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Stability Analysis

By stability analysis we mean finding equilibrium positions and investigating whether the given equilibrium is
stable or unstable. It is easier to do stability analysis through potential rather than force. Therefore we will
try to write potential of given system to discuss equilibrium whenever required.

Equilibrium criteria in one dimension:

If  V(x) be the potential under which a particle is moving then force acting on the particle is 
( )

x
dV xF

dx
 

at equilibrium point 0xF  . Therefore, condition for equilibrium in terms of potential becomes, 
( ) 0dV x

dx


In V(x) versus x graph 0dV
dx

  at the points where tangent to the curve is parallel to x axis. Therefore

in the figure shown below point A, B, C and D are equilibrium points.

Stable equilibrium point: A point is stable equilibrium point if, a particle at this point when displaced
towards right experiences force towards left and vice versa. That is the force tries to bring it back.

Therefore at stable equilibrium point 0xdF
dx



2

2

( ) 0d V x
dx

   (condition for minimum)           

V( )x

x
A

B

C

D

Thus, a stable equilibrium point is a minimum on ( )V x  versus  x  plot.
Therefore points A and C in the figure shown above are stable point.

Unstable equilibrium point: In this case a particle at equilibrium point is when displaced towards right
it experiences  force also in rightward direction. That is the force tries to displace the particle away from

equilibrium point. Therefore at unstable equilibrium point, 0xdF
dx



 
2

2

( ) 0d V x
dx

   (condition of maximum)

Thus, an unstable point is a maximum on V(x) versus  x plot. Therefore points B and D in the figure shown
above are unstable points.

Chapter 2
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Frequency of oscillation: We know a particle of mass m moving under potential 2
0

1( )
2

V x V kx   has

frequency of oscillation k
m

  , about stable equilibrium point. For a particle moving under some arbitrary

potential V(x), if x0 be the stable equilibrium point, then we can expand V(x) about x0 using Taylor’s series
expansion as,

0 0 0

2 32 3
0 0

0 0 2 3

( ) ( )( ) ( ) ( )
2 3x x x x x x

x x x xdV d V d VV x V x x x
dx dx dx  

 
      + ......

where 0( )x x  is displacement from stable equilibrium point.

At this point, 
0

0
x x

dV
dx 

 , therefore, if 0( )x x  be small then

0

2 2
0

0 2

( )( ) ( )
2 x x

x x d VV x V x
dx




   (higher power terms neglected)

or  2
0 0

1( ) ( ) ( )
2

V x V x k x x  

Therefore frequency of oscillation about stable equilibrium is

k
m

     where,  
0

2

2
x x

d Vk
dx



 , k is called force constant.

Equilibrium criteria in two dimension: If a particle is moving under a two dimensional potential ( , )V x y
then, at equilibrium point,

0 0 0 0, ,

( , ) 0, ( , ) 0
x y x y

V x y V x y
x y
 

 
 

for stable equilibrium point (minimum)

0 0 0 0

2 2

2 2
, ,

( , ) 0, ( , ) 0
x y x y

V x y V x y
x y
 

 
 

0 0 0 0 0 0

2
2 2 2

2 2
, , ,

( , ) . ( , ) ( , )
x y x y x y

V x y V x y V x y
x y x y

   
  

     

For unstable equilibrium point (maximum)

0 0

2

2
,

( , ) 0
x y

V x y
x



 , 

0 0

2

2
,

( , ) 0
x y

V x y
y





0 0 0 0 0 0

2
2 2 2

2 2
, , ,

( , ) . ( , ) ( , )
x y x y x y

V x y V x y V x y
x y x y

   
  

     
for saddle point:
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0 0 0 0 0 0

2
2 2 2

2 2
, , ,

( , ) . ( , ) ( , )
x y x y x y

V x y V x y V x y
x y x y

   
  

     

Example: A particle of mass m is moving under a one dimensional potential 2( )V x ax bx    where a >
0 and b>0. Find the equilibrium points and find frequency of oscillation about the stable equilibrium.

Soln. At equilibrium point,  
0

0
x x

dV
dx 



02 0a bx      or  0 2
ax
b



Thus, 0 2
ax
b

  is an equilibrium point.

To know whether it is stable or unstable equilibrium point let us calculate second derivative of potential at
equilibrium point.

0

2

2 2 0
x x

d V b
dx



 

Therefore 0 2
ax
b

  is stable equilibrium point, force constant 
0

2

2 2
x x

d Vk b
dx



 

Therefore, frequency of oscillation is

2k b
m m

  

Example: Potential corresponding to force between the atoms of a diatomic molecule is 
12 6( ) a bV r

r r
 

where a and b are positive constants and r is separation between the atoms. Calculate bond length for
stable configuration and also calculate frequency of oscillation of atoms if mass of each atom be m.

