21. L-DOPA is used for the treatment of
 (a) Tuberculosis (b) Parkinson’s disease
 (c) Diabetes (d) Cancer

22. In the IR spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at
 (a) 1660 cm\(^{-1}\) (b) 1700 cm\(^{-1}\) (c) 1730 cm\(^{-1}\) (d) 1770 cm\(^{-1}\)

23. The major product formed in the reaction of styrene with an excess of lithium in liquid ammonia
 and t-butyl alcohol is:

24. The major product formed in the following reaction is

25. For estrone, among the statements A–C, the correct ones are
 A. It is a steroidal hormone
 B. It has two hydroxyl groups
 C. It has one ketone and one hydroxyl groups
 (a) A, B and C (b) A and B (c) A and C (d) B and C

26. An organic compound having the molecular formula C\(_{10}\)H\(_{14}\) exhibited two singlets in the \(^1\)H NMR
 spectrum, and three signals in the \(^{13}\)C NMR spectrum. The compound is

27. Amongst the following, the compound which has the lowest energy barrier for the cis-trans
 isomerisation is:
28. The IUPAC name of the compound given below is
\[\text{HO} - \text{Cl} - \text{H} - \text{OH}\]
(a) (2E, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
(b) (2Z, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
(c) (2Z, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol
(d) (2E, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol

29. The major product formed in the following reaction is
\[
\begin{align*}
\text{Cl} & \quad \text{MeO} \\
\text{MeO} & \quad \text{Cl}
\end{align*}
\]
\[\text{NaOMe} \quad \text{MeOH}\]
(a) \(\text{Cl} \quad \text{MeO}\)
(b) \(\text{Cl} \quad \text{OMe}\)
(c) \(\text{O} \quad \text{Me} \quad \text{Cl}\)
(d) \(\text{O} \quad \text{Me} \quad \text{O}\)

30. The constituent amino acids present in the following dipeptide, respectively, are
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{N} & \quad \text{N} \\
\text{CO} & \quad \text{O} \\
\text{O} & \quad \text{H}
\end{align*}
\]
(a) (R)-aspartic acid and (S)-lysine
(b) (S)-aspartic acid and (R)-lysine
(c) (R)-glutamic acid and (S)-arginine
(d) (S)-glutamic and (S)-arginine

31. A suitable organocatalyst for enantioselective synthesis of Wieland-Miescher ketone (A) is
\[
\begin{align*}
\text{A} \quad \text{(optically active)}
\end{align*}
\]
(a) (–)-proline
(b) (+)-menthone
(c) guanidine
(d) (+)–BINOL

32. For acylation with acetic anhydride/triethylamine, and oxidation with chromium trioxide of the trans- and cis-alcohols A and B, the correct statement is
\[
\begin{align*}
\text{A} & \quad \text{B}
\end{align*}
\]
(a) A undergoes acylation as well as oxidation faster than B
(b) B undergoes acylation as well as oxidation faster than A
(c) A undergoes acylation faster than B, whereas B undergoes oxidation faster than A
(d) B undergoes acylation faster than A, whereas A undergoes oxidation faster than B.
33. The two benzylic hydrogens Hₐ and H₄ in the compounds I and II, are

(Ⅰ)
(Ⅱ)

(a) diastereotopic in I and enantiotopic in II (b) diastereotopic in II and enantiotopic in I
(c) diastereotopic in both I and II (d) enantiotopic in both I and II

34. The following reaction proceeds through a

\[
\begin{align*}
\text{O} & \xrightarrow{\Delta} \text{CHO} \\
\end{align*}
\]

(a) 1, 3-sigmatropic rearrangement (b) 2, 3-sigmatropic rearrangement
(c) 3, 3-sigmatropic rearrangement (d) 3, 5-sigmatropic rearrangement

35. The number of nodes present in the highest occupied molecular orbital of 1, 3, 5-hexatriene in its ground state is

(a) one (b) two (c) three (d) four

36. Deuterium kinetic isotope effect for the following reaction was found to be 4.0. Based on this information, mechanism of the reaction is

(a) \(E_{1} \) (b) \(E_{2} \) (c) \(E_{1CB} \) (d) free radical

37. The major product formed in the following reaction is

(a) MeO (b) MeO (c) O (d) HO

38. The bond order of the metal-metal bond in the dimeric complex \([\text{Re}_{2} \text{Cl}_{4} (\text{PMe}_{2} \text{Ph})_{4}]^{+} \) is

(a) 4.0 (b) 3.5 (c) 3.0 (d) 2.5

39. The reaction of \(\text{FeCl}_{3} \cdot 6\text{H}_{2}\text{O} \) with \(\text{SOCl}_{2} \) yields.

(a) \(\text{FeCl}_{2}(\text{s}), \text{SO}_{2}(\text{g}) \) and \(\text{HCl}(\text{g}) \) (b) \(\text{FeCl}_{4}(\text{s}), \text{SO}_{2}(\text{g}) \) and \(\text{HCl}(\text{l}) \)
(c) \(\text{FeCl}_{2}(\text{s}), \text{SO}_{2}(\text{g}) \) and \(\text{HCl}(\text{g}) \) (d) \(\text{FeCl}_{4}(\text{s}), \text{SO}_{2}(\text{g}) \) and \(\text{HCl}(\text{g}) \)

