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5.1 Basic Review of Complex Numbers

Various representation of Complex number :

A complex number (z) is represented as  z x iy , where  x is the real part  and y is imaginary part.
The conjugate of complex number z is represented by  z x iy 

The modulus of complex number 2 2z z r x y    and argument of 1tan      
 

yz Argz
x



The complex number (z) in polar form  ,r   can also be written as

 cos sin    iz x iy r e r i  

where cosx r 
siny r  r



Y

X

P(x,y)

O
 22 2 2  x y r z

This implies that  z r  represents a circle centred at the origin and having radius r.

Properties of modulus of z:

If z1 and z2 are two complex numbers, then

(i) 1 2 1 2  z z z z (ii) 1 2 1 2  z z z z

(iii) 1 2 1 2z z z z (iv) 
11

2 2


zz

z z

Properties of argument of z:

(i)          1 2 3 1 2 3. . ..... . . . ........    n nArg z z z z Arg z Arg z Arg z Arg z

(ii)    1
1 2

2

 
  

 

zArg Arg z Arg z
z

Some important Relations:

(i) ei= cos + i sin , (ii) cos=  (ei + e–i)/2 , (iii) sin= (ei – e–i)/2i

(iv) cos h= 
(e e )

2

 
 , (v) sin h= 

(e e )
2
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De-Moiver’s theorem:

                                        (cos + i sin)n = cos n + i sin n

Complex cube roots of unity:

3 21 3 1 31 1, ,
2 2

   
    

i ix x    such that 21 0  and 3 1 

Example 1: Multiplying a complex number z by 1 + i rotates the radius vector of z by an angle of
(a) 90º clockwise (b) 45º anticlockwise
(c) 45º clockwise (d) 90º anticlockwise

Soln: iz r e         /4/41 2 2 ii ii z e r e r e       

Multiplying (1 + i) with z rotates the radius vector anticlockwise by 45º and increases the modulus by a factor
of 2 .

Correct option is (a)

Example 2: If   23 5    z i (  is a real parameter and 1 i ), then the locus of z will be

(a) circle (b) ellipse (c) parabola (d) hyperbola

Soln:   23 5z i     real part 3x     and imaginary part y = 25 

 22 25 5 3y x          2 23 5x y       (Equation of circle)
Correct option is (a)

5.2 Function of A complex Variable

Basic Representation:

     , ,f z u x y iv x y 

Example:      
   


22 2 2 2

, is imaginary part, is real part

( - ) 2
v x yu x y

f z z x iy x y i xy    

Existance of  
0

lim
z z

f z


:

The limit will exists only if the limiting value is independent of the path along which z approaches z0

Example 3: Find whether the limit 0
lim
z

z
z  exist or not.

Soln: 0z   means 0 & 0x y 

For z = 0, we have to choose a path passing through a origin.
Therefore, we have choosen a straight line passing through the origin i.e. y = mx

2 2 2 2 2 20 0 0
0

1lim lim lim
1z z x

y

z x iy x imx im
z x y x m x m  
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Therefore, the limit depends on m i.e. slope of the straight line. Thus, the limiting values is dependent on the
path and the limit does not exists.

Example 4: Calculate the value   

3

2
1lim

2 3z

iz iz
z i z i

 

 

Soln:
  

3
3 2 3

2 2
2

1
1lim lim

2 3 3 12 1
z z

iz i
iz iz z z

z i z i iz z
z z

 

      
         

   

= 2
i

Differentiability of complex function:

   '

0

( ) ( )
z

f z z f z
f z Lt

z




 


The function will be differentiable if limit exists i.e the limiting value will be independent of path along with
0z  .

Example:     f (z) =  (4x + y) + i(4y – x)  u = (4x + y) and v = (4y – x)
                 f(z + z) =  4(x + x) + (y + y) + i [4(y + y) – (x + x)]
                 f(z + z) – f(z) = 4x + y + i(4y – x)

                
( ) ( ) f z z f z

z



= 
4 (4 )  x y i y x

z
   


 

f
z




=
4 4  


x y i x i y

x i y
   

 

Along real axis : x = z, y = 0, 
f
z




 = 4 – i

Along imaginary axis : iy =z, x = 0, 
f
z




 = 4 – i

Along a line : y = x , y = x, z = (1 + i) x,   
f
z




=
5 3
(1 )



x i x

i x
 

  = 
5 3
1



i
i  = 4 - i

Therefore, f (z) =  (4x + y) + i(4y – x) will be differentiable.