Soln. For stable configuration 
0

0
r r

dV
dr 



1/6

013 7
0 0

12 6 20a b ar
r r b

       
 

Therefore bond length for stable configuration is 
1/62a

b
 
 
 

Force constant 
0

2

2
r r

d Vk
dr



   14 8
0 0

12 13 6 7a b
r r
 

   8 6
0 0

1 12 13 6 7a b
r r
 

   
 

  
8/6 12 13 42

2 2 /
b a b
a a b

       
   

4/3 7/3

1/3 4/3

18.36 .
2 2
b bb
a a

   
 
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Reduced mass of system 
. / 2m m m

m m
  



Frequency of oscillation 
1/67/3 7

1/3 4/3 3 4

18 . 6
2 / 2 2

k b b
m a m a

 
       

Example: A particle of mass ‘m’ is moving under potential 3 2( )V x ax bx  . Initially the particle is at rest
at stable point. What minimum speed be given to the particle so that it reaches unstable point. Plot the
potential versus x.

Soln. For equilibrium point 
0

0
x x

dV
dx 



2
0 03 2 0ax bx   0

20,
3

bx
a

 

0

2

02 6 2
x x

d V ax b
dx



  ,  
2

02
0

2 0, 0
x

d V b x
dx



      is unstable point

2

02
2
3

22 0,
3bx

a

d V bb x
dx a



     is stable point

To calculate speed let us apply conservation of energy.
Total energy initial = Total energy final

(Kinetic Energy + Potential Energy) at 
2bx
a

  = (Kinetic Energy + Potential Energy) at x = 0

for minimum speed (u) at stable point the particle will just reach unstable point and stops there.

2 21 2 1 .0 ( 0)
2 3 2

bmu V x m V x
a

       
 

  
3 2

21 2 2 0 0
2 3 3

b bmu a b
a a

         
   

b a/ x2 /3b aO

V x( )

2 2 3
2

2 2

2 2 2 2 4 8. .
3 3 9 3 27

b b b b bu b
m a m a ma
          
   

3

2

8
27

bu
ma

 

Example : A particle is moving under potential 2( ) a bV r
r r

  . Calculate the minimum value of potential

energy.

Soln. For potential to be minimum  
0

0
r r

dV
dr 



3 2
0 0

2 0a b
r r

      0
2ar
b

 
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0

2

2 4 3 3
0 0 0 0

6 2 1 6 2
r r

d V a b a b
dr r r r r



 
    

 
 = 3 3

0 0

1 6 2 0
2 /

a bb
r a b r
    
 

Therefore at 0r r  potential is minimum

2

min 0
0 0

1( )
4

a bV V r b
r r a
 

      
 

Example: A cube is placed on the top of a fixed hemisphere as shown in figure. What should be relation
between length of side of cube and radius of hemisphere so that cube has stable equilibrium.

 

L

R

Soln. To discuss equilibrium of cube we first write its potential energy as function of angle from its equilibrium
position. As shown in the figure below, initially point A was in contact with spherical surface but now in
displaced position point B is in contact. Therefore,
AB R 
Height of centre of cube from centre level of hemisphere is
h OC O D 

sin cosOO O S   
sin ( )cosAB O B BS    

sin cos
2
LR R      

 
h

S D

 R R+L
2 cos 

B
A



C

O
O

Potential energy of the cube

( )V Mgh    sin cos
2
LMg R R          

0   is equilibrium position of the cube. For this position to be stable equilibrium position, 
2

2
0

0d V
d






2

2
0

sin cos 0
2

d LMg R R
d 

            

or 
0

cos sin sin 0
2

d LR R R
d 

              

or 
0

cos sin cos cos 0
2
LR R R R



              

or  2 0
2
LR R        

   0
2
LR     or   2R L

Thus, cube can be in stable equilibrium position if its side length is less than diameter of hemisphere.
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Example: For the mass pulley system shown in figure, what should be relation between m and M so that
system remains in stable equilibrium position. Pulley are smooth and strings are tight and inextensible.

mm

M

Soln. The pulleys are fixed. Therefore we can write potential energy of the system by specifying position of blocks
with respect to pulleys.
Let ‘l’ be length of string and ‘d’ be the half distance between two pulleys. Therefore, l and d are constants.
If x be distance of m below the pulley as shown in figure then potential energy of system is

2 2( ) 2 ( )V x mgx Mg l x d        
2 2

( )2
( )

dV Mg l xmg
dx l x d


   

