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Concept of Wave Function
2.1 Introduction :
There is always a quantity asscociated with any type of waves, which varies periodically with space and
time. In water waves, the quantity that varies periodically is the height of the water surface and in light waves,
electric field and magnetic field vary with space and time. For De-broglie waves or matter waves asscociated
with a moving particle, the quantity that vary with space and time, is called wave function of the particle.

The temporal and spatial evolution of a quantum mechanical particle is described by a wave function  ,x t

for 1-D motion and  ,r t


 for 3-D motion. . It contains all possible information about the state of the

system. These are known as configuration space wave function.

Condition for a physically accepted, well behaved, realistic wave function :

(i)  ,x t  should be finite, single-valued and continuous everywhere in space.

(ii) 
d

dx


 should be continuous everywhere in space. But, 

d

dx


 may be discontinuous in some cases as follows:

(a) If the potential under which the particle is moving, has an infinite amount of discontinuity at some points,
(b) If the potential under which the particle is moving, is of dirac delta nature.

(iii)  ,x t  should be square integrable i.e.   2
, finite quantityx t dx






Example 1: Which of the following wave function is acceptable as the solution of the Schrodinger equation
for all values of x?

(a)   secx A x  (b)   tanx A x  (c)  
2xx Ae  (d)  

2xx Ae 

Soln.   secx A x   and   tanx A x   is not finite at 
2

x


 .

 
2xx Ae   is not finite at x   ;    

2xx Ae   is finite everywhere in space.

Correct option is (d)

Example 2: A ball bounces back off earth. You are asked to solve this quantum mechanically assuming the

earth is an infinitely hard sphere. Consider surface of earth as the origin implying  0V    and a linear

potential eleswhere (i.e.   0V x mgx for x   ). Which of the following wave function is physically admis-
sible for this problem (with k  >  0):

(a)  
kxe

x
x




 (b)  
2kxx Ae  (c)   kxx Axe   (d)  

2kxx Axe 
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Soln. Since the earth has been taken as infinitely hard sphere, therefore the wave function of the ball will be zero for

x < 0, non-zero for x > 0 and zero at infinity.

Since  x  should be continous everywhere, the wavefunction of the ball will be zero at x = 0.

Correct option is (d).

2.2 Physical significance of wave function :

Generally,  ,x t  is a complex quantity. It can be multipliedd by any complex number without affecting its

physical significance. In general,  ,x t  has no direct physical significance. But the quantity

      2* , , ,x t x t x t    is real, physically significant and is defined as position probability density i.e.

probability of finding the particle per unit length at time ‘t’. Therefore, for 1-D motion the probability of
finding the particle between x to x + dx at time ‘t’ is given by

      2* , , ,x t x t dx x t dx  

and for 3-D motion the probability of finding the particle within the volume element d  located between

andr r dr
  

 at time ‘t’ is given by

      2* , , ,r t r t d r t d    
  

Now,  ,x t or  ,r t 
 should be chosen such that total probability of finding the particle in the entire

space should be equal to unity i.e.

      2* , , , 1x t r t d x t d    
 

 

  


 (for 1-D motion)

      2* , , , 1
all all

space space

r t r t d r t d      
  

 (for 3-D motion)

This is called the normalization condition of the wave function.

If  ,x t or  ,r t


 is normalized at some time it remains normalized forever. This can be understood as a

conservation of probability or conservation of normalization.

Method of Normalization:

Consider  ,x t  is an unnormalized wave function. We can construct a normalized wave function as

   , ,x t N x t   where N is the normalization constant. Therefore,

       * 2 *, , , , 1x t x t dx N x t x t dx   
 

 

  

   *

1

, ,

N

x t x t dx 




 


Example 3: Normalize the wave function given by

   
 

0

0

x

x

x Ne x

Ne x
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Soln. Normalization condition is

0
2* 2 2

0

1 1x xdx N e dx e dx  
 



 

 
    

  
  

2 1 1
1

2 2
N N 

 
       

Orthogonality  condition of wave functions :

Two wavefunctions    andm nx x   are said to be orthogonal to each other, if

     * 0m nx x dx m n 




 
i.e. if a particle is in the state  m x , then the particle cannot be in the state  n x  simultaneously together..