5.3 Complex Analytic Function

A function f(z) is said to be analytic at a point  z = z0 if it is single valued and has the derivative  at every point
in some neighhourhood of z0. The function f(z) is said to be analytic in a domain D if it is single valued and is
differentiable at every point of domain D.

Cauchy Reamann Equations:
For a function f(z) = u + iv to be analytic at all points in some region R,
Necessary conditions:

                                             


u
x = 



v
y  and 



u
y =





v
x
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Sufficient Condition: , , ,   
   
u u v v
x y x y  are continuous functions of x and y.

Derivative of f (z):  f (z) = 
 


 
u vi
x x  = 

 


 
v ui
y y

Example 5: Check whether f(z) = sinz is analytic or not.

Soln:      ( ) sin sin sin .cos cos .sin sin .cosh cos .sinh
Therefore, u = sinx.coshy and v = cosx.sinhy

cos .cosh ; sin .sinh ; sin .sinh ; cos .cosh

So, C-R equation is satisfied, given f(z)

f z z x iy x iy x iy x y i x y

u u v vx y x y x y x y
x y x y

      

      
   

is analytic.

Example 6: Given an analytic function

     , , ,f x y x y i x y    where   2 2, 4 2x y x x y y     .

 If C is a constant, then which of the following relations is true? [JEST 2015]

(a)   2, 4x y x y y C    (b)  , 2 2x y xy x C   

(c)  , 2 4 2x y xy y x C     (d)   2, 2x y x y x C   

Soln: The condition of analytic function are

      y x y x
      
  

   

We have,   2 2, 4 2x y x x y y    

Therefore, 2 4x
x

 


And 2 2y

y

  



2 4x
y


  


2 2y
x


    


 2 4xy y c x     2 2xy x c y   

Therefore,    , 2 4 2 ,x y xy y x c x y    

Correct option is (c)

Example 7: If         2 2, 1 1 1 2 1          f x y x y x y a x y iy x ax is a complex analytic

function then find the value of a. [TIFR 2013]

Soln:  u x, y =     2 21 1 1      x y x y a x y 2 2 2
   


u x ax
x

     , 2 1 2 1
      


vv x y y x ax x ax
y
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According to Cauchy Reamann equation, 
u v 4x 4ax a 1
x y
 

      
 

Example 8: The harmonic conjugate function of    , 2 1 u x y x y  corresponding to a complex ana-

lytic function     , , u x y iv x y  is given   2 2,   v x y x y y    (Taking the integration constant
to be zero). Which of the following statement is true ?
(a)     (b) 0     (c)     (d) 1 

Soln:    , 2 1u x y x y 

   

 

2
1

2
2

2 1 2

2

u vy v y y f x
x y
u vx v x f y
y x

 
       

 
 

       
 

Therefore, the imaginary part of the complex function 2 2 2v x y y  

Comparing with the question, 1, 2, 1           
Correct answer is (a)

Cauchy Reamann equat ions in  Polar  co-ordiant es:

                                                
1 andu v u vr

r r r 
   

  
   

Derivative of f (z):  f(z) = (cos sin ) fi
r

  



= (cos sin )i fi

r
 




 


Harmonic Function

Any function which satisfies the Laplace’s equation, is known as harmonic function.
If u + iv is an analytic function, then u, v are conjugate harmonic functions i.e.

                                    
2 2

2 2
 


 

u u
x y = 0  and 

2 2

2 2
 


 

v v
x y = 0

Example 9:  Find the values of m, n such that   2 2,f x y x mxy ny    is harmonic in nature.

Soln:
2 2

2 2Since, 0 2 2 0 1; ' ' can take any value.f f n n m
x dy

        


Method for finding conjugate Function:

Case 1: f(z) = u + iv, and u is known.

 dv = 
 


 
v vdx dy
x y  = 

 
 
 
u udx dy
y x v =  

 
  
u udx dy
y x

Case 2: f(z) = u + iv, and v is known

 
     

      
      
u u v v v vdu dx dy dx dy u dx dy
x y y x y x
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Example 10: Find the imaginary part of the complex analytic function whose real part is
3 2 2 2( , ) 3 3 3 1u x y x xy x y     .

Soln: 2 2 2 3
1

2
2

2 3

3 3 6 3 6 ( )

6 6 3 6 ( )

( , ) 3 6

u vx y x v x y y xy f x
x y
u vxy y v x y xy f y
y x

v x y x y y xy C

 
        

 
 

        
 

   

Milne-Thomson Method : (To find Analytic function if either ‘u’ or ‘v’ is given)

Case 1: When ‘u’ is given,

(1) Find 1( , )



u x y
x

 and 2 ( , )



u x y
y



(2) Replace x by z and y by 0 in 1(x, y) and 2(x, y) to get 1(z, 0) and 2(z, 0).

