Chapter 5

COMPLEX ANALYSIS

5.1 Basic Review of Complex Numbers

Various representation of Complex number :

A complex number (z) is represented as z=x+1y , where xis the real part andy is imaginary part.
The conjugate of complex number z is represented by Z = X —iy

Ay
| =lzl=r =% + v? mentof z= Argz=60 =tan*| *
The modulus of complex number z =|z| = r = /x* + y* and argument o g (x]

The complex number (z) in polar form (r,8) canalso be written as v
z=Xx+iy=re"” =r(cosd+ising)

where x=rcos@
y=rsiné

= x2+y2:r2:|z|2

This implies that |z| =r representsa circle centred at the origin and having radiusr.

Properties of modulus of z:

Ifz, and z, are two complex numbers, then

(i) 2.+ 2| <[] + 2| (i) |2, - 25| 2[z,| [z,
2] _al
(i) [2,2,| =[] Ulexiun

Properties of argument of z:

() Arg(z,.2,.2,....2,) = Arg.(z,) + Arg.(z, ) + Arg.(z;) +........+ Arg(z,)

(ii) Arg (%) = Arg(z,)-Arg(z,)

2

Some important Relations:

(i) &= cos + i sino, (ii) cosd = (e®+e9)/2, (iiii) sin® = ('°—e719)/2i
0, A0 0_ o0
(iv) cos ho = w . (V)sinho= (e—ze)
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Soln:

Soln:

Soln:

De-Moiver’s theorem:
(coso + isinB)" = cos nB + isin nod

Complex cube roots of unity:

~1+i\/3 e ~1-iv/3
2 2

X=l=>x=1lw= suchthat 1+ m+m? =0and ° =1

Example 1: Multiplying a complex number z by 1 + i rotates the radius vector of z by an angle of

(a) 90° clockwise (b) 45° anticlockwise
(c) 45° clockwise (d) 90° anticlockwise

7=re? =(1+i)z :(ﬁ eiﬁ/4)r g0 = 2 1 gil0+714)
Multiplying (1 + i) with z rotates the radius vector anticlockwise by 45° and increases the modulus by a factor

of /2.

Correct option is (a)
Example 2:1f z = (k +3) + i\/S—T (. is areal parameter and i =+/—1), then the locus of z will be
(@) circle (b) ellipse (c) parabola (d) hyperbola
=(A+3)+i 5-1% = real part x = A +3 and imaginary party = \/ﬁ
= y?=5-22=5-(x-3)" = (x-3)"+y*=5 (Equationofcircle)
Correct option is (a)

5.2 Function of A complex Variable

Basic Representation:

f(z)=u(xy)+iv(x,y)

2\2

Example: f(2)=22=(x+iy)" = (X*-y?)? + i2xy

u(x,y)isreal part ~ Vv(x,y)isimaginary part

Existance of lim f(z):

-7,

The limit will exists only if the limiting value is independent of the path along whichz approaches z,

Example 3: Find whether the limit " |z| exist or not.

z—>0means X >0&y—>0
For z = 0, we have to choose a path passing through a origin.
Therefore, we have choosen a straight line passing through the origin i.e. y = mx

X +imx 1+im

I|m = lim =lim = >
z—0|Z z—0 x—0

| | y_>0\/x +y? \/x +m?x? \/1+m
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Soln:

Therefore, the limit depends on mi.e. slope of the straight line. Thus, the limiting values is dependent on the
path and the limit does not exists.

lim iz®+iz-1
Example 4: Calculate the value Z—>°°(22+3i)(2—i)2
s, 11
. i+ ——— -
iz® +iz -1 ( 22 23] !

lim 2:Iim ==
2% (22+3i)(z-1) Z—>°°Z(2+3ijzz(l_lj 2

Z z

Differentiability of complex function:

f(2)= Lt [f(z+62)- f(2)]
520 0z
The function will be differentiable if limit exists i.e the limiting value will be independent of path along with
0z—0.
Example: f(@2) = (4x+y)+i(dy—-x) =u=(4x+y)andv = (4y-X)
=1(z+82) = 4(x +8x) + (y + 8y) + i [4(y + 3Y) — (x + 5X)]
—f(z + 0z) — f(z) = 45x + 3y + 1(4dy — OX)

f(z+62)-1(2)  46x+5y+i(40y—0X) 5_f_45x+5y—i5x+4i5y
= Y - 5z ~ sz SX+idy

of
Along real axis : 6x = 8z, 8y =0, =5, =4-i

L . f .
Along imaginary axis : idy = 6z, ox = 0; = % =4 -

5f_55x+3i5x _ 5+3i
sz (@+1)0x  1+i
Therefore, f (z) = (4x +y) + i(4y — x) will be differentiable.

