Chapter 2
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2.1 Introduction :

There is aways a quantity asscociated with any type of waves, which varies periodically with spaceand
time. In water waves, the quartity that varies periodicaly isthe height of the water surface and in light waves,
electric field and magnetic field vary with space and time. For De-broglie waves or matter waves asxociated
with amoving particle, the quantity that vary with space and time, is called wave function of the particle.

The temporal and spatial evolution of aquantum mechanical particle is described by awave functiony ( x, t)

for 1-D motion and w (F,t) for 3-D motion. . It contains all possible information about the state of the
sysem. These are known as configuration space wave function.

Condition for a physically accepted, well behaved, realistic wave function :
(i) v (x,t) should befinite, single-valued and continuous everywhere in space.

d d
(i) d—l/): should be continuous everywhere in space. But, d—l/): may be discontinuous in some cases as follows:

(8) If the potentia under which the particleis moving, has an infinite amount of discontinuity & some points,
(b) If the potential under which the particle is moving, is of dirac delta nature.

(i)  (x,t) should be square integrableie. [ |y (x,t)|” dx = finite quantity

Example 1. Which of the following wave function is acceptable as the solution of the Schrodinger equation
for al values of x?

@v()=Ascx B y()=Atanx  @Qv(X)=A"  (@w(x)=A"

w (x) = Asecx and y (x) = Atan x isnot finiteat x:%.

X

2
w(x)= Ae isnotfiniteat X = +oo v (x)=Ae™ isfiniteeverywherein space.

Correct optionis(d)

Example2: A ball bounces back off earth. You are asked to solve this quantum mechanically assuming the
earth isan infinitely hard sphere. Consider surface of earth asthe origin implying V (0) = « and alinear

potential deswhere(i.e. V (x) = —mgx for x > 0). Which of thefollowing wave functionisphysically admis-
siblefor thisproblem (withk > 0):
—kx

@ w(x) :eT (b) v(x)= A © w(x)=-Axe"  (d) y(x)= Axe™
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Sincethe earth hasbeentaken asinfinitely hard sphere, therefore thewave function of the ball will be zero for
x <0, non-zero for x>0 and zero at infinity.

Since v (x) should be continous everywhere, thewavefunction of the ball will be zero at x = 0.

Correct optionis(d).

2.2 Physical significance of wave function :

Generally, v (x,t) isacomplex quantity. It can be multipliedd by any complex number without affecting its

physical significance. In general, w(x,t) has no direct physical significance. But the quantity

v (Xt (xt)= \W(x,t)\z isreal, physically significant and is defined as position probability density i.e.

probahility of finding the particle per unit length at time ‘t’. Therefore, for 1-D motion the probability of
finding the particle between x to x + dx at time ‘t’ isgiven by

va (x,t)z//(x,t)dx:‘y/(x,t)‘2 dx
and for 3-D motion the probakility of finding the particle within the volume element g, located between
randr +dr atime‘t’ isgivenby

va (F,t)y (F,t)dr :‘V/(F,t)‘z dr
Now, v (x,t)or v (F,t) should be chosen such that total probability of finding the particlein the entire
gpace should be equa to unity i.e.

]3 v (xt)y(Ft)dr = ]9 ‘z//(x,t)‘z dr =1 (for 1-D motion)

—00

[ v (Fw(Ftydr= [ |y (F.t)] dr =1 (for 3-D motion)
sgelilce spaélce

Thisis cdled the normalization condition of the wave function.

If w(xt)or w(F,t) isnormalized at some time it remains normalized forever. This can be understood as a
conservation of probability or conservation of normalization.