Orthonormality  condition of wave functions :

Two wavefunctions    andm nx x   are said to be orthonormal to each other, if

     * 0m nx x dx m n 




 
2.3  Hilbert Space :
In a vector space , the set of unit vectors 1 2 3ˆ ˆ ˆ, , ......e e e  form the orthonormal basis i.e. we can express any

vector in this vector space as a linear combination of 1 2 3ˆ ˆ ˆ, , ......e e e  Similarly, a space can be defined in which a

set of functions      1 2 3, , ........x x x    form the  orthonormal basis of the coordinate system. The corre-

sponding infinite dimensional linear vector space is  called Hilbert space.

Properties of Hilbert Space:

(i) The inner product or scalar product of two functions  i x and  j x  defined in the interval  a x b   is

defined as

   *
b

i j i j

a

x x dx    
(ii) Two functions  i x and  j x  are said to be orthogonal if their inner product is zero i.e.

   * 0
b

i j i j

a

x x dx    
This is known as orthogonality condition of two wave functions.

(iii)  The norm of a function  i x is defined as

   
1/2

*
b

i i i i

a

N x x dx   
 

   
 


(iv)  A function is said to be normalized if the norm of the function is unity i.e.

   
1/2

* 1
b

i i i i

a

N x x dx   
 

   
 


This is known as normalization condition of a particular wave functions.
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(v)  Functions which are orthogonal and normalized are called orthonormal  functions and they will satisfy the
condition:

   *
b

i j i j ij

a

x x dx     

(vi) A set of functions      1 2 3, , ........x x x    is linearly independent if there exist a relation like

     1 1 2 2 3 3 ................ 0c x c x c x      , where all 1 2 3, , ..........c c c  are zero. Otherwise, they are

said to be linearly dependent. A set of linearly independent functions is complete.

2.4 Operator formalism :
An operator is a mathematical rule (or procedure) which operating on one function transforms it into  another

function i.e.    Â x x  . Every dynamical variable in Quantum mechanics represented by a

operator.

Operations Symbol Result of the operation

Taking the square root /2m mx x

Differentiation w.r.t. x  
d

dx
        1m md

x mx
dx



Position Operator : ˆ ˆ ˆ, ,x y z

Momentum Operator : ˆ ˆ ˆ ˆ, ,x y zp i p i p i p i
x y z

  
         

  


   

Potential energy Operator : V̂

Kinetic energy Operator :  
2 2

2ˆˆ
2 2

p
K

m m
   



Commutator Bracket:

The commutator bracket of two operators ˆ ˆandA B  is defined as ˆ ˆ ˆˆ ˆ ˆ,A B AB BA     .

Example:

(1)  ˆ ˆ ˆ ˆ, , 1
d d d d d d

x x x x x x
dx dx dx dx dx dx

                       

(2)      ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,x x x xx p xp p x i x i x i x p i
x x

     
       

 
   

Similarly, ˆ ˆ, yy p i      and  ˆˆ, zz p i 

Linear Operator:

If an operator Â  is said to be a linear if

(i)    ˆ ˆA c x cA x     and (ii)        1 2 1 2
ˆ ˆ ˆA x x A x A x       

All Quantum mechanical Operators are linear in nature.

Properties of the commutator bracket:

1. ˆ ˆˆ ˆ, ,A B B A        2. ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, .... , , ........               A B C D A B A C
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3.
†

† †ˆ ˆˆ ˆ, ,      A B B A 4. ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,           A BC A B C B A C

5. ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , 0                      A BC B C A C A B

6.  ˆ ˆ, 0   A f A 7.    ˆ ˆ, 0   f A G A

8.    ˆ ˆˆ ˆ, 0 only if , 0      f A G B A B

9. 1ˆ ˆˆ ˆ ˆ, ,n nA B nB A B       10. 1ˆ ˆ ˆˆ ˆ, ,      
n nA B nA A B

Example 4: Find the commutator bracket ˆ ˆˆ ˆ, , ,A B B A    
    

Soln: ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,A B B A A B B A B A A B                         

=       ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    AB BA BA AB BA AB AB BA

= ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0       ABBA ABAB BABA BAAB BAAB ABAB BABA ABBA

Example 5: Find the commutator bracket 2 2,x p   .