Alongaline:y=x,dy =0x,6z=(1+1) 0x, =

5.3 Complex Analytic Function

A function f(z) is said to be analytic at a point z =z if it is single valued and has the derivative at every point
in some neighhourhood of z. The function f(z) is said to be analytic in adomain D if it is single valued and is
differentiable at every point of domain D.

Cauchy Reamann Equations:
For a function f(z) = u + iv to be analytic at all points in some region R,
Necessary conditions:

ou ov ou v

&: a_y and 5:—&
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R ou .ov OV .ou
Derivative of f (2): f'(z) = &H& - a_y_|5

Example 5: Check whether f(z) = sinz is analytic or not.
Soln: f(z)=sinz =sin(x+iy)=sinx.cos(iy)+cosx.sin(iy)=sin x.cosh y +i cos x.sinh y
Therefore, u = sinx.coshy and v = cosx.sinhy
@:cos x.coshy; @:sin x.sinhy; @:—sin x.sinhy; @:cos x.coshy
oy X oy
So, C-R equation is satisfied, given f(z) is analytic.
Example 6: Given an analytic function

f(xy)=d(xy)+iw(xy) where ¢(x,y)=x>+4x—y*+2y.

If C is a constant, then which of the following relations is true? [JEST 2015]
@ w(xy)=x*y+4y+C (b) w(x,y)=2xy-2x+C
©) w(xy)=2xy+4y-2x+C @) w(xy)=x*y-2x+C
Soln: The condition of analytic function are

% _ov 09 T

oy ox &y o
We have, ¢(X,y)=x*+4x—y®+2y

0 a
Therefore, 9 _ox+4 And —¢=—ZY+2

ox oy
= 8—V/:2x+4 = _5_1//:_2y+2

OX

=  y=2xy+4y+c(x) =  y=2xy-2x+c(y)

Therefore, y (X, y)=2xy +4y—2x+c(X,Y)

Correct option is (c)

Example 7: If f(x,y)=(1+x+Yy)(l+x-y)+ a(x2 - yz)—1+ 2iy(1-x—ax)is a complex analytic
function then find the value of a. [TIFR 2013]

Soln: u(x,y)= (1+x+ y)(1+x—y)+a(x2 —yz)—l :Z—i:ZX+2+2ax

v(x,y)=2y(1-x-ax) :%:Z(l—x—ax)
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Soln:

Soln:

ou ov

According to Cauchy Reamann equation, —— % — = X=-dax=a=-1

Example 8: The harmonic conjugate function of u (x, y) = 2x(1— y) corresponding to acomplex ana-

Iytic function @ =u(x,y)+iv(x,y) isgiven v(x,y)=ax’+ By +yy* (Taking the integration constant
to be zero). Which of the following statement is true ?

(@ a—y=p (b) a+y+p=0 (©) at+y=p (d) ayB=1
u(x,y)=2x(1-vy)
0 0
:a—izz(l—y):a\/:v:Zy—y2+ f, (x)
0 0
:>—u:—2x:—a—\)i:>v:x2+ fo(y)

Therefore, the imaginary part of the complex function v = x — y? + 2y

Comparing withthe question, « =1, =2,y =-1 = a-y=p
Correct answer is (a)

Cauchy Reamann equations in Polar co-ordiantes:

ou 1lov ou ov
—=——and—=-r—
or roo 00 or

NN B o of
Derivative of f (2): (z) = (c0s0 ~isin0) = —%(cos@—lsm 0) =5

Harmonic Function

Any function which satisfies the Laplace’s equation, is known as harmonic function.
If u + iv is an analytic function,.then.u, v.are conjugate harmonic functions.i.e.
o%u @°u %' §%v

= il
ol oyf o and St
Example 9: Find the values of m, nsuch that (X, y)=x*+mxy-+ny? is harmonic in nature.

o’f 0°f
Since, 8—+?_0:>2n+2 0= n=-1;'m'can take any value.
X—ay

Method for finding conjugate Function:

Case 1: f(z) = u + iv, and u is known.

ov ov ou
- —dX+—dy = —dx+ —d =& >
dv = o oy y = oy o Y= v= j dx + j dy

Case 2: f(z) =u + iv, and v is known

ou ou ov ov
du=—dx+—dy=—dx—-—d
OX oy y oy OX y= I
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Soln:

Soln:

Soln:

Example 10: Find the imaginary part of the complex analytic function whose real part is
u(x, y) = x® —3xy? +3x* —3y* +1.

a—u:3x2—3y2+6x:@:>v:3x2y—y3+6>q1+ f.(x)
OX oy

ou ov )
—=—-6Xy—6y=——=Vv=3X"y+6xy+ f
3 y-6y pw y+6xy+ f,(y)

v(X,y)=3x’y - y> +6xy+C
Milne-Thomson Method : (To find Analytic function if either ‘u’ or ‘v’ is given)

Case 1: When “u’ is given,

0
(0 Find 2 = x)and 5 =2(5)
(2) Replace x by z and y by 0 in ¢,(X, y) and ¢,(X, Y) to get ¢,(z, 0) and ¢,(z, 0).
(3) Find f(2) = [{1(2,0)—ig, (z,0)}dz +¢

Case 2: When ‘v’ is given,

ov
(1) Find % =y, (% ¥)and 5 =y, (X y)

(2) Replace x by zand y by 0 in v, (X, y)and v, (X, y) to get w,(z,0) and y,(z,0).

(3) Find f(z) = [{1(2,0) +iy,(2,0)}dz +c
Example 11: Find the analytical function whose imaginary part is v(x, y) =e*(xcosy—ysiny)

Z—V: e (xcosy—ysiny)+e*cosy=¥,(xy) = Z—;:—exxsin y—e*(siny+ycosy)="¥,(x,Y)
X

¥, (z,0)=0and ¥,(z,0) =e’z + € = f(2)=[0+i[e'z+e |dz=ize"+C

Example 12: If the real part of a complex analytic function f(z) is givenas, u(x, y)=e"sin(x* - y?),
then f(z) can be written as

(@) ie™ +C (b) —ie” +C () —ie™ +C (d) ie™ +C
u(x,y)=e>Ysin (x2 - yz)

ou _ (V22 -2 2 2
:&:e 2XV(_2y)SIn(X —y )+e XyCOS(X -y )2X = ¢ (xY)

a_

L e (20 -y e os(X ) -29) = 1)

¢ (2,0)=cosz*.2z, ¢,(z,0)=sinz*(-2z)
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CAREER ENDEAVOUR

f (z):j(coszz.ZZ—isin 22.(—22))dz+c = Zj(cosz2 +isin 22).zdz+c

:Zjeizz.zdz+c:—i e 4c
Correct option is (b)

5.4 Power Series Expansion of Complex Function
Every analytic function which is analytic at z =z, can be expanded into power series about z = z,,.

f(z)= .

where, z, is the centre of power series.
For every power series there are three possibilities regarding the region of convergence of power series.

a,(2-12,) =ag+a,(2-25)+ay(2-2)" +...on

Ms

n

(1) The series converges within a disc

o0
n 2
Example: 0 2" =1+2+2%+.....
n=0

n+1
tn+1 —

tn
at the origin and of radius 1 unit.

Here = |Z| ; S0 for |z| <1 the series will converge i.e. it will converge within the circle centered

(if) The power series converges in the whole complex plane.

o N 2 8

z z° z
. —=1+72+—+—+.......
Example : nZ:;,J nl o1 3l

_ I
n+l

|tn+1| | n+1 nl
‘ t ‘ ‘(n +1)1 2"
complex plane.

Here,

— 0 as n — oo for all values of z i.e. the series will converge in the entire

(ii) The power series converges for a particular values of z.

o0

Example: O, M2" =1+2+222+62°+..........
n=0

hMJ_|n+1 | 1
n T (n+ z| —ooasn — o for all values of z except z = 0 i.e. the series will
e |
n

Here,

converge only for z = 0.
Radius of convergence of power series:
Consider a circle centered at z = z, and radius r i.e. |z - zo| =R, such that the power series is convergent

for all points of the region |z - zo| <R (i.e. within the circle) and divergent for all points of the region

|z - zo| > R (outside the circle). Therefore, R is said to be the radius of convergence of power series and
defined as
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an

R=Ilim

n—o0

an +1

Example 13: Calculate the radius of convergence and region of convergence for the following power
series
(2n+3) |

2 20+ 5)(n+5)’

(-2 )2+ ))
(2o en o)

This series is convergent within a circle of radius 1 and centre (0, 0).