40. Patients suffering from Wilson's disease have

(a) Low level of Cu-Zn superoxide dismutase (b) High level of Cu-Zn superoxide dismutase
(c) Low level of copper-storage protein, ceruloplasmin (d) High level of copper-storage protein, ceruloplasmin
41. High dose of dietary supplement ZnSO\textsubscript{4} for the cure of Zn deficiency
 (a) reduces myoglobin (b) increases iron level in blood
 (c) increases copper level in brain (d) reduces copper, iron and calcium levels in body

42. Which of the following in NOT suitable as catalyst for hydroformylation?
 (a) HCo(CO)\textsubscript{4} (b) HCo(CO)\textsubscript{3}PBu\textsubscript{3} (c) HRh(CO)(PPh\textsubscript{3})\textsubscript{3} (d) H\textsubscript{2}Rh(PPh\textsubscript{3})\textsubscript{2}Cl

43. Commonly used scintillator for measuring radiation is
 (a) NaI(AI) (b) NaI(TI) (c) CsI (TI) (d) CsI(AI)

44. A sample of aluminium ore (having no other metal) is dissolved in 50 mL of 0.05 M EDTA. For the titration of unreacted EDTA, 4 mL of 0.05 M MgSO\textsubscript{4} is required. The percentage of Al in the sample is:
 (a) 27 (b) 31 (c) 35 (d) 40

45. In a cluster, H\textsubscript{3}CoRu\textsubscript{3}(CO)\textsubscript{12}, total number of electrons considered to be involved in its formation is
 (a) 57 (b) 60 (c) 63 (d) 72

46. Among the following, the correct acid strength trend is represented by
 (a) \[
 \begin{align*}
 \text{Al(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}2+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Al(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}2+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}2+ & < \text{Al(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+
 \end{align*}
 \]
 (b) \[
 \begin{align*}
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}2+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}2+ & < \text{Al(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+
 \end{align*}
 \]
 (c) \[
 \begin{align*}
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}2+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}2+ & < \text{Al(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+
 \end{align*}
 \]
 (d) \[
 \begin{align*}
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}2+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}2+ & < \text{Al(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ \\
 \text{Fe(H}_2\text{O)}\textsubscript{6}3+ & < \text{Fe(H}_2\text{O)}\textsubscript{6}3+ < \text{Fe(H}_2\text{O)}\textsubscript{6}3+
 \end{align*}
 \]

47. Among the molten alkali metals, the example of an immiscible pair (in all proportions) is
 (a) K and Na (b) K and Cs (c) Li and Cs (d) Rb and Cs

48. Among the following, an example of a hypervalent species is
 (a) BF\textsubscript{3}OEt\textsubscript{2} (b) SF\textsubscript{4} (c) [PF\textsubscript{6}]– (d) Sb\textsubscript{2}S\textsubscript{3}

49. An octahedral metal ion M2+ has magnetic moment of 4.0 B.M. The correct combination of metal ion and d-electron configuration is given by
 (a) Co2+, t\textsubscript{2g}e\textsubscript{g}^2 (b) Cr2+, t\textsubscript{2g}e\textsubscript{g}^2 (c) Mn2+, t\textsubscript{2g}e\textsubscript{g}^1 (d) Fe2+, t\textsubscript{2g}e\textsubscript{g}^2

50. According to VSEPR theory, the geometry (with lone pair) around the central iodine in I\textsubscript{3}– and I\textsubscript{3}– ions respectively are
 (a) tetrahedral and tetrahedral (b) trigonal bipyramidal and trigonal bipyramidal
 (c) tetrahedral and trigonal bipyramidal (d) tetrahedral and octahedral

51. Treatment of CIF\textsubscript{3} with SbF\textsubscript{5} leads to the formation of a/an
 (a) polymeric material (b) covalent cluster
 (c) ionic compound (d) lewis acid-base adduct

52. The reason for the chemical inertness of gaseous nitrogen at room temperature is best given by its
 (a) high bonding energy only (b) electronic configuration
 (c) HOMO-LUMO gap only (d) high bond energy and HOMO-LUMO gap

53. Two tautomeric forms of phosphorus acid are
 \[
 \begin{align*}
 \text{OH} & \quad \text{and} & \quad \text{OH} \\
 \text{H} & \quad \text{OH} \quad \text{and} & \quad \text{OH}
 \end{align*}
 \]
54. The correct thermodynamics relation among the following is
 (a) \(\frac{\partial U}{\partial V} \) = \(-P \)
 (b) \(\frac{\partial H}{\partial V} \) = \(-P \)
 (c) \(\frac{\partial G}{\partial V} \) = \(-P \)
 (d) \(\frac{\partial A}{\partial V} \) = \(-S \)

55. The boiling point of a solution of non-volatile solid is higher than that of the pure solvent. It always indicates that
 (a) the enthalpy of the solution is higher than that of the pure solvent.
 (b) the entropy of the solution is higher than that of the pure solvent.
 (c) the Gibbs free energy of the solution is higher than that of the pure solvent.
 (d) the internal energy of the solution is higher than that of pure solvent.

