		(3) 2 3 5			(-) 0 0 0 000			

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph : 011-26851008, 26861009 www.careerendeavour.com B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

The decomposition of ethane follows the rate law $-\frac{d}{dt} [CH_3CH_3] = k [CH_3CH_3]$ with $k = \left(\frac{k_1k_3k_4}{k_5}\right)^{\frac{1}{2}}$. 6.

Where k_1, k_3, k_4 and k_5 are the rate constants of various elementary steps.

The values of E_as of elemantary reactions were found to be

$$E_{a_1} = 350 \text{ kJ mole}^{-1}$$

 $E_{a_3} = 160 \text{ kJ mole}^{-1}$
 $E_{a_4} = 30 \text{ kJ mole}^{-1}$

and

 $E_{a_5} = 10 \text{ kJ mole}^{-1}$

t-O

The activation energy of the overall reaction is (b) 265 kJ mole⁻¹ (a) 165 kJ mole^{-1} (c) 275 kJ mole^{-1} (d) 375 kJ mole^{-1}

7. Consider the elementary reaction $A + A + A \longrightarrow$ Product

(a)
$$\frac{15}{2a^2k}$$
 (b) $\frac{15}{6a^2k}$ (c) $\frac{13}{6a^2k}$ (d) $\frac{7}{18a^2k}$

The reaction $2H_2 + 2NO \rightarrow N_2 + 2H_2O$ is assumed to proceed by the following mechanism: 8.

$$2NO \Longrightarrow N_2O_2 \qquad \text{fast}$$

$$N_2O_2 + H_2 \Longrightarrow N_2O + H_2O \qquad \text{slow}$$

$$N_2O + H_2 \Longrightarrow N_2 + H_2O \qquad \text{fast}$$

which is the rate law for this reaction?

(a) Rate = K[NO][H ₂] (b) Rate = K[NO] ² [H ₂] (c) Rate = K[NO][H ₂] ² (d) Rate = K[NO] ² [H ₂]
--

Column-II

9. Column-I	
-------------	--

(i) Collisional quenching					(P) $S_1 \longrightarrow S_0 + hv$		
(ii) Fh	lorescei	nce			(Q) $T_1 \longrightarrow S_0 + hv'$		
(iii) Photosensitization					(R) $S^* + M \longrightarrow S + M$ + heat		
(iv) Pl	nosphor	rescence			(S) $S^* + A_2(g) \longrightarrow S + 2A(g)$		
Correct match for (P), (Q), (R), (S) in column (I) is:							
	(P)	(Q)	(R)	(S)			
(a)	(ii)	(iv)	(i)	(iii)			

(a)	(ii)	(iv)	(i)	(iii)
(b)	(ii)	(iv)	(iii)	(i)
(c)	(iv)	(ii)	(i)	(iii)
(d)	(iv)	(ii)	(iii)	(i)

 $A + B \xrightarrow{k}$ Products (k = rate constant for the reaction). Exp. NO. $[A] (mol L^{-1})$ $[B] (mol L^{-1})$ Initial rate (mol $L^{-1} s^{-1}$) 1×10⁻³. 1. 0.024 0.035 2. 0.070 8×10⁻³. 0.012 3. 0.024 0.070 8×10⁻³. (a) $-\frac{d[A]}{dt} = k[A][B]^2$ (b) $-\frac{d[A]}{dt} = k[A]^2[B]$ (c) $-\frac{d[A]}{dt} = k[A][B]^3$ (d) $-\frac{d[A]}{dt} = k[B]^3$ Part-B The rate constant of decomposition of a compound is represented by

The value of
$$E_A$$
 (in Kcal mol⁻¹) for this compound at 300 K is:
(a) 24 (b) 12 (c) 240 (d) 120

 $lnK = 5.0 - \frac{12000}{T}$

$$Br_{2} + M \xleftarrow{k_{1}}{k_{-1}} 2Br + M (fast), \left(K = \frac{k_{1}}{k_{-1}}\right)$$

$$Br + H_{2} \xrightarrow{k_{2}} HBr + H (slow)$$

$$H + Br_{2} \xrightarrow{k_{3}} HBr + Br (fast)$$
(a) Rate = $k_{2} (K)^{\frac{1}{2}} [H_{2}] [Br_{2}]^{\frac{1}{2}}$
(b) Rate = $k_{2} [H_{2}] [Br_{2}]^{\frac{1}{2}}$
(c) Rate = $k_{2} k_{1}^{\frac{1}{2}} [H_{2}] [Br_{2}]^{\frac{1}{2}}$
(d) Rate = $k_{2} [H_{2}] [Br_{2}]^{\frac{1}{2}}$

13. For the reaction $2A + B \rightleftharpoons X^{\#} \longrightarrow P$, $E_a = 25.0 \text{ kJ mol}^{-1}$ at 300 K. The enthalpy change for the formation of activated complex from the reaction in kJ/ol is: (a) 20 kJ/mole (b) 17.5 kJ/mole (c) 27.5 kJ/mole (d) 15.0 kJ/mole

14.
$$\begin{array}{c} k_1 \\ A(g) \\ 3k_1 \\ C(g) \end{array}$$

11.

At t = 0, pressure due to A only = 8 atm.