(3) Find f(z) = 1 2{ ( , 0) ( , 0)}  z i z dz c 

Case 2: When ‘v’ is given,

            (1) Find  2 ,



v x y
x

 and 1( , )



v x y
y



            (2) Replace x by z and y by 0 in 1( , )x y and 2 ( , )x y  to get 1( ,0)z and 1(z,0) .

            (3) Find f(z) = 1 2{ ( ,0) ( ,0)}z i z dz c  

Example 11: Find the analytical function whose imaginary part is  , ( cos sin )xv x y e x y y y 

Soln:    2 1

1 1

cos sin cos ( , ) sin sin cos ( , )

( , 0) 0 and ( , 0) ( ) 0

x x x x

z z z z z

v ve x y y y e y x y e x y e y y y x y
x y

z z e z e f z i e z e dz ize C

 
           

 

            

Example 12: If the real part of a complex analytic function f(z) is given as,    2 2 2, sinxyu x y e x y  ,
then f(z) can be written as

(a) 
2izie C (b) 2izie C   (c) 2izie C  (d) 2izie C 

Soln:    2 2 2, sinxyu x y e x y 

      2 2 2 2 2 22 sin cos 2xy xyu e y x y e x y x
x

 
    


 =  1 ,x y

         2 2 2 2 2 2
22 sin cos 2 ,xy xyu e x x y e x y y x y

y
 

      


   2
1 ,0 cos .2z z z  ,    2

2 ,0 sin 2z z z  
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       2 2 2 2cos .2 sin . 2 2 cos sin .f z z z i z z dz c z i z zdz c       
2 2

2 .iz ize zdz c i e c    
Correct option is (b)

5.4 Power Series Expansion of Complex Function

Every analytic function which is analytic at  z = z0 can be expanded into power series about z = z0.

                                          2
0 0 1 0 2 0

0
......n

n
n

f z a z z a a z z a z z



       

where, z0 is the centre of power series.
For every power series there are three possibilities regarding the region of convergence of power series.

(i) The series converges within a disc

Example : 
2

0
1 .......n

n
z z z




   

Here 
1

1
n

n
n

n

t z z
t z


   ; so for 1z   the series will converge i.e. it will converge within the circle centered

at the origin and of radius 1 unit.

(ii) The power series converges in the whole complex plane.

Example : 
2 3

0
1 .......

! 2! 3!

n

n

z z zz
n




    

Here, 
 

1
1 ! 0 as

1 ! 1

n
n

n
n

zt z n n
t n nz


    

 
 for all values of z i.e. the series will converge in the entire

complex plane.

(iii) The power series converges for a particular values of z.

Example: 
2 3

0
! 1 2 6 ...........n

n
n z z z z




    

Here, 
   

1
1 1 !

1 as
!

n
n

n
n

n zt n z n
t n z


 

      for all values of z except z = 0 i.e. the series will

converge only for z = 0.

Radius of convergence of power series:

Consider a circle centered at z = z0 and radius r i.e. 0z z R  , such that the power series is convergent

for all points of the region 0z z R   (i.e. within the circle) and divergent for all points of the region

0z z R   (outside the circle). Therefore, R is said to be the radius of convergence of power series and
defined as
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1
lim n
n n

aR
a 



Example 13: Calculate the radius of convergence and region of convergence for the following power
series

 
  0

2 3
2 5 5

n

n

n
z

n n






 

Soln:
  

   
 

2 1 5 1 52 3lim
2 5 5 2 1 3n

n nnR
n n n

   


   

3 7 62 2 1
lim 1

5 5 52 1 2n

n n n

n n n


        
    
        
   

Region of convergence 1z 

This series is convergent within a circle of radius 1 and centre (0, 0).

Example 14: Prove that the series

   
 

21 1.1 .....
1. 1.2. 1

a a b ba b z z
c c c

 
  



has unit radius of convergence.
Soln: Neglecting the first term,

       
   

1 .. 1 1 ... 1
1.2... . 1 .... 1n

a a a n b b b n
a

n c c c n
     


  

        
      1

1 ... 1 1 .... 1
1.2... 1 1 .... 1n

a a a n a n b b n b n
a

n n c c c n c n
       


    

Dividing, 
  
  

1
1 1

11 1 1

n

n

a b
n a n ba n n

ca n c n
n n



          
       

  

  
  

1 1 0 1 01 lim 1 or 1
1 0 1 0

n
n n

a R
R a





 
   

 

Example 15: Find the radius of convergence of the series

2 31.3 1.3.5 ......
2 2.5 2.5.8
z z z  

Soln: The coefficient of zn of the given power  series is given by

 
 

1.3.5... 2 1
2.5.8... 3 1n

n
a

n







161COMPLEX  ANALYSIS

  
  1

1.3.5... 2 1 2 1
25.8... 3 1 3 2n

n n
a

n n
 


 

So,
1

11
2 1 2 2.