M ethod of Normalization:

Consider ¢ (x,t) is an unnormalized wave function. We can construct a normalized wave function as

v (x,t) = No(x,t) whereN isthe normdlization constant. Therefore,

_OJ? W* (X’t)W(X,t)dX:‘NZ‘ ]3 qD* (X,t)q)(x,t)dle

—00

1

\/qu*(x,t)qo(x,t)dx

—00

= N =

Example 3: Normdlize the wave function given by
w(x)=Ne™™* (x>0)
=Ne** (x<0)




Soln.  Normadization conditionis
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jy/ ydx=1=|N[* “ez"‘xdx+je Z“de}

—00 —00

= |N[* [—+2i} 1 =>N=+va

2a

Orthogonality condition of wave functions:
Two wavefunctions v, (x) and v, (x) are said to be orthogonal to each other, if

me x)dx=0(m=n)

i.e. if aparticleisin the state y,,, () , then the particle cannot bein the state v, (x) simultaneoudly together.

Orthonormality condition of wavefunctions:
Two wavefunctions v, (x) and y,, () are said to be orthonormal to each other, if

J Vm(X)wn (X)dx=0(m=n)
2.3 Hilbert Space:
In avector space, the set of unit vectors €,&,,&....... formthe orthonormal basisi.e. we can express any

vector inthisvector space asalinear combination of &,&,,é....... Similarly, aspace can be defined inwhicha

set of functions ¢, (X), 4, (X),#;(X)........ formthe orthonormal basisof the coordinate system. The corre-
sponding infinite dimensional linear vector spaceis called Hilbert space.

Propertiesof Hilbert Space:
(i) Theinner product or scalar product of two functions y; (x) and v, (x) definedintheinterval a<x<bis
defined as

b
(wi]w,)=[wi (X)w; (x)dx
(if) Two functions ; (x) and v, ( x) aresaid to beorthogond if their inner product iszeroi.e.
(wilv,)= fw. x)dx =0

Thisisknown as orthogonality condition of two wavefunctions.
(iii) Thenormof afunction v, (x) isdefined as

N = <Wi|Wi> JW. s

(iv) Afunctionissaid to benormalizedif thenorm of thefunctionisunityi.e.

-2

N = <Wi|Wi> J.‘/’. Vi =1

Thisisknown as normalization condition of apartlcular wavefunctlons
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(v) Functionswhichare orthogonal and normalized are called orthonormal functionsand they will stisfy the
condition:

b

<Wi "/’J>: I'Vi* (X)w; (x)dx=4,

a

(vi) A set of functions y, (X) w7, (X) w5 (X) veeven. islinearly independent if there exist arelationlike

CWa (X)+ G, (X) 4 Cprg (X) + oo =0, whereall ¢,c,,Cqennene. arezero. Otherwise, they are
said to be linearly dependent. A set of linearly independent functionsiscomplete.

2.4 Operator formalism :
Anoperator isamathemetical rule (or procedure) which operating on onefunction transformsit into another

functioni.e. Ay (x) = ¢(x). Every dynamical variablein Quantum mechanicsrepresented by a

operator.

Operations Symbol Result of the operation
Taking the square root J Jxm = xm2
Differentiationw.r.t. x d i(xm) =mx™*

dx dx
Postion Operator: X, V, 2
N 0 4 .0 . .. 0 "z
Momentum Operator : Py = —'h&, Py = _Iha_y’ P, = —'h§=> p=-inv
Potential energy Operator : \/
o s Pp? K,
Kinetic energy Operator: K = om —%V

Commutator Bracket:

A A A A

The commutator bracket of two operators A and B isdefined as [A é} = AB-BA,

Example

~ d ~dy d . dy _dy [A d}

— |y = X~ —— = X = Xy = — X,— |=-1
(1) [X dx} X dx dx(XW) dx dx v dx

o an N oy .. 0 . o oA .
@) [% Be]v = v — B Xy =—IhX&+Ih&(XI;/)= iny =[X b ]=in

Similarly, [ 9, B, |=in and [2, p,]=i%

Linear Operator:

If an operator A issaidto bealinear if

(i) Al oy (x)]=cAw (x) and (i) ALy, (X)+w,(X)]= Apy (X)+ Ay, (X)
All Quantummechanica Operatorsarelinear in nature.