Soln:         2 2 2 2 2, , , , 2 , 2 , 2x p x pp x p p p x p x x p p p x x p i xp px                     

Example 6: If  
2

ˆ
2

p
H V x

m
  , then calculate ˆ, ,x x H     .

Soln:    
2

21 1ˆ, , , , 0 2 ,
2 2 2

p i
x H x x V x x p p x p p

m m m m

                  



 
2

ˆ, , , ,
i i

x x H x p x p
m m m

            
  

Eigenvalues and Eigenfunctions:

If an operator Â  operating on a function  n x  gives    ˆ
n nA x x  , then  n x  is called the

eigenfunction of Â  corresponding to eigenvalue   and the above equation is known as  eigenvalue equation

of operator Â .

Example:        
2 2

2 2 2
2 2

ˆ ˆand 4 4x x x
n n n

d d
A x ae A x ae ae x

dx dx
         

     n x  is an eigenfunction of  Â  corresponding to eigenvalue 4.

If the commutator bracket of two operators ˆ ˆA and B  is equal to zero i.e. ˆ ˆ, 0A B    , then the physical

observables corresponding to these operators are simultaneously accurately measurable and they have a com-
plete set of simultaneous eigenfunctions.

Example 7: The operator 
d

x
dx

  
 

 has the eigenvalue  . Determine the corresponding wavefunction.

Soln: Eigenvalue equation:    d d d
x x x dx

dx dx
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2 2

0 0ln ln exp
2 2

x x
x x     

   
         

   

Example 8: Find the constant B which makes 
2axe an eigenfunction of the operator 

2
2

2

d
Bx

dx

 
 

 
.

What is the corresponding eigenvalue?

Soln:  
2

2 22 2 2 2
2

4 2ax axd
Bx e a x a Bx e

dx
  

    
 

For 
2axe  to be eigenfunction of the operator 

2
2

2

d
Bx

dx

 
 

 
, then the eigenvalue

 2 2 24 2a x a Bx   must be independent of x i.e.  2 24 0 4a B B a   

Therefore, 
2

2 22
2

2ax axd
Bx e ae

dx
  

   
 

; Thus the eigenvalue of the operator is (-2a).

Hermitian operator:

A operator Â  is said to be hermitian if †ˆ ˆA A  and its should satisfy the following relation:

Dirac representation:  † †ˆ ˆ ˆ A A A     

Schrodinger representation:    ˆ ˆ, ,A A     ** ˆ ˆA d A d       
Properties:
(1) Eigenvalues of hermitian operators are real.
(2) Eigenfunctions corresponding to different eigenvalues of a hermitian operator are orthogonal.
(3) All physical observable in quantum mechanics are represented by hermitian operators.

Example:   * *ˆ, xp i dx i dx
x x

    
 

 

                

*
* 

 

 
      

 
  d

i i dx
dx


     

*
* *ˆ

 

 

 
   

 
  x

d
i dx p dx

dx


  

Hence, the momentum operator ˆ xp  is hermitian in nature.

Similarly, we can see that 
x




 is anti-hermitian i.e. 
†

x x

       
Projection operator:

A operator is said to be projection operator if  † 2ˆ ˆ ˆ ˆ and  A A A A

Properties:
(1) Eigenvalues of a projection operator is 0 and 1.