56. According to Arrhenius equation (\(K = \) rate constant and \(T = \) temperature)
 (a) \(\ln K \) decreases linearly with \(1/T \)
 (b) \(\ln K \) decreases linearly with \(T \)
 (c) \(\ln K \) increases linearly with \(1/T \)
 (d) \(\ln K \) increases linearly with \(T \)

57. The angle at which the first order Bragg reflection is observed from (110) plane in a simple cubic unit cell of side 3.238Å, when chromium \(K_\alpha \) radiation of wavelength 2.29Å is used, is
 (a) 30º
 (b) 45º
 (c) 60º
 (d) 90º

58. The orbital with two radial and two angular nodes is
 (a) 3p
 (b) 5d
 (c) 5f
 (d) 8d

59. Michael Faraday observed that the colour of colloidal suspensions of gold nanoparticles changes with the size of the nanoparticles. This is because
 (a) Gold forms complex with the solvent
 (b) Band gap of gold changes with size of the nanoparticle.
 (c) Gold in nanocrystalline form undergoes transmutation to other elements.
 (d) Colloidal suspensions diffract light

60. The energy of 2s and 2p orbitals is the same for
 (a) Li
 (b) Li\(^{+}\)
 (c) Be\(^{2+}\)
 (d) H

61. If a homonuclear diatomic molecule is oriented along the Z-axis, the molecular orbital formed by linear combination of p orbitals of the two atoms is
 (a) \(\sigma \)
 (b) \(\sigma^* \)
 (c) \(\pi \)
 (d) \(\delta \)

62. A reaction contains a mixture of N\(_2\), H\(_2\) and NH\(_3\) in equilibrium (\(K_p = 3.75 \) atm\(^{-2}\)). If sufficient He is introduced into the reactor to double the total pressure, the value of \(K_p \) at the new equilibrium would be
 (a) 0.94 atm\(^{-2}\)
 (b) 3.75 atm\(^{-2}\)
 (c) 7.50 atm\(^{-2}\)
 (d) 15.00 atm\(^{-2}\)

63. The volume of a gas absorbed on a solid surface is 10.0 ml, 11.0 ml, 11.2 ml, 14.5 ml and 22.5 ml at 1.0, 2.0, 3.0, 4.0 and 5.0 atm, pressure, respectively. These data are best represented by
 (a) Gibb’s isotherm
 (b) Langmuir isotherm
 (c) Freundlich isotherm
 (d) BET isotherm

64. A compound of M and X atoms has a cubic unit cell. M atoms are at the corners and body centre position and X atoms are at face centre positions of the cube. The molecular formula of the compound is
 (a) MX
 (b) MX\(_2\)
 (c) M\(_3\)X\(_2\)
 (d) M\(_2\)X\(_3\)
65. When Frenkel defects are created in an otherwise perfect ionic crystal, the density of the ionic crystal (a) increases (b) decreases (c) remains same (d) oscillates with the number of defects

66. The molecule in which the bond order increases upon addition of an electron is (a) O\textsubscript{2} (b) B\textsubscript{2} (c) P\textsubscript{2} (d) N\textsubscript{2}

67. In a potentiometric titration, the end point is obtained by observing (a) change in colour (b) jump in potential (c) increase in current (d) increase in turbidity

68. Electrolysis of an aqueous solution of 1.0 M NaOH results in (a) Na at the cathode and O\textsubscript{2} at the anode. (b) H\textsubscript{2} at the cathode and O\textsubscript{2} at the anode. (c) Na and H\textsubscript{2} at the cathode, and O\textsubscript{2} at the anode. (d) O\textsubscript{2} at the cathode and H\textsubscript{2} at the anode.

69. The cell voltage of Daniel cell \[\text{Zn} | \text{ZnSO}_4 \text{ (aq)} \ || \text{CuSO}_4 \text{ (aq)} | \text{Cu} \] is 1.07 V. If reduced potential of Cu2+|Cu is 0.34 V, the reduction potential of Zn2+|Zn is (a) 1.141 V (b) –1.41 V (c) 0.73 V (d) –0.73 V

70. In the mechanism of reaction, \(\text{H}_2 + \text{Br}_2 \rightarrow 2\text{HBr} \), the first step is (a) dissociation of H\textsubscript{2} into H• radicals (b) dissociation of Br\textsubscript{2} into Br• radicals (c) reaction of H• radical with Br\textsubscript{2} (d) reaction of Br• radical with H\textsubscript{2}

71. For an electronic configuration of two non-equivalent π electrons \(\pi^1, \pi^1 \), which of the following terms is not possible? (a) 1Σ (b) 3Σ (c) 3Δ (d) 3Φ

72. Consider a two-dimensional harmonic oscillator with potential energy \(V(x, y) = \frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2 \). If \(\psi_{nx}(x) \) and \(\psi_{ny}(y) \) are the eigensolutions and \(E_{nx} \) and \(E_{ny} \) are the eigenvalues of harmonic oscillator problem in x and y direction with potential \(\frac{1}{2}k_x x^2 \) and \(\frac{1}{2}k_y y^2 \), respectively, the wave function and eigenvalues of the above two-dimensional harmonic oscillator problem are (a) \(\psi_{nx,ny} = \psi_{nx}(x) + \psi_{ny}(y) \) \(E_{nx,ny} = E_{nx} + E_{ny} \) (b) \(\psi_{nx,ny} = \psi_{nx}(x)\psi_{ny}(y) \) \(E_{nx,ny} = E_{nx}E_{ny} \) (c) \(\psi_{nx,ny} = \psi_{nx}(x) \psi_{ny}(y) \) \(E_{nx,ny} = E_{nx} + E_{ny} \) (d) \(\psi_{nx,ny} = \psi_{nx}(x) + \psi_{ny}(y) \) \(E_{nx,ny} = E_{nx}E_{ny} \)