Propertiesof thecommutator bracket:

1. [Aé]:—[é,&] 2. [A, é+é+|5+...}:[,&, é}+[,&é}+ ........
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D)=L ] =[] o o[ p] =2

3 [AB]=[8A] 4. [ABC]=[AB|C+B[AC]
s [A[8ST (8 [CATs (6 [A8])-o
6 :A,f A)]:o 7 [f(A),G(A)J:O

8 | f(A),

9 [A é“} _ nB”’l[A, é} 10. [A“, é} - nA”’l[A, é]

Example4: Find the commutator bracket [[ é],[é, Aﬂ

- [AeeAL- gf,sgge,fj 6A A

AAB
Example5: Find thecommutator bracket | X, p |.
X[ % p](P)+(P)2X[x, p] = 2i7(xp+ pX)

Example6: If H :%+V(X),thencalculate[X,[X,l:'ﬂ.

: [X,H]—{XZ—Z} [xV(x)]= %n[x,pz]+0:2—in2p[x,p]:%p

(XA )= <o - perl=-

Eigenvaluesand Eigenfunctions
If an operator A operating on a function y,(X) gives A;/n(x)zlz//n(x), then w,(X) is caled the
eigenfunctionof A correspondingto eigenvalue  and theabove equationisknown as eigenvalue equation
of operator A .

~ d? d?
Example: Azyandy/n( x)=ae > = Ay, (x)= e —(

v, (X) isaneigenfunctionof A corresponding to eigenvalue4.

ae ™) =4ae ™ = 4y, ()

If the commutator bracket of two operators A and B is equal to zero i.e. [ A, é} — 0, then the physical

observables corresponding to these operators are Smultaneoudy accurately measurable and they havea com-
plete set of Smultaneous eigenfunctions.

d
Example7: Theoperator (X+ &j hasthe eigenvalue ¢ . Determinethe corresponding wavefunction.

Eigenvalue equation: (X+%]l// =ay = Z—V;= (a=x)y = jde = j(a — x) dx
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X2 X2
=Iny = (ax—;]ﬂnwo =y =y, exp(ax—;j

d2
Example 8: Find the constant B which makes e an eigenfunction of theoperator (F - BXx
What isthe corresponding eigenvalue?

2
(% - szjeaX2 = (4a2x2 —2a+ sz)e’aX
X

2

For ¢ to be eigenfunction of the operator (% - BXZ) , thentheeigenvalue
X

(4a®x? - 2a- Bx? ) must beindependent of x i.e. (42*-B)=0=B=4a

d? ol ) ) )
Therefore, [F_ Bx } =-2ae™ ; Thusthe eigenvalue of the operator is(-2a).
Hermitian operator:
A operator A issaidto behermitianif AT = A anditsshould satisfy thefollowing relation:

v (ol (o[ 4) (v A4

(Aby)= [ ¢ Aydr=] (M)*wdf

Schrodinger representation: (¢, A//)

Properties:

(1) Eigenvaluesof hermitian operatorsarered.

(2) Eigenfunctionscorresponding to different eigenvaluesof ahermitian operator are orthogonal.
(3) All physical observable in quantum mechanicsare represented by hermitian operators.

Example: (¢, py )=~ ¢(—|h }ydx [ ¢( ih%—l/):jdx
=-in[¢y ] +in[” [ ]de =in[” [ ]de [ Bgyx

Hence, the momentum operator p, ishermitianin nature.

0 T
Similarly, we canseethat — isanti-hermitiani.e. o1 __90
X OX oX

Proj ection operator:

A operator issaid to be projection operator if At = Aand A’ =

Properties:
(1) Eigenvalues of aprojection operator isOand 1.