(2) Product of two projection operators is also a projection operator if  1 2ˆ ˆ, 0p p 

(3) Sum of two projection operator is a projection operator if  1 2ˆ ˆ, 0p p 
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 Unitary Operator:
An operator Â  is said to be unitary if † 1ˆ ˆ A A

Parity Opertor:

Parity opeartor corresponds to space reflection about the origin i.e    P̂ x x  

In general,    P̂ r r  
 

; where ˆˆ ˆ  

r xi yj zk  and ˆˆ ˆ    


r xi yj zk

When parity operator acts on a wavefunction, the following changes take place in various co-ordinate system:
(i) Cartesian co-ordinate system: , ,     x x y y z z

(ii) Spherical polar co-ordinate system : , ,    r r      
(iii) Cyllindrical co-ordiante system: , , z z       

Properties:
(1) Eigenvalues of the parity operator is 1, -1.

     ˆ even parity   P x x x   .       ˆ odd parity    P x x x  
(2) Parity operator is hermitian in nature
(3) Parity operator commutes with hamiltonian operator if the potential under which particle is moving i.e. V(x)

is symmetric in nature.

Example 9: Let, †ˆ ˆN b b  where the operator b̂  satisfies the relation † †ˆ ˆ ˆ ˆ 1 bb b b  and  2
2 †ˆ ˆ 0 b b ;

then eigenvalues of N are
(a) +ve and –ve integers (b) all +ve integers (c) 1  and 0 only (d) 0 and 1 only

Soln:  2
† † 2ˆ ˆ ˆ ˆˆ     N b b b b        

 † † 2ˆ ˆ ˆ ˆ b bb b       † † 2ˆ ˆ ˆ ˆ1 b b b b   

 † † † 2 † 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆb b b b bb b b          2 0,1       

Example 10: Let the wave function of a particle of mass ‘m’ at a given instant be  
2 2/x ax Ae  .

What will be the function  K x


 where ‘K’ is the kinetic energy? Is this wave function an eigenfunction of

kinetic energy?

Soln. The kinetic energy operator is 
2 2

22

d
K

m dx
 

 . Thus,

 
2 2 2 22 2 2

/ /
2

2
2 2

x a x ad d A
K x Ae xe

m dx m dx a
              

 

2 2 2 2 2 22 2
/ / /

2 2 2

2 2 2

2 2
x a x a x ad A A x

xe x e e
m dx a ma a

      
           

  2 22 2
/

2 2
2

1 x aA x
e

ma a

 
   

 



This is not an eigenfunction of kinetic energy.

Example 11: An operator A is defined as      *A x x x   . Is this a linear operator?

Soln. For the given operator,

           

       

               

*
1 2 1 2 1 2

* *
1 2 1 2

* * * *
1 1 2 2 1 2 2 1

A x x x x x x

x x x x

x x x x x x x x
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and            * *
1 2 1 1 2 1A x A x x x x x       

Thus,        *
1 2 1 2A x x x A x        and hence A is not a linear operator..

Example 12. Prove that    2, ,x x x
i

Xp H p X p V
m

 


 where 
2

2
xp

H V
m

  , and V is potential energy

operator.

Soln.      , , ,x x xXp H X p H X H p   = 
2 2

, ,
2 2

x x
x x

p p
X p V X V p

m m

   
     

      

      1
, , ,

2x x x x x xX p V p X p X p p p
m

  

     21
, 2 ,

2x x x x x
i

X p V i p p p X p V
m m

   


Example 13. 1 and 2  be two ortonormal state vectors. Let 1 2 2 1A      . Is a projection
operator?

Soln.
† † ††

1 2 2 1 1 2 2 1 2 1 1 2A A                            
Hence, A is hermitian.

Now, 
2

1 2 2 1 1 2 2 1

1 2 1 2 2 1 2 1 1 2 2 1

1 2 1 2 1 2 2 1 2 1 1 2 1 2 1| | | |

A        

           

              

          
          
          

Since, 1  and 2  are orthonormal,

2
1 1 2 2A A     

Therefore,  A is not a projection operator.

Example 14. Prove that 
2 1

x x
d

x Xp p X
dt m

 

Soln.  
2

2 2 21 1
, ,

2
xpd

x X H X V x
dt i i m

 
         

2 2 2 21 1
, , ,

2 2x x x x xX p p X p X p p
mi mi

             

   1 1 1
2 2

2 x x x x x xp i X i X p p X Xp Xp p X
mi m m

      


Example 15. Prove that the operators ( / )i d dx  and 2 2/d dx  are Hermitian.