73. The quantum mechanical virial theorem for a general potential \(V(x,y,z) \) is given by \(\left< x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + z \frac{\partial V}{\partial z} \right> \) where T is the kinetic energy operator and \(\langle \rangle \) indicates expectation value. This leads to the following relation between the expectation value of kinetic energy and potential energy for a quantum mechanical harmonic oscillator problem with potential \(V = \frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2 + \frac{1}{2}k_z z^2 \).
(a) \[\langle T \rangle = \langle V \rangle \] (b) \[\langle T \rangle = -\frac{1}{2} \langle V \rangle \] (c) \[\langle T \rangle = \frac{1}{2} \langle V \rangle \] (d) \[\langle T \rangle = -\langle V \rangle \]

74. Consider a particle in a one dimensional box of length ‘a’ with the following potential

\begin{align*}
V(x) &= \infty \quad x < 0 \\
V(x) &= \infty \quad x > a \\
V(x) &= 0 \quad 0 \leq x \leq a/2 \\
V(x) &= V_1 \quad a/2 \leq x \leq a
\end{align*}

Starting with the standard particle in a box hamiltonian as the zeroth order Hamiltonian and the potential of \(V_1 \) from ‘a/2’ to ‘a’ as a perturbation, the first-order energy correction to the ground state is

(a) \(V_1 \) (b) \(V_1/4 \) (c) \(-V_1 \) (d) \(V_1/2 \)

75. The most probable value of ‘r’ for an electron in 1s orbital of hydrogen atom is

(a) \(a_0/2 \) (b) \(a_0 \) (c) \(\sqrt{2}a_0 \) (d) \(3a_0/2 \)

76. The angular momentum operator \(\hat{L}_y \) is

(a) \[-\frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \] (b) \[\frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \] (c) \[\frac{i\hbar}{2m} \frac{\partial}{\partial x} \] (d) \[\frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} \right) \]

77. The molecule with the smallest rotation partition function at any temperature among the following is

(a) \(\text{CH}_3 - \text{C} \equiv \text{C} - \text{H} \) (b) \(\text{H} - \text{C} \equiv \text{C} - \text{H} \) (c) \(\text{H} - \text{C} \equiv \text{C} - \text{D} \) (d) \(\text{D} - \text{C} \equiv \text{C} - \text{D} \)

78. Both NaCl and KCl crystallize with the FCC structure. However, the X-ray powder diffraction pattern of NaCl corresponds to the FCC structure whereas, that of KCl corresponds to simple cubic structure. This is because

(a) \(\text{K}^+ \) and \(\text{Cl}^- \) are isoelectronic
(b) \(\text{Na}^+ \) and \(\text{Cl}^- \) are isoelectronic
(c) \(\text{K}^+ \) and \(\text{Cl}^- \) are disordered in the crystal lattice
(d) KCl has anti-site defects.

79. Consider the cell:

\[\text{Zn}^{2+} (a = 0.01) || \text{Fe}^{2+} (a = 0.001), \text{Fe}^{3+} (a = 0.01) || \text{Pt} \]

\[E_{\text{cell}} = 1.71V \] at 25ºC for the above cell. The equilibrium constant for the reaction:

\[\text{Zn} + 2\text{Fe}^{3+} \rightleftharpoons \text{Zn}^{2+} + 2\text{Fe}^{2+} \] at 25ºC would be close to

(a) \(10^{27} \) (b) \(10^{54} \) (c) \(10^{81} \) (d) \(10^{10} \)

80. The molecule that has the smallest diffusion coefficient in water is

(a) glucose (b) fructose (c) ribose (d) sucrose

81. Metallic gold crystallizes in FCC structure with unit cell dimension of 4.00 Å. The atomic radius of gold is

(a) 0.866Å (b) 1.414Å (c) 1.732Å (d) 2.000Å

82. A first order gaseous reaction is 25% complete in 30 minutes at 227ºC and in 10 minutes at 237ºC. The activation energy of the reaction is closest to (\(R = 2 \text{ cal K}^{-1} \text{ mol}^{-1} \))

(a) 27 \text{ kcal mol}^{-1} (b) 110 \text{ kcal mol}^{-1} (c) 55 \text{ kcal mol}^{-1} (d) 5.5 \text{ kcal mol}^{-1}
83. In the reaction between NO and H\textsubscript{2} the following data are obtained

Experiment I: P\textsubscript{H\textsubscript{2}} = constant

<table>
<thead>
<tr>
<th>P\textsubscript{NO} (mm of Hg)</th>
<th>359</th>
<th>300</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\frac{dP\textsubscript{NO}}{dt})</td>
<td>1.50</td>
<td>1.03</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Experiment II: P\textsubscript{NO} = constant

<table>
<thead>
<tr>
<th>P\textsubscript{H\textsubscript{2}} (mm of Hg)</th>
<th>289</th>
<th>205</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\frac{dP\textsubscript{H\textsubscript{2}}}{dt})</td>
<td>1.60</td>
<td>1.10</td>
<td>0.79</td>
</tr>
</tbody>
</table>

The orders with respect to H\textsubscript{2} and NO are
(a) 1 with respect to NO and 2 with respect to H\textsubscript{2}
(b) 2 with respect to NO and 1 with respect to H\textsubscript{2}
(c) 1 with respect to NO and 3 with respect to H\textsubscript{2}
(d) 2 with respect to NO and 2 with respect to H\textsubscript{2}

84. The energy for a single electron excitation in cyclopropenium cation in Hückel theory is
(a) \beta
(b) 2\beta
(c) 3\beta
(d) 4\beta