(2) Product of two projection operatorsisalso aprojection operator if [ P, f)z] =
(3) Sumof two projection operator isaprojectionoperator if { p,, p,} =0

)




Unitary Operator
Anoperator A issaidtobeunitaryif At = A

Parity Opertor:
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Parity opeartor correspondsto spacereflection about theorigini.e Py (x)=v (-x)
Ingeneral, Py (F) =y (—F); where F = xi + yj + zk and —F =—xi — yj - zk
When parity operator actsonawavefunction, thefollowing changestake place in variousco-ordinatesystem:
(i) Cartesanco-ordinatesystem: X —» —X, y > -y, Z2—> -2
(if) Spherical polar co-ordinatesystem: r —>r,0 > 7 —-6,¢ > 7 +¢
(iii) Cyllindrical co-ordiantesystem: p - p, ¢ > 7w +¢, 2—> -2
Properties:
(1) Eigenvauesof the parity operatorisl, -1.
Py (X) =y (—x) =y (x) - even parity. Py (x)=y (—x)=-y (x)— odd parity
(2) Parity operator ishermitianin nature
(3) Perity operator commuteswith hamiltonian operator if the potential under which particleismovingi.e. V(x)
iSsymmetricin nature.

Example: Let, N =b'b wherethe operator |, satisfiestherelation bb' +b'b=1 and b? = (6*)2 =0;

then eigenvaluesof N are
(a) +veand —veintegers (b) al +veintegers (c) +1 andOonly (d) 0Oand 1 only

son: Nly)=aly) =BBw)=2lw) = (B6) w)=22ly)
= b'bb'b|y) = A2|w) :6*(1—6*6)B|y/>:12|y/>
= b'b-b'b'bb|y) = A%|y) = b'bly) = A%|y) = Aly)=A%|y)=>21=01
Example10: Let thewavefunction of aparticleof mass'm' at agiveningant be y (X) = I

What will bethe function Ky (x) where‘K’ isthekinetic energy?1sthiswave functionan eigenfunction of

kinetic energy?
n? d?
Soln.  Thekinetic energy operatoris K = ——— —— . Thus,
2m dx?
2 42 2,2 2 2,2
K(//(X):—h—d—(Ae x“/a ):_h_i _2_Axe_x la
2m dx 2mdx| g2
__ﬁi C2A x21a? _ 2An? —2X __x?/a? e—lea2 _ A 1— 2X" | ~x?/a
2mdx| a? 2ma? a’ ma? a’

Thisisnot an eigenfunction of kinetic energy.
Examplel1l: AnoperaorAisdefinedas Ay (x) =y (X)y (x). Isthisalinear operator?
Soln.  For thegivenoperator,

AL (X)+v2()] =[va () +w2 ()] [pa()+w2(¥)]
:[W*l(x)"'l// 2(x) }[Wl (X)+w2(X)]

=y 1 (w1 (X)+¥ 2 (w2 () +¥ 1 (X)w2 (X)+v 2 (X)y1(X)
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and Ay (X)+ Ao (X) =y 1 (X)wa (X) +v 2 (X)wa (%)
Thus  A[wg(X)+2(X) ]= 1 (X)+ A,(X) and henceA isnot alinear operator.

px

in
Example 12. Prove that [ Xpy, H] = pZ+ X [py.V] where H = oe#V, and V is potential energy

operator.
p2 pa
[Xpy, H]=X[px, H]+[ X, H] py = x{px,ﬁw}{x,ﬁw} Py

_ X[pX,V]+%{pX[X, o]+ [ X Pl Py} Px

1 .. in
= X[ P V]+ 2 —(2ihpy) P :IE Pk + X [PxV]
Example 13.|¢;)and |¢,) betwo ortonormal state vectors. Let A=|¢y)(¢s|+|¢2)(¢1| . Isaprojection
operator?

A= (1o o] +[d2)(1]] =[1on) (2 ]]" + 182 (a[]" =12) (] + ) (2] = A

Hence, A ishermitian.

Now, A =[|¢y)(d2]+|d2) (| ]+ [|n) (62| + |d2) (41 ]

=|00) (B2 |[o0)] #2) +[82) (A1 || + (b2 (][ | 1) (2] + 82) (]

=[100) (42 101) (92| +100) (82 1 02) ([ ]+ [|62) (1 | 1) +[ 82) (1 1 62) (1 ]
Since, |¢;) and | ¢,) areorthonormd,

A% =[g0) (1] +]d2) (g2 | # A

Therefore, A isnot aprojection operator.