=1

soln: R:Iim| on+3 (2(n+1)+5)(n+1+5)|:"m
’ n—>oo‘(2n+5)(n+5) 2(n+1)+3 ‘ N—w®

Region of convergence |z| <1

Example 14: Prove that the series

1438, a(a+1)b(b+1) e
1lc 1.2.c(c+1)

has unit radius of convergence.
Soln: Neglecting the first term,

_a(a+1)..(a+n-1)b(b+1)..(b+n-1)

" 12..nc(c+1)...(c+n-1)
A a(a+1)..(a+n-1)(a+n)(b+1)...(b+n-1)(b+n)
i 1.2..n(n+1)c(c+1)....(c+n-1)(c+n)

<n+a><n+b>_(“?](“m

Dividing, aan = (n+D)(c+n) (1+1j(1+cj

n n

Example 15: Find the radius of convergence of the series
2,13 , 135 5
2 25 2.5.8

Soln: The coefficient of 2" of the given power series is given by

. _135.(2n-1)
" 258..(3n-1)
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. _135.(2n-1)(2n+1)
" 25.8..(3n-1)(3n+2)

a
So, a 3n+2 3 (1+2]
3n

1 || 2 (140) 2 3

Therefore, R—r!'_@o‘ a, —3-(“0)—3:>R=E

Taylor Series Expansion

If a function f(z) is analytic at all points inside and on a circle C, having center at z = a and radius r, then at
each point z inside C, the function f(z) can be expanded as

f(z) = f(a)+%(z —a)+¥(z—a)2 +....+%(z—a)n +o

s 10-1 (3§ {ale-g) )

Example 17: Expand the following function f (z) = about z = 2.

1
(z-1)(z-4)

1 11 11 1 1 1 1
Soln: (7-1)(z-4) 3z-4 3z-1 3(z-2)-2 3(z-2)+1
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1 1 1 1

Laurent Series expansion:

Laurent’s Theorem:
If f (z) is analytic inside and on the boundary of the ring-shaped region R bounded by two concentric circles

C, and C, with centre at z=a and respective radiir,and r, (r, > r, ), then for all z in the region R the Laurent

series expansion of f (z) aboutz=a will be

f(2)= oy (z-a)" + 32— .
where, &, = 271ri gSQ (Zf_(:))ml dz '3

Note: (i) The Laurrent series converges in the region R.
(if) The point at which Laurrent series expansion has to be calculated, will be the centre of
concentric circles.

Example 18: f(z)= about 7 = j

1+ 72

Soln: f(Z):1+122_(z+|)1(z |):%[%_i}

1 41 z—|)n
= —(z-i) += .
45 ( i)

Converges for |z—i|< 2

Converges for \z i[>0

So, the function will be convergent for 0 < |z - i| <2
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1
: i f = i = =2.
Example 19: Exapand the function f (z) (2-1)(2-2) inthe annulusz=1andz =2
1 1 1 1 7|
- f — — _
Soln: f(z) 0(-2) (-2) (1) when1<|z|<2,then|z|<1 & <l

2 2 n o0
__ 1 1+E+(E] +.... 1 1+£+(1] - :_z Z _z L
2 2 2 7 7 7 e~ 2n+1 - Zn+1

Example 20: Find the Laurent series of the function f (z) =—; (11 ) about z=0
7°(1-2
1 1 11 1 1
Soln: f(2)= 717) :?(1—2) ' :?(1+z+z2 - o~ ):?+;+1+z+22+ ........

1 . .
Example 21: Expand —;——— for (i) 0<|z| <1 (i) 1<[7<2 (i) |z| > 2.

3
S TR S
Soln: 22-3z+2 (2-1)(z-2) (z-2) (z-1)
-1 . -1 n 2 n
(i)0<|z|<1: f(Z)Z 1 5 _1__1(::._2):_%(1_§] +(1_Z) :7no(éj +nZOZ
{1=3)

(i) 1<z|<2: thenﬁ<1 andH<1
z

(il [2] > 2: then éd and Ii_|< 1

-1 -1
f(z):i(l—zl —i(l—i) :i(l+g+iz+ ......... j—1(1+£+i2+ .......... j
z z z z Z 7 2 z 7 2
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5.5 Singularity of Complex Function
Singular points of a function:

The points at which the function ceases to be analytic, are said to be the singular points of the function.

1
Example: f (Z) = (z _2) has asingularity at z = 2.

The singularity will be of the following types:

Isolated singularity:
Apoint z =z, is said to be isolated singularity of f (z) if
(@) f(z)isnotanalyticat z=2z,

(b) f(2) isanalytic in the neighbourhood of z =z, i.e. there exists a neighbourhood of z =z, containing no
other singularity.