Soln.
* * *[ ]m n m n n m

d d
i dx i i dx
dx dx

 



 

         
     

*

m n

d
i dx

dx





    
 

Therefore, /id dx  is Hermitian.

2 *
* *

2
n n n m

m m

d d d d
dx dx

dx dx dx dx
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* 2 * 2 *

2 2
m m m

n n n

d d d
dx dx

dx dx dx

  

 

   
      
 

 
Thus, 2 2/d dx  is Hermitian.

Example 16: Find the following commutation relations:

(i) 
2

2
,

x x

  
   

(ii) , ( )F x
x

 
  

Soln. (i) 
2 2 2 3 3

2 2 2 3 3
, 0

x x x x x x x x

            
                       

(iii)  , ( ) ( )F x F F
x x x

           
 =

F F
F F

x x x x

   
    

   

Thus, , ( )
F

F x
x x

      

Example 17: Find the equivalence of the following operators:

(i) 
d d

x x
dx dx

     
  

(ii) 
d d

x x
dx dx

     
  

Soln. (i) ( )
d d d d

x x x x x
dx dx dx dx

                
     

= 
2

2
2

d d d
x x x

dx dx dx

  
      = 

2
2

2
2 1

d d
x x

dx dx

 
    

 

Therefore, 
2

2
2

2 1
d d d d

x x x x
dx dx dx dx

         
  

(ii) Similarly, 
2

2
2

1
d d d

x x x
dx dx dx

        
  

Example 18. By what factors do the operators 2 2 2 2( )x xx p p x  and 21/ 2( )x xxp p x  differ?

Soln.
2 2 2

2 2 2 2 2 2
2 2

( )
( )x x

f x f
x p p x f x

x x

  
      



 
2 2

2 2 2
2

( )f x f
x

x x x

  
  

  
   

2
2 2 2 2

2
2

f f
x xf x

x x x

          
 

2 2
2 2 2

2 2
2 2 2

f f f f
x f x x x

x x x x

    
          
  

2
2 2

2
2 4 2x x f

x x

  
      


21 ( )
( ) ( )

2 2x x x x

i f xf
xp p x f xp p x x

x x
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( ) 2
2 x x

i f
xp p x x f

x

      


2
2 ( )

2 2
2

f f f xf
x x x x

x x x dx x x

                          



2 2 2
2 2

2 2
2 2 2 4

2

f f f f f f
x x x x x x f

x x x x x x

      
              



2 2
2

2
8 2

2

f f
x x f

x x

  
      


 

2
2 2

2

1
2 4

2
x x f

x x

  
      


The two operators differ by a term 2(3 / 2) 
Example 19. Find the eigenvalues and eigenfunctions of the operator /d dx .

Soln. Eigenvalue equation:  ( ) ( )
d

x k x
dx

   (where k is the eigenvalue and ( )x  is the eigenfunction)

kxd
kdx Ce


   

 .

Case 1: k is a real positive quantity,   is not an acceptable function since it tends to   or –  as x 
or  .

Case 2: k is purely imaginary (say ia), then iaxCe   which will be finite for all values of x.

Hence, kxy ce  is the eigenfunction of the operator /d dx  with eigenvalues k ia , where a is real.

Expectation value of dynamic variables:
It is defined as the average of the result of a large number of independent measurements of a physical observ-
able on the same system.

*

*

Â Â
Â

|

dx

dx

   

 
 








 




Note:

(1) If the state of the particle is an eigenfunction of the operator Â , then the expectation value of the physical

observable corresponding to Â  will be equal to the eigenvalue of Â  corresponding to the state of the particle.
(2) The state of the particle is given as:

1 1 2 2 3 3 ................. n n
n

C C C C        

where 1 2, ..........  are the eigenfunction of the operator Â , then expectation value of the the physical

observable corresponding to Â will be

2ˆ
n n

n

A C 

where n  are the eigenvalues of operator Â  corresponding to n .
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Example 20: A particle of mass ‘m’ is confined in a 1-D box from 2 x L  to 2x L . The wave function

of the particle in this state is   0 cos
4

x
x

L

     
 

(i) Find the normalization factor.
(ii) The expectation value of P2 in this state.