 

for equilibrium 
0

0
x x

dV
dx 

          
0

2 2
0

( )2 0
( )
Mg l xmg
l x d


  

 

or 0
2 2

0

2
( )

l xm
M l x d




 
        ... (a)         

mM

l x–

d

x2 2( )l x d 

0

2 2

3/22 2 2
0

0
( )x x

d V Mgd
dx l x d

 
   

 for all values of d > 0

since, 0
2 2

0

1
( )

l x
l x d




 
       from (a) 2 1m

M
   or  2m M

SOLVED EXAMPLES

1. The potential energy between two atoms are given   12 6

a bv r
r r

 

where a, b positive constants.
(i) Find the equilibrium distance of two atoms.
(ii) Plot the potential
(iii) Calculate the frequency of small oscillation.

Soln. (i) For equilibrium potential energy should be minimum.

6
13 7

dU 12a 6b 2a0 r
dr r r b

     

1
6

0
20r r
b

   
 

[Position of stability equilibrium]

 
2 2 2 2

0 2

ab b.b b b bU r
4a 2a 4a 2a 4a

     
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(ii)
Dissociation 
   energy

 U r 

2b
4a



1
ba

b
 
 
 

1
62a

b
 
 
 

r 

(iii)  Approximate to harmonic oscillator

 
2

0
bU r

4a


 ;        
0

0

2 2
0

0 0 2
r r

r rdU d UU r U r r r
dr 2 dr


   

2

2 14 8

d U 12 13a 42b
dr r r


  ;  

14 8
6 6

0

2

2 14 8
r

d U 156a 42b 156a 42b
dr r r 2a 2a

h

   
 
 
 

7 4
33

156 a 42b constant c
2a2a
bb

   
  
  
  

(Force constant equivalent to spring constant

     2
0 0

cU r U r r r
2

  

So, the force =  2
0

dU c .2 r r
dr 2

    =  0c r r 

Force  U; U U r only  

F m a
   (Here introduced to harmonic oscillator may necessary).

Equation of motion,    
2 2

0 02 2

d r d r cm c r r ; r r 0
dt dt m

     

Take 2 cc m ;
m

   

2. A particle of mass ‘m’ moving in a potential

   2 2
0 02

1 aV x m x & are constant
2 2mx

   

Find the angular frequency of small oscillation.
2
0 3

dv am x 0
dx m x

   

2
0 0 3

am x 0
mx

   ; 

1
4

4
0 02 2 2 2

0 0

a ax ;
m m

 
      

Equilibrium distance, 
2

2
02 4

d z 3am
dx mx

  
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0

2
2 2 2 2 4
0 0 02 2 2

0x x

d r 3a am m 4m x
dx ma m



 
        

       
0

0

2 2
0

0 0 2
x x x x

x xdU d UU x U x x x
dx 2 dx




   

   2 2
0 0 0U x x x 2m   

Force  2
0 0

dU 4m x x
dx

     

Equation of motion,  
2

2
0 02

d xm F 4 x x
dt

    

 
2

2
0 02

d x 4 x x 0
dt

   

Hence, the frequency of small oscillation, 2
0 04 2    .

3. A particle of mass ‘m’ is constrained to move in one dimension under a potential 2( ) ,u x
x x
 

   where

  and   are positive constants. Show that period of small oscillations about the equilibrium point is,

3

4
24 mT 

 
 .

Soln. At equilibrium point 0( )x x

0

0
x x

du
dx 



3 2
0 0

2 0
x x
 

     0
2x 




time period of oscillation is given by

2 mT
k

 

where k is force constant and is given by

0

2

2
x x

d uk
dx



  4 3
0 0

6 2
x x
 

   
4 4

4 3

26
16 8
 

  
 

      
4 4

3 3

3 2
8 8

 
   

  
4

38
k 




  
3 3

4 4
8 22 4 mT m 

    
 
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4. A particle of unit mass moves in a potential   2
2

bV x ax
x

  , where a and b are positive constants. The

angular frequency of small oscillations  about the minimum of the potential is: [NET June 2011]
(a) 8b (b) 8 a (c) 8 a / b (d) 8 b/a

Soln.   2
2 

bV x ax
x

Angular frequency, 
k
m

 , where, 
0

2

2
x x

d Vk
dx 



Where, x0  is the point at which V(x) is minimum.

For minimum, 
0

0



x x

dV
dx

  0 3
0

22 0 
bax

x


2
0 

bx
a

4
0

6So, 2 8bk a a
x

    
8and 8
1

k a a
m

   