23 2 3 1
3

n

n

a n n
a n

n



     
   

 

Therefore,
 
 

1 1 01 2 2lim .
3 1 0 3

n
n n

a
R a






  

 
3
2

R 

Taylor Series Expansion

If a function f(z) is analytic at all points inside and on a circle C, having center at z a  and radius r, then at
each point z inside C, the function f(z) can be expanded as

2'( ) ( ) ( )( ) ( ) ( ) ( ) .... ( ) ....
1! 2! !


        

n
nf a f a f af z f a z a z a z a

n
R = r

a
C

               0
0

0 !





 
n

n

n

f z
f z z z

n

Example 16: Expand the function f(x) = sinx about the point 6
x  .

Soln:  
21' " ......

6 6 6 2! 6 6
f x f x f x f                           

         

2

6sin cos sin ........
6 6 6 2! 6

x
x


   

              
   

2 31 3 1 1 1 3 ......
2 6 2 2 6 2 6 6 2

x x x                   
     

 
2 31 3 1 1 ....

2 2 6 4 6 64 3
f x x x x                   

     

Example 17: Expand the following function      
1

1 4
f z

z z


 
 about z = 2.

Soln:        
1 1 1 1 1 1 1 1 1

1 4 3 4 3 1 3 2 2 3 2 1z z z z z z
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1

11 1 1 1 1 2 11 1 2
23 2 3 1 2 6 2 31

2

z z
z z


                     

         
2 3

2 32 21 2 11 ....... 1 2 2 2 .....
6 2 4 8 3

z zz z z z
                     

   21 1 32 2 ........
2 4 8

z z      

Laurent Series expansion:

Laurent’s Theorem:

If  f z  is analytic inside and on the boundary of the ring-shaped region R bounded by two concentric circles

C1 and C2 with centre at z = a and respective radii r1 and r2  2 1r r , then for all z in the region R the Laurent

series expansion of  f z  about z = a will be

   
 0 1

n n
n n

n n

bf z a z a
z a

 

 

  


 

where,
 

 1
1

1
2n nC

f z
a dz

i z a 
                      r1

a
r2

c1

c2

 
   

2
1

1
2n nC

f z
b dz

i z a  




Note: (i) The Laurrent series converges in the region R.
(ii) The point at which Laurrent series expansion has to be calculated, will be the centre of
concentric circles.

Example 18:   2

1
1

f z
z




 about z i

Soln:     2

1 1 1 1 1
1 2

f z
z z i z i i z i z i

          

y

z i = 

z i = –

x

 
1 1 1
2 2i z i z i i
 

     

         2
1 1

2 2

1 1 1 1 1 1 .....
2 2 2 4 2 4

2 1
2

z i z i
z i z i

i i i i i iz i
i

i

 

 
                    
   

     
 

1

0
Converges for 0

Converges for 2

1 1 1
2 4 2

n
n

n
n

z i
z i

z i
z i

i i





 

 


   

So, the function will be convergent for 0 2z i  
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Example 19: Exapand the function      
1

1 2


 
f z

z z
 in the annulus z =1 and z = 2.

Soln:          
1 1 1

1 2 2 1
  

   
f z

z z z z   when 1 2 z , then 1 1 & 1
2

 
z

z

  1 1
12 1 1

2

f z
z z

z

 
        
   

1 11 1 11 1
2 2

 
          
   

z
z z

2 21 1 1 11 .... 1 .....
2 2 2
                    

         

z z
z z z 1 1

0 0

1
2

 

 
 

   
n

n n
n n

z
z

Example 20: Find the Laurent series of the function    2

1
1




f z
z z

 about z=0

Soln:        1 2 2
2 2 2 2

1 1 1 1 11 1 ..... 1 ........
1

            


f z z z z z z
z z z z z z

Example 21: Expand 2
1
3 2z z 

 for  (i) 0 z 1    (ii) 1 z 2     (iii) z 2 .