85. The atomic masses of fluorine and hydrogen are 19.0 and 1.0 amu, respectively (1 amu = 1.67\times10^{-27} kg). The bond length of HF is 2.0Å. The moment of inertia of HF is
(a) 3.2\times10^{-47} kg m²
(b) 6.4\times10^{-47} kg m²
(c) 9.6\times10^{-47} kg m²
(d) 4.8\times10^{-47} kg m²

86. The masses recorded when a substance is weighed 4 times are 15.8, 15.4, 15.6 and 16.0 mg. The variance (square of the standard deviation) is closest to
(a) 0.02
(b) 0.05
(c) 0.10
(d) 0.20

87. The transition that is allowed by x-polarized light in trans-butadiene is
(The character table for C\textsubscript{2h} is given below)

<table>
<thead>
<tr>
<th>C\textsubscript{2h}</th>
<th>E</th>
<th>C\textsubscript{2}</th>
<th>i</th>
<th>\sigma\textsubscript{h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{A\textsubscript{g}}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\text{B\textsubscript{g}}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>\text{A\textsubscript{u}}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>\text{B\textsubscript{u}}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) \text{1A\textsubscript{u}} \rightarrow \text{1A\textsubscript{u}}
(b) \text{1A\textsubscript{u}} \rightarrow \text{1B\textsubscript{g}}
(c) \text{1B\textsubscript{u}} \rightarrow \text{1B\textsubscript{g}}
(d) \text{3B\textsubscript{g}} \rightarrow \text{1A\textsubscript{g}}

88. The heat capacity of 10 mol of an ideal gas at a certain temperature is 300 JK-1 at constant pressure. The heat capacity of the same gas at the same temperature and at constant volume would be
(a) 383 JK-1
(b) 217 JK-1
(c) 134 JK-1
(d) 466 JK-1

89. The Maxwell’s relationship derived from the equation dG = VdP - SdT is

(a) \left(\frac{\partial V}{\partial T}\right)_P = \left(\frac{\partial S}{\partial P}\right)_T
(b) \left(\frac{\partial P}{\partial V}\right)_T = \left(\frac{\partial T}{\partial S}\right)_P
(c) \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T
(d) \left(\frac{\partial P}{\partial V}\right)_T = -\left(\frac{\partial T}{\partial S}\right)_P
90. The chemical potential (μ_i) of the i^{th} component is defined as

(a) $\mu_i = \left(\frac{\partial U}{\partial n_i} \right)_{T,P}$
(b) $\mu_i = \left(\frac{\partial H}{\partial n_i} \right)_{T,P}$
(c) $\mu_i = \left(\frac{\partial A}{\partial n_i} \right)_{T,P}$
(d) $\mu_i = \left(\frac{\partial G}{\partial n_i} \right)_{T,P}$

91. Work (w) involved in isothermal reversible expansion from V_i to V_f of n moles of an ideal gas is

(a) $w = -nRT \ln \left(\frac{V_f}{V_i} \right)$
(b) $w = nRT \ln \left(\frac{V_f}{V_i} \right)$
(c) $w = -nRT \left(\frac{V_f}{V_i} \right)$
(d) $w = -nRT \log \left(\frac{V_f}{V_i} \right)$

92. The limiting molar conductivities of NaCl, NaI and RbI are 12.7, 10.8 and 9.1 mS m$^{-2}$ mol$^{-1}$, respectively. The limiting molar conductivity of RbCl would be

(a) 32.6 mS m$^{-2}$ mol$^{-1}$
(b) 7.2 mS m$^{-2}$ mol$^{-1}$
(c) 14.4 mS m$^{-2}$ mol$^{-1}$
(d) 11.0 mS m$^{-2}$ mol$^{-1}$

93. The number of ways in which four molecules can be distributed in two different energy levels is

(a) 6
(b) 3
(c) 16
(d) 8

94. An element exists in two crystallographic modifications with FCC and BCC structures. The ratio of the densities of the FCC and BCC modifications in terms of the volumes of their unit cells (V_{FCC} and V_{BCC}) is

(a) $V_{BCC} : V_{FCC}$
(b) $2V_{BCC} : V_{FCC}$
(c) $V_{BCC} : 2V_{FCC}$
(d) $V_{BCC} : \sqrt{2}V_{FCC}$

95. Given $\gamma \left(^1H \right) = 2.7 \times 10^8$ T$^{-1}$s$^{-1}$. The resonance frequency of a proton in magnetic field of 12.6 T is close to ($\pi = 3.14$)

(a) 60 MHz
(b) 110 MHz
(c) 540 MHz
(d) 780 MHz

96. In Mössbauer experiment, a source emitting at 14.4 KeV $\left(3.48 \times 10^{18} \text{ Hz} \right)$ had to be moved towards absorber at 2.2 mm s$^{-1}$ for resonance. The shift in the frequency between the source and the absorber is

(a) 15.0 MHz
(b) 20.0 MHz
(c) 25.5 MHz
(d) 30.0 MHz

97. Among the following, the correct combination of complex and its color is

<table>
<thead>
<tr>
<th>Complex</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Co(CN)_4)$^{2-}$</td>
<td>Red</td>
</tr>
<tr>
<td>(CoCl_4)$^{2-}$</td>
<td>Orange</td>
</tr>
<tr>
<td>(Co(NCS)_4)$^{2-}$</td>
<td>Blue</td>
</tr>
<tr>
<td>(CoF_4)$^{2-}$</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