Example14. Provethat dE<X2> =£<pr +PyX)
222 ] -2{ 2 Eoveo]
=F1ih<[><2,pﬂ> 21|h<px[ Py |+ X2, px}px>

1 , | ) )
= (P (21X)+ (21X ) Py ) = — (X + Xpy) == (Xpy + PX)

Example 15. Provethat theoperatorsi(d / dx) and d? / dx?® are Hermitian,

T od . d Y
dx =i —y dx = il
jwm( ]wn | RTART _[own e Jw(l dxwm] ,dx
Therefore, id / dx is Hermitian.

T wndx[ dw} wand_w;dx
7 dx |, < dx dx




Concept of wave function

dy.. |7 ¢ d?
= +
{ - wnL [w,
Thus, d?/dx? is Hermitian.

Example 16: Find the following commutation relations:

e o] NI
(i) x'ae | (ii) _&,F(X)}
[0 &2 ] o 0% 0% 0 o o
Son. (i) | =, — |v=| == -—=—=— 0
AR PV (axax2 o ox )V (aﬁ o j"’
0 oF oy oy OoF
ZF(X) |w=—= F—y =2 y+FX T
(iii) [ ()}V (Fy)- ax\lf ax\lf ox ox ax\lf
Thus, [a F(x)} o
%) 6x

Example 17: Find the equivalence of the following operators:

() (—w](%m] (i) (—+X](%—xj
San. (i) (%H](%ij(x)=(%+xj(‘jj_j+xw]

2 d? d
- d_W+Xd_W+W+Xd_W+X2W = —+2X—+X +1 Y
dx

dx® " dx dx® dx
heref (i+xj(i+xj—d—2+2xi+x +1
Therefore, dx dx dx® dx

(e}
(i) Similarly, { dx dx?

Example 18. By what factors do the operators (x*p? + p>x®) and 1/2(xp, + p x)* differ?

2
Soin.  (¢p;+pix?) f=—n { 201 a(Xf)}

OX? x>

:—hzxzaz—f_hzga(x—zf) :_hzxzaz_f_hz 0 (fo +Xzij
ox* X OX o ox

2 2 2
:—hz[xzaa Z +2f +2x;i+x26a Z +2x?] hz[zx ;;+4Xaﬁ+2]f
X X X X X2 X

a(><f)}

1 5 if
= (X X)°f =——(X X
S OB+ P f == (xp,+, )[ .
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in of
=—— X)| 2x—+ f
200, P X2+ 1

.
__ xi(Zxﬂj+xﬂ+i(2xzﬂ]+m
2| ox OX ox dx OX OX

=——| 2¢ — + 2X— + X— + 2 — +4X—+ X—+ f
2 OX OX  OX OX OX  OX

n( . ,0%f of  of o* f of  of j

2 2 2
__ 8xﬂ+2x26 Z +f | =-#° 2x26—2+4x£+1 f
2 OX OX OX ox 2
The two operators differ by aterm —(3/ 2)4*
Example 19. Find the eigenvalues and eigenfunctions of the operator d / dx -

d
Eigenvalue equation: &\V(X) = ky(X) (wherek is the eigenvalue and y(x) isthe eigenfunction)

= 9V =y =Ce*
W

Case 1. kisareal postive quantity, v isnot an acceptable function since it tendsto « or —o0 8 X — o
or —oo.

Case 2: kis purely imaginary (say ia), then y = Ce™ which will be finite for all values of x.
Hence, y=ce™ isthe eigenfunction of the operator d/dx with eigenvalues k =ia, where aisreal.

Expectation value of dynamic variables:
It isdefined asthe average of the result of alarge number of independent measurements of aphysical observ-
ableonthe same system.

<A>:J;y/ Ay dx <W

T y ydx

A

_{v[A)
~(wlw)

Note:
(1) If thestate of the particleisan eigenfunction of the operator A , thenthe expectation value of the physical

observable corresponding to A will beequal to theeigenvalueof A correspondingto the state of the particle.
(2) Thegtate of the particleisgivenas.