Soln:       2

1 1 1 1
3 2 1 2 2 1

  
     z z z z z z

(i) 0 z 1  :      
1

1
1

1 1 1 1 1
1 1 2 2

2 1
2





              

 

zf z z
zz 0 0

1
2 2

 

 

    
 

 
n

n

n n

z z

(ii) 1 z 2  : then 1 1 and 1
2
z

z
 

 
1 1 2

2
1 1 1 1 1 1 11 1 1 ..... 1 .....
2 2 2 2 4

                            
      

z z zf z
z z z z z

(iii) z 2 : then 2 1
z
  and 

1 1
z



 
1 1

2 2

1 2 1 1 1 2 4 1 1 11 1 1 ......... 1 ..........
 

                          
       

f z
z z z z z z z z z z



COMPLEX  ANALYSIS164

5.5 Singularity of Complex Function
Singular points of a function:

The points at which the function ceases to be analytic, are said to be the singular points of the function.

Example:    
1

2



f z

z  has a singularity at z = 2.

The singularity will be of the following types:

Isolated singularity:

A point 0z z  is said to be isolated singularity of f (z) if

(a) f (z) is not analytic at 0z z

(b) f (z) is analytic in the neighbourhood of 0z z  i.e. there exists a neighbourhood of 0z z , containing no
other singularity.

Example:

(i) Function   1
f z

z  is analytic everywhere except at z = 0, therefore z = 0 is an isolated singularity..

(ii) The function        
2

1 2 3



  

zf z
z z z

 has three isolated singularities at z = 1, 2 and 3.

Non-isolated singularity:

A point 0z z  is said to be non-isolated singularity of f (z) if

(a)  f (z) is not analytic at 0z z

(b) there exists a neighbourhood of 0z z , containing other singularities of f (z).

Example: f(z) = 
1

sin 
  z



Condition of singularity:  1sin 0 0,1,2,.....n z n
z z n
 

      

The point z = 0 corresponding to n  , will be surrounded by infinite many singular points of  f (z).  Thus,
z = 0 is an non-isolated singularity of f (z).

Types of isolated singularity
If f (z) is an isolated singular point at z = a, then we can expand f (z) about z = a into Laurent series as:

            
         

2 1 2
0 1 2 2

0 1

principal part
of the expansion

( ) ..... .....
( )

n n
n n

n n

b b bf z a z a a a z a a z a
z az a z a

 

 

 
                  

 


Therefore, three types of singulatiry are as follows:
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(1) Removable singularity:

If the principal part of the Laurrent series expansion of f (z) about z = a contains no term i.e.
0 for all ' 'nb n , then f (z) has a removable singularity at z = a.

In this case, Laurent series expansion is    
0





  n
n

n
f z a z a

Example:    
3 5 2 4sin 1 .......... 1 .....

3! 5! 3! 5!
z z z z zf z z

z z
 

         
 

Since, there is no negative term in the laurent series expansion of f (z) about z = 0, hence z = 0 is a removable
singularity of f (z).

(2)  Non-essential singularity or Pole:

 If the principal part of the Laurrent series expansion of  f (z) about z = a contains finite number of terms, say m,
i.e. nb 0 for all n m  , then f (z) has a non-essential singularity or a pole of order m at z = a . A pole of
order one is also known as simple pole.
Thus if z = a is pole of order m of function f (z), then f (z) will have the Laurent series expansion of the form

                              0 0
0 1




 

    
m

n n
n n

n n
f z a z z b z z

Example: 2( )
( -1)( 2)

zf z
z z




 has a simple pole at z = 1 and a pole of order 2 at z = -2.

(3)  Essential singularity:

If the principal part of the Laurrent series expansion of f (z) about z = a, contains infinite number of terms i.e.

nb 0  for infinitely many values of n,  then f (z) has an essential singularity at z = a.

Example:   1

2

1 11 ......
2!

zf z e
z z

    

Therefore, f (z) has an essential singularity at z = 0.

Example 22:  Examine the nature of singularity of the functions: (a) 
1sin

1 z
 
  

, (b)   13 sin
2

z
z

    
.

Soln: (a) 
   3 5

1 1 1 1sin ............
1 1 1 .3! 1 .5!
          z z z z

so, z = 1 is an isolated essential singular point.

(b)     3 5

1 1 1 13 sin 3 .........
2 2 ( 2) .3! ( 2) .5!

                
z z

z z z z

so, z = -2 is an isolated essential singular point.
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5.6  Residue of a Complex Function

Residue at a pole:

Let, z = a be a pole of order ‘m’ of f (z) and C1 is a circle of radius ‘r’ with center at z = a which does not
contain singularities except z = a, then f(z) is analytic within the annular region r < | z – a | < R can be expanded
into Laurrent series within the annulur region as:

                             

r

a

R

c1
           

0 1
( ) ( )n n

n n
n n

f z a z a b z a
 



 

    

Co-efficient b1 is known as residue of f (z) at z = a i.e. Res. f(z = a) = b1 = 
1

1 ( )
2 C

f z dz
i 

Methods of finding residues:

CASE 1: Residue at simple pole:

(a) Method 1:  Res. f(z = a) = 
z a
Lt (z a)f (z)




(b) Method 2:  If f(z) = 
(z)
(z)


  where (a) = 0 but (a)  0, then Res. f(z = a) = 

(a)
(a)




CASE 2: Residue at a pole of order ‘n’:

(a) Method 1:   Res. f (z = a) = 
1

1
1 ( ) ( )

( 1)!