98. In a specific reaction, hexachlorocyclotriphosphazene, $\text{N}_3\text{P}_3\text{Cl}_6$, was reacted with a metal fluoride to obtain mixed halo derivatives namely $\text{N}_3\text{P}_3\text{Cl}_5\text{F}(A)$, $\text{N}_3\text{P}_3\text{Cl}_4\text{F}_2(B)$, $\text{N}_3\text{P}_3\text{Cl}_3\text{F}_3(C)$, $\text{N}_3\text{P}_3\text{Cl}_2\text{F}_4(D)$, $\text{N}_3\text{P}_3\text{ClF}_5(E)$. Compositions among these which can give isomeric products are

(a) A, B and C
(b) B, C and D
(c) C, D and E
(d) E, A and B

99. Xenon forms several fluorides and oxofluorides which exhibit acidic behaviour. The correct sequence of descending Lewis acidity among the given species is represented by

(a) $\text{XeF}_6 > \text{XeOF}_4 > \text{XeF}_4 > \text{XeO}_2\text{F}_2$
(b) $\text{XeOF}_4 > \text{XeO}_2\text{F}_2 > \text{XeOF}_4 > \text{XeF}_6$
(c) $\text{XeF}_4 > \text{XeO}_2\text{F}_2 > \text{XeOF}_4 > \text{XeF}_6$
(d) $\text{XeF}_4 > \text{XeF}_6 > \text{XeOF}_4 > \text{XeO}_2\text{F}_2$
100. Number of isomeric derivatives possible for the neutral closo-carborane, $C_2B_{10}H_{12}$ is
(a) three (b) two (c) four (d) six

101. For higher boranes 3c-2e ‘BBB’ bond may be a part of their structures. In B_5H_9, the number of such electron deficient bond(s) present is/are
(a) four (b) two (c) zero (d) one

102. In the atomic absorption spectroscopic estimation of Fe(III) using O_2/H_2 flame, the absorbance decreases with the addition of
(a) CO_3^{2-} (b) SO_3^{2-} (c) EDTA (d) Cl^-

103. In a polarographic estimation, the limiting currents (µA) were 0.15, 4.65, 9.15 and 27.15 when concentration (mM) of Pb(II) were 0, 0.5, 1.0 and 3.0 respectively. An unknown solution of Pb(II) gives a limiting current of 13.65µA. Concentration of Pb(II) in the unknown is
(a) 1.355 mM (b) 1.408 mM (c) 1.468 mM (d) 1.500 mM

104. The gases SO_2 and SO_3 were reacted separately with ClF gas under ambient conditions. The major products expected from the two reactions respectively, are
(a) SOF_2 and $ClOSO_2F$ (b) SOF_2 and SO_2F_2 (c) SO_2ClF and SO_2F_2 (d) SO_2ClF and $ClOSO_2F$

105. The correct statement regarding terminal/bridging CO groups in solid $Co_4(CO)_{12}$ and $Ir_4(CO)_{12}$ is
(a) both have equal number of bridging CO groups (b) number of bridging CO groups in $Co_4(CO)_{12}$ is 4 (c) the number of terminal CO groups in $Co_4(CO)_{12}$ is 8 (d) the number of bridging CO groups in $Ir_4(CO)_{12}$ is zero.

106. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is formed. The iron is isoelectronic with
(a) $[Mn(CO)_5]^-$ (b) $[Ni(CO)_4]$ (c) $[Mn(CO)_5]^+$ (d) $[V(CO)_6]$-

107. The correct statement for ozone is
(a) It absorbs radiations in wavelength region 290-320 nm. (b) It is mostly destroyed by NO radical in atmosphere (c) It is non toxic even at 100 ppm level (d) Its concentration near poles is high due to its paramagnetic nature.

108. Among the following clusters,
$A = [(H)Co_6(CO)_{15}]$, $B = [(H)_2Os_6(CO)_{18}]$, $C = [(H)_2Os_5(CO)_{16}]$
H is encapsulated in
(a) A only (b) B only (c) B and C only (d) A and B only

109. The solid state structure of aluminum fluoride is
(a) ![Structure A](image1) (b) ![Structure B](image2) (c) ![Structure C](image3) (d) ![Structure D](image4)
110. Oxidised form of enzyme catalase (structure A); prepared by the reaction of $\left[\text{Fe(P)} \right]^+$ (P = porphyrin) with H_2O_2, has green color because

![Structure A](image)

(a) Oxidation state of iron changed from Fe^{III} to Fe^{IV}.
(b) Porphyrin ring is oxidized by one electron
(c) $\pi - \pi^*$ transition appears in the visible region
(d) Fe^{IV} is coordinated with anionic tyrosinate ligand in axial position.

111. The reactive position of nicotinamide adenine dinucleotide (NAD) in biological redox reactions is
(a) 2-position of the pyridine ring
(b) 6-position of the pyridine ring
(c) 4-position of the pyridine ring
(d) 5-position of the pyridine ring

112. The electrophile Ph_3C^+ reacts with $\left(\eta^5 - \text{C}_5\text{H}_5 \right)\text{Fe(CO)}_2(\text{CDMe}_2)^+$ to give a product A. The product A is formed because
(a) Fe is oxidised
(b) alkyl is substituted with Ph_3C
(c) Fe-Ph bond is formed
(d) Alkyl is converted to alkene

113. Substitution of L with other ligands will be easiest for the species

![Species](image)

114. Among the following, the correct statement is
(a) CH is isobal to Co(CO)_3
(b) CH_2 is isobal to Ni(CO)_2
(c) CH is isobal to Fe(CO)_4
(d) CH_2 is isobal to Mn(CO)_4

115. MnCr_2O_4 is likely to have a normal spinel structure because
(a) Mn^{2+} will have a LFSE in the octahedral site whereas the Cr^{3+} will not
(b) Mn is +2 oxidation state and both the Cr are in +3 oxidation state.
(c) Mn is +3 oxidation state and 1 Cr is in +2 and the other is in +3 state.
(d) Cr^{3+} will have a LFSE in the octahedral site whereas the Mn^{3+} ion will not.