Example:
1
(i) Function f(z)= S is analytic everywhere except at z = 0, therefore z = 0 isan isolated singularity.

Z+2

(z-1)(z-2)(z-3)

Non-isolated singularity:

(ii) The function f (z)=

has three isolated singularitiesatz=1, 2 and 3.

Apoint z =z, is said to be non-isolated singularity of f (2) if
(@) f(2)isnotanalyticat z=2,

(b) there exists a neighbourhood of z = z,,, containing other singularities off (z).

1
Example: f(z) = T A1
[sin z}

. T T 1
Condition of singularity: $In— = 0= S-m==— (n=012,...:)

The point z = 0 corresponding to n — oo, will be surrounded by infinite many singular points of f (z). Thus,
z =0 is an non-isolated singularity of f (z).

Types of isolated singularity
Iff (z) is an isolated singular point at z = a, then we can expand f (z) about z = a into Laurent series as:

f(z):ian(z_a)ui E)” n=a0+a1(z—a)+a2(z—a)2+ ..... + kil D = e
n=0 rmi(z—a) (z-a) (z-a)

principal part
of the expansion

Therefore, three types of singulatiry are as follows:
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Soln:

(1) Removable singularity:

If the principal part of the Laurrent series expansion of f (z) about z = a contains no termi.e.
b, =0for all'n', thenf (z) has a removable singularity at z = a.

In this case, Laurent series expansioniis f (z)= ian (z— a)n

sinz 1 VAR 22 74
Example: f(z):T:; 2—54‘5— .......... :1—54'5— .....

Since, there is no negative termin the laurent series expansion of f (z) about z = 0, hence z=0 isa removable
singularity of f (z).

(2) Non-essential singularity or Pole:

Ifthe principal part of the Laurrent series expansion of f (z) about z = a contains finite number of terms, say m,
i.e. b, =0 forall n >m, thenf (z) has a non-essential singularity or a pole of order matz =a . Apole of

order one is also known as simple pole.
Thus ifz=a s pole of order m of functionf (z), then f (z) will have the Laurent series expansion of the form

f(z):ian(z—zo)n+nzm;bn(z—zo)_”

n=0

Example: f(z)= > has asimple pole at z=1 and a pole of order 2 at z = -2.

Z
(z-)(z+2)
(3) Essential singularity:

If the principal part of the Laurrent series expansion of f (z) about z = a, contains infinite number of terms i.e.
b, = 0 for infinitely many values of n, thenf (z) has an essential singularity at z = a.
1{
cf(z2)=e" =1+=%
Example: () S 2o

Therefore, f (z) has an essential singularity at z = 0.

. 1 . 1
Example 22: Examine the nature of singularity of the functions: (a) SN (Ej , (b) (z-3)sin (m] :

(a)sin( ! ]: ! 13 + 15 e
1-z) 1-z (1-z)".3! (1-z).5!

S0, z =1 is an isolated essential singular point.

. 1 1 1 1
(b) (2—3)S|n(mj :(2—3)|:Z+2 - (Z+2)3.3!+ (Z+2)5.5!— ......... :|

S0, z =-2 isanisolated essential singular point.
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5.6 Residue of a Complex Function

Residue at a pole:

Let, z=abe a pole of order ‘m’ of f (z) and C, is a circle of radius ‘r’ with center at z = a which does not
contain singularities except z = a, then (z) is analytic within the annular regionr <| z—a | <R can be expanded
into Laurrent series within the annulur region as:

/

f(z)= ian(z—a)n +ibn(z—a)‘n
n=0 n=1

1
Co-efficient b, is known as residue of f (z) atz=ai.e. Res. flz =a) =b, = 2—m§f> f (z)dz
C

Methods of finding residues:

CASE 1: Residue at simple pole:
(@) Method 1: Res. f(z=a) = Lt (z-a)f(2)
Z—a

6(@)

h =0but ¢p(a) =0, thenRes. f(z=a) = —,
where y(a) ut ¢(a) # (z v'(a)

(b) Method 2: Iff(z) = %

CASE 2: Residue at a pole of order ‘n’:

n-1
(a) Method 1: Res. f(z=a)= ﬁ{;n—l [(z-a)" f(Z)]}

Z=a

(b) Method 2: First put z + a=t and expand it into series, then Res. f(z =a) = co-efficient of 1/t.
CASE 3: Residue at z =
Res.f(z=00)= Lt [-zf(z)]