 
     

n
n

n
z a

d z a f z
n dz

(b) Method 2:   First put z + a = t and expand it into series, then Res. f (z = a) =  co-efficient of 1/t. 

CASE 3: Residue at z =  :

   Res. ( )
z

f z Lt zf z


   

Example 23: Find the singular points of the following function and the corresponding residues:

(a) 
   

1 2( )
1 2

zf z
z z z




 
   (b) 

2

2 2( ) zf z
z a




   (c) 2 1/( ) zf z z e

Soln: (a)      

         

       

0 0

1 1

1 2 Poles : 0, 1, 2
1 2

1 2 1Res. 0 0
1 2 2

1 2Res. 1 1 1
2

z z

z z

zf z z z z
z z z

zf z Lt z f z Lt
z z

zf z Lt z f z Lt
z z
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             2 2

1 2 3Res. 2 2
1 2z z

zf z Lt z f z Lt
z z 


     



(b)   

   

2

2 2

2 2

Poles : ,

1 1Res. ; Res.
2 2 2 2z ia z ia

zf z z ia z ia
z a

z zf z ia ia f z ia ia
z z

 

    


   
          

   

(c)  

 

2 1/ 2
2 3

1 1 11 ....... Poles : 0
.2! .3!

1 1 1Res. 0 Coefficient of 
3! 6

zf z z e z z
z z z

f z
z

          

   

Cauchy’s Residue Theorem:

If f (z) in single-valued and analytic in a simple closed curve ‘C, except at a finite number of singular points
within C, then

 
C

f (z)dz 2 i sum of the residues at poles within 'C ' 

Example 24: Evaluate the integral:    
4 3 3where

1 3 2C

z dz z
z z z




 

Soln:     

   

4 3 Poles : 0, 1, 3
1 3

But, the given contour is circle centered at the origin and radius 3/2 units.
Therefore, only z = 0 and z = 1 within the contour.

4 1 52 Re . 0 Re . 1 2
3 2 3

zf z z z z
z z z

iI i s f z s f z i  


    

 

            

Example 25:  Evaluate the integral:  

2 2

5 2
1

z

C

e z dz where z
z





Soln:  
 

 

2 2

5

4 2 2
2 2

4 1

Poles : 1 ( 5)
1

1 2 42 Re . 1 2 2
4! 3 3

z

z
z

e zf z z order
z

d e ieI i s f z i e z i
dz


  




  



          

Example 26:  The value of the integral 6

Sin

C

z dz
z , where C is the circle with centre z = 0 and radius

1 unit [TIFR 2016]

(a) i (b) 120
i

(c) 60
i

(d) 6
i
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Soln:
3 5 7

6 6
sin 1 ..................

3! 5! 7!
z z z zz

z z
 

     
 

5 3
1 1 1 1 ...........

5! 7!3!
z

zz z
       

The residue at the pole z = 0 is coefficient of 
1
z  i.e. 

1
5!

Since, the pole at z = 0 lies with in C.

 6
sin 2 sum of residues

60C

z idz i
z

  

Correct option is (c)

Example 27:The value of integral ,
sin

2c

zI dz
z 




with c a is circle 2, isz  [JEST 2014]

(a) 0 (b) 2 i (c) i (d) i

Soln:

cos
sin sin cos2

2 22 2
2 2

z
z z t

z tz z



 

  
   

        
   

(Let 2
z t
  )

2 4 61 1 ........
2 2! 4! 6!

t t t
t
 

     
 

3 51 1
2 2 2! 2 4! 2 6!

t t t
t

   
  

The residue at t = 0 is the coefficient of 
1
z  i.e. 

1
2

Therefore, the pole 2
z 
  lies within the contour c and the residue at 2

z 
  is 

1
2

 sin 12 sum of residue 2
2 2C

z dz i i i
z

  


    


Correct option is (c)
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Definite integrals of trigonometric functions of cosθ and sinθ :
Method:

(i) Consider the contour to be a circle centered at the origin and having radius one unit i.e. |z|=1

(ii) Assume, i i dzz e dz ie d d
iz

       

(iii) 1 1 1 1Therefore, cos and sin
2 2 2 2

i i i ie e e ez z
z i i z

   

 
             

   
.