Soln. (i) 

2 2
2 2* 2

0 0

2 2

1 2
1 cos 1 1 cos

4 2 4

L L

L L

x x
dx dx dx

L L

 
   



  

          
     

 

2 2

0

2

2 4
sin 1

2 4 2

L

L

x L
x

L

 






         
 

2

0
0

1
2 2 1

2 2
L L

L


      

222 * 2
22

L

L

d
P dx

dx
 



 
  

 
   = 

22 2 2

2
cos

2 4 4

L

L

x
dx

L L L

 


     
  



   
2 2 2 22 2

2 32 0

1
. 1 cos 1 cos

2 16 2 2 32 2

L L

L

x x
dx dx

L L L L L

   



         
    

 
= 

2 2

216L

 

Example 21: Find the expected value of position and momentum of a particle whose wave function is

  2 2/x a ikxx e    in all space

Soln. Expected position of the particle 

2 2* 2 /

2 2* 2 /

.
0

x a

x a

x dx e xdx
x

dx e dx

 

 

  

 
  

 

   
 

Expected momentum of the particle

2 2 2 2 2 2/ / 2 /
2

2 22 2 2 /2 /

2x a ikx x a ikx x a

x ax a

x
e i e dx e ik dx

x a
p i

e dxe dx

     

 

 



             
 




 = 

2 2

2 2

2 /

2 /

x a

x a

e dx

k k

e dx















 

Example 22. The wavefunction of a particle in a state is 2exp( / 2 )N x    , where 1/4(1/ )N   .

Evaluate  ( ) ( )x p  .

Soln. Since   is symmetrical about 0, 0x x 

2
2 2 2 exp

2

x
x N x dx





  
   



Since,   is a real wave function, 0p 

2 2 2
2 2 2

2
( ) exp exp

2 2

x d x
p i N dx

dx





    
         



2 2 2 2 2 2
2

2
exp exp

N x N x
dx x dx
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2 2 2

2 2
  
  
  

Therefore, 
2

2 22 2

2 2 2
x p x x p p




               
 

Example 23. The Hamiltonian operator of a system is 2 2 2( / )H d dx x   . Show that 2exp( / 2)Nx x
is an eigenfunction of H and determine the eigenvalue. Also evaluate N by normalization of the function.

Soln. 2exp( / 2),Nx x N    being a constant

2 2
2

2
exp

2

d x
H x Nx

dx

   
       

   
 

2 2 2
3 2exp exp exp

2 2 2

x d x x
Nx x

dx

      
          

      

     
2

3 exp 3
2

x
Nx

 
    

 

Thus, the eigenvalue of H is 3. The normalization condition gives

22 2 1xN x e dx






  2 1
2

N


   
1/2

2
N

     

The normalized function  
1/2 22

exp
2

x
x

         

Example 24. Consider the wave function 
2

2
( ) exp exp( )

x
x A ikx

a

 
   

 
, where A is a real constant.

(i) Find the value of A, (ii) calculate p  for this wave function.

Soln. (i) Normalization condition:   
2

2
2

2
exp 1

x
A dx

a





 
  
 



1/2
2

2
1

2 /
A

a

   
 

  
2

A a 


(ii) *
d

p i dx
dx

     
    

2 2
2

2 2 2

2
( ) exp expikx ikxx x x

i A e ik e dx
a a a


 



             
    



2 2
2

2 2 2

2 2 2
( ) exp ( )( ) exp

x x
i xdx i ik A dx

a a a

 

 

             
     

  

In the first term, the integrand is odd and the integral is from   to  . Hence the integral vanishes.

Therefore, p k  , since 
2

2
2

2
exp 1

x
A dx

a





 
 

 