116. The ground state forms of Sm^{3+} and Eu^{3+} respectively, are
(a) $^7\text{F}_0$ and $^6\text{H}_{5/2}$
(b) $^6\text{H}_{5/2}$ and $^7\text{F}_0$
(c) $^2\text{F}_{5/2}$ and $^5\text{I}_4$
(d) $^7\text{F}_6$ and $^2\text{F}_{7/2}$

117. The orbital interactions shown below represent

![Orbital Interactions](image)

(a) CH_3–Al interactions in $\text{Al}_2(\text{CH}_3)_6$
(b) B–H interactions in B_2H_6
(c) CH_3–Li interaction in $\text{Li}_4(\text{CH}_3)_4$
(d) CH_3CH_2–Mg interactions in $\text{EtMgBr}.$($\text{OEt}_2)_2$
118. Compounds $K_2Ba[Cu(NO_2)_6]$ (A) and $Cs_2Ba[Cu(NO_2)_6]$ (B) exhibit tetragonal elongation and tetragonal compression, respectively. The unpaired electron in A and B are found respectively, in orbitals,
(a) d^2_z and $d^{x^2-y^2}$ (b) $d^{x^2-y^2}$ and d^2_z (c) d^2_z and d^{x^2} (d) $d^{x^2-y^2}$ and $d^{x^2-y^2}$

119. Reaction of $Ph_2PCH_2CH_2PPh_2$ with $[RhCl(CO)]_2$ in a 2:1 molar ratio gives a crystalline solid A. The IR spectrum of complex A shows ν_{CO} at 1985 cm$^{-1}$. The ^{31}P(H) NMR spectrum of A consists of two doublets of doublets of equal intensities (^{103}Rh is 100% abundant and I = $\frac{1}{2}$). The structure of complex A is
(a) PPh_2RhPPh_2ClCO (b) $[PPh_2Rh(CO)(PPh_2)]Cl$ (c) $PPh_2ClRh_2PPh_2$ (d) $ClRh_2PPh_2CO_2Rh_2PPh_2$

120. The most appropriate structure for the complex $\left[Pt_2(NH_3)_2(NCS)_2(PPh_3)_2\right]$ is
(a) PtH_NPt (b) $PtNCSPt$ (c) $NHNPt$ (d) $PtPPh_3Pt$

121. The major product formed in the following reaction sequence is
$\text{Ph}C\equivC\text{O} \xrightarrow{1.\text{Hg(OAc)}_2\text{H}_2\text{SO}_4} \xrightarrow{2.\text{BnNH}_2\text{heat}}$
(a) $\text{Ph}C\equivC\text{NHPh}$ (b) $\text{Ph}C\equivC\text{NHPh}$ (c) Ph (d) Ph
122. The major product formed in the following reaction sequence is

\[
\begin{align*}
\text{O} & \quad 1. \text{H}_2\text{O}_2, \text{NaOH} \\
\text{H}_2 \text{O} & \quad 2. \text{TsNHNH}_2 \\
\text{N}_\text{a} & \quad 3. \text{Potassium t-butoxide} \\
\text{H}_2 & \quad 4. \text{H}_2, \text{Pd/CaCO}_3, \text{quinoline}
\end{align*}
\]

(a) ![Product A](image1.png) (b) ![Product B](image2.png) (c) ![Product C](image3.png) (d) ![Product D](image4.png)

123. The major product formed in the following reaction sequence is

\[
\begin{align*}
\text{SePh} & \quad 1. \text{H}_2\text{O}_2 \\
\text{SO}_2 & \quad 2. \text{heat}
\end{align*}
\]

(a) ![Product A](image1.png) (b) ![Product B](image2.png) (c) ![Product C](image3.png) (d) ![Product D](image4.png)

124. The most suitable reagent combination of A-C, required in the following conversions are

(a) A = Li/liq. NH\textsubscript{3}; \quad B = \text{NaBH}_4, \text{CeCl}_3.7\text{H}_2\text{O}; \quad C = \text{H}_2, (\text{Ph}_3\text{P})_3\text{RhCl}.
(b) A = Li/liq. NH\textsubscript{3}; \quad B = \text{NaBH}_4, \text{CeCl}_3.7\text{H}_2\text{O}; \quad C = \text{H}_2, 10\% \text{ Pd/C}.
(c) A = \text{NaBH}_4, \text{CeCl}_3.7\text{H}_2\text{O}; \quad B = \text{Li/liq. NH}_3; \quad C = \text{H}_2, (\text{Ph}_3\text{P})_3\text{RhCl}.
(d) A = \text{NaBH}_4, \text{CeCl}_3.7\text{H}_2\text{O}; \quad B = \text{Li/liq. NH}_3; \quad C = \text{H}_2, 10\% \text{ Pd/C}

125. The major product B formed in the following reaction sequence, and overall yield of its formation are

\[
\begin{align*}
\text{(S) glutamic acid} & \quad \text{Phenyl alanine} \quad \text{180\% C} \quad 60\% \quad A \quad \text{LiAlH}_4 \quad 80\% \quad B
\end{align*}
\]