W) =Ci|d)+C,|6,)+Cs |y} + oo =>C.|¢.)

where [¢1),[¢ ). arethe eigenfunction of the operator A, then expectation value of the the physical

observable corresponding to A will be
<A> =>ICul? A
n

where 1, aretheeigenvaluesof operator A correspondingto |¢,).
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Example 20: A particle of mass‘m'’ isconfined inal1-D box from x=-2L to x = 2L. Thewave function

X
of theparticleinthisstateis v (X) =y, cos(—]

(i) FAndthenormalization factor.
(i) Theexpectationvaueof P*inthisstate.

i Tl//*l//dX:l = || 2J'Lcosz(ﬁ—x]dx:l =y, T 1(1+cos%]dx
(i) J o) 4L o2 AL

W 2T Ll 1 -
2 a ) ex |, 2 TTT Wl

L, d? h2 2L )\ 7\
P?) = —h? dx — cosz(—](—) dx
(P?) zLW{ e }” EETRE 4L )\ aL

2 2 + 232 212
Kz 21 2L(1+cos”—xjdx: id h3 J'ZL(1+cosﬂ—dex= z°h”
2L 1617 272t 2L 3213 Jo 2L 16172

1
V2L

Example 21: Find the expected value of position and momentum of a particle whose wave function is
v (X) — e—x2/a2+ikx InaII space

X dx g 2% xdx
[vwex [ e _
J:w(// wdx j e 20 gy

Expected position of the particle < >

Expected momentum of the particle
. _ _ - i _2x?/a?
J’ efleazflkx (—Ih aj e’XZ/aZHkXdX J. eﬁzleé12 (—22( + ij dx j € o
_ OX __ip= a = hk==———=1k
<p> - 0 5202 B _2x2 /a2 -2x°/a’
L e "* dx e dx j dx

Example 22. Thewavefunction of aparticleinastateis y = N exp(—x? / 2a) , where N = (1/ mo.)*.
Evaluate (AX)(Ap).

Since v is symmetrical about x=0,(x)=0

(%)= N2 jxexp(a]dx_z

Since, v isarea wave function, (p)=0
x2) d2 v

h)*N? d

(57) = Cin e o] 2 | e 25 o

272 272 @ 2
_I'N p[ ]dx—h'\I xzexp[—X]dx

(0 (0 a

—o0 —0
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a 20 20

Therefore, AxAp:[\/<x2>—<x>2}[\/< p2>—<p>2} = \/%\/%:%

Example 23. The Hamiltonian operator of asystemis H = —(d? / dx?) + x?. Show that Nxexp(—x*/ 2)
is an eigenfunction of H and determine the eigenvalue. Also evaluate N by normalization of the function.

v = Nxexp(-x*/2), N being aconstant

2 2 2 2 2
Hy = (—%+ XZ] Nxexp[—%] = Nx® exp(—%j%{exp(—x?j— x? exp(—%ﬂ

XZ
= 3Nxexp(—?] =3y
Thus, the eigenvalue of H is 3. The normdization condition gives

o0 1/2
szxze"xde:l :>N2£:]_ :N:(ij
Bl 2

N

v2 5
The normaized function = (%) xexp(—%]
T

2

Example 24. Consider the wave function y(X) = Aexp(—%] exp(ikx) , where A is areal constant.
(i) Find the value of A, (ii) calculate ( p) for this wave function.

» 2
(i) Normalization condition: A2 j e(p(_zaiz] dx=1
1/2
:>A2(L2] =1 :A:\/ga
2/a T
i <p>=IW* —ihi ydx =(—ih)AZTexp _X_Z g ik —§+ik exp _X_Z ey
(”) dX < a2 ag a2
. 2\%
-cinf -2 )feo|

In thefirst term, the integrand is odd and the integral isfrom —o t0 oo . Hence the integral vanishes.

—2x?
aZ

] xclx + (—i72)(ik) A% T exp( ‘?2 ] dx

2

0 2
Therefore, (p) =17k, since Azjexp(_zx ]dx:l