Replacements regarding cos and sin is to be done only in the denominator of the given integral.

(iv) The limit will be changed from 0 2
C

to 
(v) Find the singular points and find residues at only those singular points which lies inside the unit circle.
(vi) Finally use the Cauchy residue theorem.

Example 28: Evaluate the integral: 
2

0

d ; a b 0
a bcos

 
 

 

Soln:
2

2 2

220 0
0

/ 2
cos ( 2 )1

2

 
     

 

  
d dz iz dz

a b i bz az bza b
z


 



            The singular points are at     
2 2 2 2

&     
   

a a b a a bz z
b b

 

The singular point z  will lie outside the unit circle as a>b>0 while the singular point z    will lie inside the
unit circle which is a simple pole.

                   
     2 2 2 2

2 2 2 1Res. lim lim
2 


       

    z z

z bf z z f z
ib z z ib ib a b i a b 


 

   
Therefore, by cauchy Residue theorem.

                                         2 2 2 2

1 22 Residue=2 i   
 

I i
i a b a b


 

Example 29:  Evaluate the integral 
2

0

d
5 4cos

 
 

Soln:     
2

20

1 1.
1 15 4cos 2 1 25 2 25 4.
2 2

  
       

 

     
C C C

d dz dz dz
iz i z zz zz

 


     
1

2 1 2


 
f z

z z
1poles are at z , 2
2

    (Only z = –½ is within the circle)

Res. f(z = –½) =     1 1
2 2

1 1 1 1.
2 2 1 2 2 2 3

 

         z z

z
z z z

Hence, the integral = 
2 i
3
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Example 30: Evaluate the integral  
2

2
2

0

, 1
1 2 cos

d m
m m

 



  [TIFR 2015]

Soln:  
2

2
2

0

, 1
1 2 cos

d m
m m

 



  = 22 2

/
1 1 11 2
2

C C

dz iz dz
zm z m iz z m m zz z


                  

  

        2 2
1 1

1C C C

dz dz dz
i z m mz z m i z m mzi z mz m m z

  
          

    
1
1

f z
z m mz


   has poles of order one 1at z = m,

m

Since, m < 1 so z = m will be within the circle 1z 

So,       
1 1 12 . 2 lim

1z m
I i res f z m i z m

i i z m mz
 



 
            

        2 2
1 1 22

1 1
i

i m m
   

 

Example 31:  Evaluate the integral  
2 cos
0

e cos sin n d
    

Soln:  
2 cos
0

e cos sin n d
      =  2 i sin ncos

0
Real part of e e d

   

        =  2 cos isin in
0

Real part of e e d
       = 

z n

C

dzReal part of e .z
iz



        = 
z

n 1
C

1 eReal part of dz
i z 

 
z

n 1
ef z

z  poles are at z 0 of order n   
n z

n 1
n n 1

z 0

1 d e 1Res. f z 0 . z .
n! n!dz z






 
     

 

Hence the given integral = real part of 
1 1 2.2 i.
i n! n!

   
 

Evaluation of improper integrals between the limit – to  :

Theorem 1:

If AB is an arc       of a circle z R  and    lim constant
z

z f z k


 . Then,

   lim
R

AB

f z dz i k 
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Theorem 2:
If f(z) is a function of complex variable z which satisfies the following conditions:
(i) f(z) is analytic in the upper half plane except at a finite number of poles.
(ii) f(z) has no poles on the real axis.

(iii)   0z f z  uniformly as z 

O–R +R x

y

CR

So that  lim 0



RCR

f z dz

Theorem 3:
Jordan’s Lemma: If f(z) is a function of complex variable z which satisfies the following conditions.
(i) f(z) is analytic in the upper half plane except at a finite number of poles.

(ii)  f z 0  uniformly as z   for 0 arg z   , then

 lim 0



R

imz

CR
e f z dz

O–R +R x

y

CR

where m is a +ve number and CR is the semicircle of radius R.

 Theorem 4:

If AB is an arc  1 2     of a circle z a r   and    
z a
Lt z a f z k


  , then

   2 10
lim
r

AB

f z dz i k 


 

Short Method
Case 1:

If  f x  contains only polynomial terms, then we will take  f z  same as given as  f x . Then find the

singular points of  f z  and check which points lie in the upper half plane.
(A) If the singular points does not lie on the real axis, then

     2 Res. at all poles within Cf z dz f x dx i
 

 

     lim
z

z f z i


   

–R R
x

y

CR

(B) If the singular point lie on the real axis, then

       Res. at all poles within C lim
z

f z dz f x dx i z f z i 
 


 

       

–R R
x

y

CR

singular
point

singular
point

Cr Cr
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Case 2:

If  f x  contains cosines and sine functions along with polynomial functions then  f x  can be treated as a

real or imaginary part of  f z . Then find the singular points of  f z  and check which points lie in the
upper half plane.