(a) ![Product A](image1.png) and 48\% (b) ![Product B](image2.png) and 70\%
126. An organic compound (C₈H₁₀O₂), which does not change the color of ferric chloride solution, exhibited the following ¹H NMR spectral data: δ 7.3 (1H, t, J = 8 Hz), 7.0 (1H, d, J = 8 Hz), 6.95 (1H, s), 6.9 (1H, d, J = 8 Hz) 5.3 (1H, br, s, D₂O exchangeable), 4.6 (2H, s), 3.9 (3H, s). Structure of the compound is

(c) MeO

(d) MeO

127. Methyl 4-oxopentanoate exhibited signals at δ 208, 172, 51, 37, 32 and 27 ppm in its ¹³C NMR spectrum. The signals due to the methoxy, C1, C4 and C5 carbons are
(a) OMe –32; Cl–208; C4-172; C5-51
(b) OMe-51; Cl-208; C4-172; C5-32
(c) OMe-32; Cl-172; C4-208; C5-51
(d) OMe-51; Cl-172, C4-208; C5-32

128. In the following reaction, the intermediate and the major product A are

(a) :CHCl and

(b) :CCl₂ and

129. The major product formed in the sulfuric acid mediated rearrangement of the sesquiterpene saritonin A is

(a) O

(b) HO
130. In the following transformation, the reagent A and the major product B, respectively, are

\[\text{A} \rightarrow \text{B} \]

131. The major product formed in the following reaction sequence is

1. BH₃, THF; H₂O₂/NaOH
2. Ph₃P, DEAD, 4-nitrobenzoic acid
3. K₂CO₃, MeOH (DEAD = diethyl azodicarboxylate)

132. The major product formed in the following reaction sequence is

\[\text{cis} – \text{but} \rightarrow \text{ene} – \text{1, 4 – diol} \rightarrow \]

133. The major product formed in the following reaction sequence is

\[\text{PhCOOH} \rightarrow \text{PhCOOH} \rightarrow \text{PhCOOH} \rightarrow \text{PhCOOH} \]
134. The peptide A on reaction with 1-fluoro-2, 4-dinitrobenzene followed by exhaustive hydrolysis gave phenylalanine, alanine, serine and N-(2, 4-dinitrophenyl) glycine. On the other hand, peptide A after two cycles of Edman degradation gave Phe-Ser as the product. The structure of the peptide A is (a) Phe-Ser-Ala-Gly (b) Phe-Ser-Gly-Ala (c) Gly-Ala-Phe-Ser (d) Ala-Gly-Phe-Ser

135. The compound (B) (labeled) is precursor for biosynthesis of the natural product A. The labeled carbons in the product A are (a) C1, C3, C5 and Me (b) C2, C4, C6 and Me (c) C2, C4, C6 and COOH (d) C1, C3, C5 and COOH

136. The major product formed in the following reaction sequence is

137. The major product formed in the following reaction sequence is
138. The major product formed in the following reaction sequence is

\[
\text{BnO} \xrightarrow{1. \text{KH, THF}} \text{SiMe}_3 \xrightarrow{2. \text{m-CPBA}}
\]

(a) \[\text{BnO} \]
(b) \[\text{BnO} \]
(c) \[\text{BnO} \]
(d) \[\text{BnO} \]

139. The conditions A-B, required for the following pericyclic reactions are

\[
\text{Me}_2 \xrightarrow{A} \text{Me}_2 \xrightarrow{B}
\]

(a) A - Δ; B - Δ
(b) A - hν; B - Δ
(c) A - hν; B - hν
(d) A - Δ; B - hν

140. The number of π electrons participating and the pericyclic mode in the following reaction are

\[
\text{heat} \xrightarrow{\text{heat}}
\]

(a) 4 and conrotatory
(b) 4 and disrotatory
(c) 6 and conrotatory
(d) 6 and disrotatory

141. Stereoselective reduction of the dione A with a chiral reducing agent provides the corresponding diol B in 100% diastereoselectivity and 90% ee favoring R, R configuration. The composition of the product is

\[
\text{A} \xrightarrow{\text{heat}} \text{B}
\]

(a) 90% and
(b) 95% and
(c) 90% and
(d) 05% and
142. The major product formed in the following reaction sequence is

\[
\text{Cyclohexene} \rightarrow 1. \text{N-bromo-succinimide, CH}_2\text{Cl}_2 \rightarrow 2. \text{potassium t-butoxide}
\]

143. The major product formed in the following reaction sequence is

\[
\text{Cyclohexene} + \text{PhCOOAc} \rightarrow 1. \text{hv} \rightarrow 2. \text{KOH, MeOH}
\]

144. The major product formed in the following reaction sequence is

\[
\text{PhCHO (1 equiv.), p-TSA} \rightarrow 1. \text{NaIO}_4 \rightarrow 2. \text{NaBH}_4
\]
The major product formed in the following photochemical reaction is

\[
\text{hv} \\
\overset{\text{Ph}}{\text{C}} \ \overset{\text{O}}{\text{Ph}} \rightarrow \\
(a) \overset{\text{Ph}}{\text{C}} \overset{\text{O}}{\text{Ph}} \ \ (b) \overset{\text{Ph}}{\text{C}} \overset{\text{O}}{\text{Ph}} \ \ (c) \overset{\text{Ph}}{\text{C}} \overset{\text{O}}{\text{Ph}} \ \ (d) \overset{\text{Ph}}{\text{C}} \overset{\text{O}}{\text{Ph}}
\]