Partial pressure due to B(g), C(g), C(g) and total pressure at the end of reaction is:

(a)
$$P_B = 2$$
 atm, $P_C = 6$ atm, $P_{\text{total}} = 8$ atm (b) $P_B = 6$ atm, $P_C = 2$ atm, $P_{\text{total}} = 8$ atm

(c)
$$P_B = 2 \text{ atm}, P_C = 6 \text{ atm}, P_{\text{total}} = 32 \text{ atm}$$
 (d) $P_B = \frac{8}{3} \text{ atm}, P_C = 2 \text{ atm}, P_{\text{total}} = \frac{14}{3} \text{ atm}$

 $H.O.: 28\text{-}A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph: 011-26851008, 26861009\ www.careerendeavour.com$

B.O.: 48, First Floor, Mall Road, G.T.B. Nagar (Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

15.	For the sequential read	etion. A $\frac{k_1 = (0.602) \sec^{-1}}{k_1 = (0.602) \sec^{-1}}$	$\rightarrow B \xrightarrow{k_2 = (0.301) \text{sec}^{-1}} C$	-			
	Time when concentration of 'B' will reach maximum is:						
	(a) 2303 sec	(b) 1 sec	(c) 4 606 sec	(d) 2 sec			
16	When light is incident	on any chemical substa	nce then 20% of light is	absorbed and rest is transmitted			
10.	So transmittance and absorbance values are respectively.						
	(a) 80%, $\log \frac{8}{10}$	(b) 80%, $\log \frac{10}{8}$	(c) 20%, log 5	(d) 20%, log 2.			
17.	Consider the following	reactions:					
	(i) $A(g) \longrightarrow \operatorname{Produ}$	cts,	(Unimolecular reaction following Lindemann mechanism)				
	(ii) $A(g) \xrightarrow{M(s)} Production$	oducts	(Unimolecular hetrogeneous catalysis reation)				
	Choose the correct sta Low Pressure	tements.	High Pressure				
	(a) Reaction (i) – Ist o	rder	Reaction (i) – 2nd or	der			
	Reaction (ii) $-2nd$	lorder	Reaction (ii) – Ist ord	ler			
	(b) Reaction (i) $-2nd$ Reaction (ii) $-1st$	order	Reaction (i) -1 st order Reaction (ii) -2 nd order				
	(c) Both reaction (i) at	nd (ii) – 2nd order	Both reaction (i) and	(ii) – 1st order			
	(d) Reaction (i) $-2nd$	order	Reaction (i) -1 st ord	ler			
	Reaction (ii) – 1st	order	Reaction (ii) – zeroth	order			
18.	For the reaction A	\rightarrow B, the rate constant	at $k_1 = A_1 e^{-E_{a_1}/RT}$ and	for the reaction $k_2 = A_2 e^{-E_{a_2}/RT}$. If			
	$A_1 = 10^8, A_2 = 10^{10}, A_3$ 2 cal/k mol)	$E_{a_1} = 600 \text{ cal / mol, } E_a$	$_{2} = 1800 \text{ cal} / \text{m}$, then t	he temperature 'a' which $k_1 = k_2 (R =$			
	(a) 1200 K	(b) 1200×4.606	(c) $\frac{1200}{4.606}$ K	(d) $\frac{600}{4.606}$ K			
19.	19. The following mechanism has been suggested for thermal decomposition of NO						
	Overall reaction: $2NO_2 = 2NO + O_2$						
	Mechanism:	$NO_2 + NO_2 \xrightarrow{k_1} NO_2$	$NO + NO + O_2; NO_2 +$	$NO_2 \xrightarrow{k_2} NO_3 + NO_3$			
		$NO_3 + NO \xrightarrow{k_3} 2N$	$NO_2; NO_3 + NO_2 - \frac{k_4}{k_4}$	\rightarrow NO + O ₂ + NO ₂			
	The above mechanism leads to the following rate law: $-\frac{d[NO_2]}{dt} = 2 k_d [NO_2]^2$. The value of $k_d = ?$						
	(a) $k_1 + \frac{k_2 k_4 [No]}{k_1 [No] + k_2}$	0] [NO.]	(b) $k_1 + \frac{k_2 k_4 [NO_2]}{k [NO] + k [NO]}$				
		L-·~2]	~3[110] + K	4 L ^{- · · ·} 2 J			
	(c) $1 + \frac{k_2 k_4 [NO_2]}{k_3 [NO] + k_4 [2]}$	$\frac{1}{NO_2}$	(d) None of these				
	H.O.: 28-A/	/11, Jia Sarai, Near-IIT, New	v Delhi-16, Ph : 011-2685100	8,26861009 www.careerendeavour.com			
	B.O.: 48, Fir	st Floor, Mall Road, G.T.B. 1	Nagar (Metro Gate No. 3), I	Delhi-09, Ph: 011-65462244, 9540292991			

20. The incorrect statement is/are

(I) For KCl $a = \sqrt{(\gamma \pm m)^4}$ (II) Ionic strength of 0.25 molal K₂SO₄ solution is 0.50. (III) Salt effect is +ve, for the reaction $A^{2+} + B^+ \longrightarrow P$

(IV) For $2A^+ + B^- + C^{--} \longrightarrow P$ $\log\left(\frac{k}{k_0}\right) = +6A\sqrt{I}$ (a) II, III (b) IV only

(c) III and IV

(d) None of these

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph: 011-26851008, 26861009 www.careerendeavour.com

AKEEK ENDEAVUUE

Best Institute for NET-JRF, GATE & IIT-JAM Exams

CHEMICAL SCIENCES (NET-JRF/GATE)

Unit Test: Chemical Kinetics

Date : 06-02-2014

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph: 011-26851008, 26861009 www.careerendeavour.com