(A) If the singular points does not lie on the real axis, then

   2 Res. at all poles within Cf z dz i




   if as z  , 
  0imz

f z
e

  and

   Real part or imaginary part of f x dx f z dz
 

 

 

–R R
x

y

CR

(B) If the singular points lie on the real axis, then

   Res. at all poles within Cf z dz i




   if as 
 , 0imz

f z
z

e
   and

   Real part or imaginary part of f x dx f z dz
 

 

 

–R R
x

y

CR

singular
point

singular
point

Cr Cr

Example 32: Calculate the following integral 21
dx

x



 

Soln:   2

1
1

f x
x




  2

1
1

f z
z




 has poles at z i   (Poles are not on real axis)

In this case we will take a contour ‘C’ consisting of

(i) A semicircle :RC z R  in the upper half of complex plane.

O–R +R x

y

CR

z= –i

z= i
(ii) Real axis from –R to +R

  2f z dz i  [ sum of residues at the poles]

     2 residue at 
R

R

C R

f z dz f x dx i z i


      ... (i)
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Residue of  f z  at   2

1lim
1z i

z i z i
z

   


1
2i



Taking the limit R   in the equation (i), we get

2 2

1 1 1lim 2
1 1 2

R
R

C

dz dx i
z x i

 





          ... (ii)

RC  is an arc 0 of a circle z R    and   2 2

1/lim lim lim 0
1 1/ 1z z z

z zz f z
z z  

  
 

Thus,       lim 0 0 0
R

R
C

f z dz i 


  

Therefore, from equation (ii) 2

1
1

dx
x









Short Method:

   2 2

12 Res. lim 2
1 1 2z

dx dz i f z i zf z i i
x z i

   
 


 

                  

Example 33: Apply calculus of residues to show that    
  2 20 241 9




 
dx

x x


Soln:
     2 2 2 20

1
21 9 1 9

 


 

    
dx dxI

x x x x

Let     2 2

1
1 9


 

f z
z z

The singular points of f(z) are O–R +R x

y

CR

z = i
z =3i

z = –i
z = –3i

  2 21 9 0  z z  z i, i,3i, 3i  

The only poles lying within the contour (upper half plane) are at z i   and +3i

             
z

f z dz f x dx 2 i Res. at z i Res. at z 3i lim zf z i
 

  
          

Here,        2 20 0 0 4
2 2

lim lim lim 0
1 91 9 1 1

z z z

z zzf z
z z z

z z
  

  
       
   

Therefore,    2 2

1 12
16 48 121 9

dx i
i ix x








            2 20 241 9



 

dx
x x
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Example 34:  Prove  2 2

cos ; 0axdx e a
ax a
 


 



Soln: Let    2 2




izef z
z a

 ;  For singuarities, 2 2z a 0   z ia  .

The only pole which lies in the upper half of the circle is at z = ia.

Therefore, Residue at z = ia=  
   

lim
2








 

iz a

z ia

z ia e e
z ia z ai ia

Now by cauchy residue theorem.

     2 sum of the residues at the poles



  

R

R

C R
f z dz f x dx i ... (1)

Now in the limit of R  , equation (2) becomes

     2 sum of the residues at the poles



  

RCR
Lim f z dz f x dx i ... (2)

As z  , 2 2
1

z a




Therefore,  By Jordan’s lemma  2 2
lim 0





R

iz

CR

e dz
z a

Therefore, equation (2) gives

   2
2




 

aef x dx i
ia

    2 2

 





ix

ae dx e
x a a


 

 
 2 2

cos sin 






 ax i x
e

ax a


  2 20

cos
2

 
 ax dx e

ax a


Evaluation of some improper integrals in which the pole lies on the real axis:

Example 35:  Prove 
s in ; 0

2
m x d x m

x



 

Soln: Let  
imzef z
z

 . The singularity is at z=0 which is at real axis. No pole will be inside the semicircle. Now

taking the integral counter clockwise and using the cauchy integral theorem, we get

     
X

Y

CR

Cr

–R +R–r +r

According to Cauchy Residue theorem, we get

         0 Since there is no pole inside the contour
R r

r R

C R C r
f z dz f x dx f z dz f x dx




      

Taking the limit R   and 0r  , we get