Example 23: Find the singular points of the following function and the corresponding residues:

2

1-2z oz -~
@10 ) OO O 1@
Soln: (a) f(z):Z(Z}I)Z_Z):Poles:z:o,z:l,z:z
1-2 1
Res. f(z:O):ZI;tO(z—O) f (z):ZI;tomzE
1-2z

Res. f (z=1)=Lt(z-1)f(z)=Lt =1

-1 -1 2(2_2)
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Soln:

Soln:

Res. f (z=2)=Lt(z-2)f(z)= Lt

752

2
= Poles:z=ia,z=-ia

(0 f(z)=

7° +a’
2

2
Res.f(z:ia):(;—] :%ia; Res.f(z:—ia):(%] :—%ia
Z =ia z=—ia

1 1 1
o) f(z)=2%¢""=7°1+=+ +
© f(2)= [ z 722! 7°.3!

Res. f (z =0) = Coefficient of 1. 1.1
z 31 6

Cauchy’s Residue Theorem:

If f (z) in single-valued and analytic in a simple closed curve “C, except at a finite number of singular points
within C, then

<f>f(z)dz = 2mi (sum of the residues at poles within 'C")

3z
Example 24: Evaluate the integral: ém

dz where 7| ==
4-3z
f(z)=———
(2) z(z-1)(z-3)
But, the given contour is circle centered at the origin and radius 3/2 units.
Therefore, only z = 0 and z =1 within the contour.
. 4 1| S5Sri
| =271| Res.f(z=0)+Res.f(z=1) |=27i|=—=
si[Res.f (2-0)+Res.f (2=1)] 2| = |-

= Poles:z=0,z=12z=3

3
2 472
Example 25: Evaluate the integral: <Jg (2-1) dz where |z| =2
C
(2)= e +2° = Poles: z =1 (order 5)
(-1f
) 2¢*  4rie?

| =2rzixRes.f (z=1)= 2ﬂix%%[ezz +2°|  =27ix =

dZ , Where C is the circle with centre z = 0 and radius

Example 26: The value of the integral 95
[TIFR 2016]

1 unit

iz iz
@ ix o) = © 5 o
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1 1 11 z
= _5_3_+____+ ...........
z> z°3! 51z 7!
. 1 1
The residue at the pole z = 0 is coefficient of — e o1
Since, the pole at z = 0 lies with in C.
jﬁdz = 27i (sum of residues) = ﬂ(')
Correct option is (c)
Example 27:The value of integral , | =<j§ sinz dz
P ) grat. ¢27-1
with c ais circle |z| = 2, is [JEST 2014]
(a) 0 (b) 27i (c) i (d) i
. . cos| z——
sinz  sinz ( 2]_cost .
: 7 B - z——=t
Soln: 2z—r Z(Z_Zj 2(2_;27] 2t (Let > )

2t 2x2! 2x4! 2x6!

Lt e PRLARTCR CINE/CAY
2t

1 1
The residue at t = 0 is the coefficient of N ie. >

T .1
Therefore, the pole Z =— Iles within the contour ¢ and the residue at Z = B S >

95 SN2 47 = 27i [sum of residue] = 27i x% =7i

CZZ—ﬂ'

Correct option is (c)




COMPLEX ANALYSIS

Definite integrals of trigonometric functions of cos0 and sin0 :
Method:

(i) Consider the contour to be acircle centered at the origin and having radius one uniti.e. |z|=1

(i) Assume, z=€"“ = dz =ie“’df = do = %
iz

0, -6 T
(iii) Therefore, cos§ = =% :l(z+1jand sing==—F :i_(z—i]-
2 2 z 21 21 Z

Replacements regarding cos@ and sin @ is to be done only in the denominator of the given integral.

(iv) The limit will be changed from 0 — 27 to §
C

(V) Find the singular points and find residues at only those singular points which lies inside the unit circle.
(vi) Finally use the Cauchy residue theorem.

i 2n de .
Example 28: Evaluate the integral: Io A7 Dbcosh’ a>b>0

Soln: J'er do _Izn dz/iz :T 2dz
o a+bcosgd o a+b(22+1] > i(bz? +2az +b)

2z

_—a+va’-b’?

The singular pointsareat = z=a =

—a-+a*-b’
p & AT

The singular point z =  will lie outside the unit circle as a>b>0 while the singular point z = o will lie inside the
unit circle which is a simple pole.

: 2 (z-a) 2 2 b 1

Res.f(z=a)=lim(z—a)f(z)=lim— =- =—X =
( ) Ha( )f(2) aib(z—a)(z—B)- ib(a=B) ~ib 2a2-bp? iJa?-b?
Therefore, by cauchy Residue theorem.
27
| =271 x Residue=2ri x =
ival-b2  a’-b?

Example 29: Evaluate the integral | =0
xample 29: Evaluate the integral |, =~

J‘Zﬁ do :¢ 1 E:1¢ dz :é dz
Soln: Jo 51 4c0s6 05+4.1(z+1j.i2 ic(52+222+2) ¢ (22+1)(z+2)
2

1 1
f(z)= m = polesareat z = 5 2 (Onlyz=-Y%iswithinthe circle)

1| 1

1
Res. f(z =) = (Z+Ej'(22 +1)(z+2)\zz_1 - 2(z+2)
2

: 2mi
Hence, the integral = ?n
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Example 30: Evaluate the integral T %0 (mz <1) [TIFR 2015]
X :Evalu [ 2
o 1-2mcosf +m
2r i
do ) dz/iz _ dz
Soln: J.1—2mcos¢9+m2’(m <1):<j.> (.1 2 <j5 2% +1
0 Cl—2m><E Z+=[+m° Cis;l 7_m +m2z
z z

dz

mmam)

dz :1
i(z—mzZ_m+m22) Li(z-m)-mz(z-m) i

Il
0o
o
N
Il
=S
| =

1

f(z)= (z—m)(1-m2) has poles of order one at z = m,%
Since, m < 1 s0 z=mwill be within the circle |z| =1
So I:1[27ri><res.f(z:m)]:1 2xix lim (z—m)
B i z>m (z-m)(1-mz)

=x2mix = 2n
i 1-m? 1-m?

21 4
Example 31: Evaluate the integral IO e cos(sin 6 - n)do

2n 271 i ein N
Soln: J'O ecose COS(SiﬂG—ﬂG)dG - Real part of J‘O ecoseel(sme ne)de

= Real part of Ijne(cose*iS‘”e)e*‘”Gde — Real part of gSeZ.z‘”%
Cc
Réal o4 67 6 LS b
_ Real parto ﬁSF 7
Cc

ez 1 dn ez 1
f(z)=—— I tz=0of ord ot 9 [ ha 1
i g TROREERETEEA orn = Res.f(2=0) n! dz" ‘ Toni o M

.. 1..1 2n
Hence the given integral = real part of T.Zm.m =

Evaluation of improper integrals between the limit —oto 4+«

Theorem 1:

IfABisanarc (a <6< ) ofacircle |z =R and limz f (z)=k(constant)  Then,

lim [ £ (2)dz=i(B-a)k
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Theorem 2:

Iff(z) is a function of complex variable z which satisfies the following conditions:
(1) f(z) is analytic in the upper half plane except at a finite number of poles.

(i) f(z) has no poles on the real axis.

(iii) z f (z) >0 uniformlyas |z| — oo

Sothat lim | f(z)dz —0

-R ) +R

Theorem 3:
Jordan’s Lemma: Iff(z) isa function of complex variable z which satisfies the following conditions.
(i) f(z) isanalytic in the upper half plane except at a finite number of poles.

(ii) f(z) — 0 uniformlyas || — o for 0<argz <, then J
. CR
lim| e™f(z)dz—0
R—0 JCpq
where mis a +ve number and C_ is the semicircle of radius R. R 0 R X

Theorem 4:

IfABisanarc (6, <6 <6,) ofacircle |z—a|=r and Z';ta(z—a) f(z)=k  then

IrimAB f(z)dz=i(6,-6,)k

Short Method
Case 1:

If f(x) contains only polynomial terms, thenwe will take f (z) sameasgivenas f (x). Thenfind the

singular points of f (z) and check which points lie in the upper half plane.
(A) Ifthe singular points does not lie on the real axis, then

f(z)dz=| f(x)dx=2zi|Z Res. atall poleswithinC| —|limz f(z) |ix
[ f(e)ee= ime 1 (2)

AY

Ce

-R R
(B) If the singular point lie on the real axis, then

0 0

[ £(2)dz=] £ (x)dx=ri[= Res.at all poles within C]-| limz f (z) |ix

Ay

C

°
-R singular singular R
point point
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Case 2:
If f (x) contains cosines and sine functions along with polynomial functions then f (x) can be treated as a

real or imaginary part of f (z). Thenfind the singular points of f (z) and check which points lie in the
upper half plane.

(A) Ifthe singular points does not lie on the real axis, then

0

j f (z)dz = 27i[ZRes. at all poles within C] ifas 7 5 oo, f(2) 0 and

eimz

jf(x)dx:ReaI part or imaginary part of I f(z)dz

—o0 —o0

AY

-R R

(B) Ifthe singular points lie on the real axis, then

0

j f (z)dz =i [Z Res.at all poles within C] jfas z — oo, f(2) 0 and

eimz

—o0
0

jf(x)dx:ReaI part or imaginary part of j f (z)dz

—o0

C
°
-R singular singular R
point point

Todx
Example 32: Calculate the following integral j 112
1
- f(x)=
Soln: f(x) Y

1
f(z):1+22 haspolesat z=+ i (Polesare not on real axis)

In this case we will take a contour ‘C’ consisting of

(i) Asemicircle Cy :|z| =R inthe upper half of complex plane. y
(i) Real axis from-R to +R e
zZ=1
¢ f(2z)dz =27i [sum ofresidues at the poles] L~
®z=-i

= J'f(z)dz+JR' f (x)dx = 27i(residue at z = +i) ()
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Soln:

. ~ 1
Residue of f (z) at Z:+I:!LTi(Z_I)1+ =

Taking the limit R — oo inthe equation (i), we get

. (1
:LILT; 1+Z dZ+J‘ dXZZEI(E]:ﬂ' (")
C, isanarc 0<@ <z ofacircle|z|]=Rand limz f (z)=lim 2 _lim— 2
R T 20 e 1422 17241

Thus, lim | f(z)dz=i(7-0)(0)=0

1
Therefore, from equation (ii) j Tl dx =7

Short Method:

0 0

jl+x _f 7 =2ni|Res. f(z=i)]-lim| zf (z) Jiz = Zm[zll}:

Example 33: Apply calculus of residues to show that I = -

0 (x*+1)(x*+9) 24

| :J'OO dx :_J'OO dx
0 (x2+1)(x2+9) 2 —°°(x2+1)(x2+9)
y
1
Let f(z):(22+1)(22+9) EE%ICR
The singular points of f(z) are RoTg,., R
z=-3i
(22 +1)(22+9)=0 = | z=i,-i3i,-3 F

The only poles lying within the contour (upper half plane) are at z = +i and +3i

I_if(z)dz :I_Zf(x)dx:Zni(Res. at (z=i)+Res.at (z=3i))-lim[ zf (z) ]in

Z—wo

Here, limzf (z)=lim : ~lim : -0

SR CRE[CED B (P Y
z z

+

dx V4

dx 2.[1 1

Therefore, f (x +1)(x* +9) 1_6._4_8.} EZIO (x*+1)(x*+9) 24
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» COSXOX
Example 34: Prove _w(x2+a2) -

-a

T
—e a>0
a

iz

e

The only pole which lies in the upper half of the circle isat z = ia.

Soln: Let f(z)= : For singuarities, 72 +a2 =0=>z =tia.

Therefore, Residue at z = ia= lim (z_—la)e __&
ia(z—ia)(z+ai) 2ia

Now by cauchy residue theorem.

+R . . h |

LR f(z)dz +I_R f (x)dx = 27i (sum of the residues at the poles) .. (1)
Now in the limit of R — o0, equation (2) becomes

IELT . f(z)dz +LO f (x)dx = 27i (sum of the residues at the poles) .. (2)

1
As 7 >0, 2 2 —>®©
z°+a
. e”

Therefore, By Jordan’s lemma lim | -———<dz —>0

R—o JCy (22 +a2)

Therefore, equation (2) gives

® . 1 - e*dx  m = (cosx+isinx) 7 _,
= I f(x)dx=27ix— = =—e'= -~ ‘="-¢
o () 2ia ~x?+a?® a L" (X2+a2) a
COS X T 4

= I:mdx —z—ae

Evaluation of some improper integrals in which the pole lies on the real axis:

sin‘mx T
dx =—; m >0
X 2

Example 35: Prove f _ww

imz

Soln: Let f(z)= ez

taking the integral counter clockwise and using the cauchy integral theorem, we get
Y

. The singularity is at z=0 which is at real axis. No pole will be inside the semicircle. Now

Cr

R - ’ +r +R
According to Cauchy Residue theorem, we get

ICR f(z)dz +I__F: f (x)dx+ICr f(z)dz +LR f (x)dx =0 (Since there is no pole inside the contour)

Taking the limit R —» o and r — 0, we get




