
7

www.careerendeavour.com

Software requirements & Analysis specifiction

Requirements Analysis and Specification:
Requirements analysis and specification is considered to be a very important phase of software development
and has to be undertaken with outmost care.
It starts once the feasibility study phase is complete and the project is found to be financially sound and
technically feasible.
This phase consists of the following two activities:
(i) Requirement gathering and analysis (ii) Requirements specification

Requirements gathering:
This is a activity involves interviewing the end-users and customers and studying the existing document to
collect all possible information regarding the system. If the project involves automating some existing procedures
then the task of the system analyst becomes little easier as he can immediately obtain the input and output data
forms and the details ofthe operational procedures. However, in the absence of a working system,much more
imagination and creativity on the part of the system analyst is required.

Analysis of gathered requirements:
The main purpose of this activity is to clearly understand the exact requirements of the customer. The following
basic questions pertaining to the project should be clearly understood by the analyst in order to obtain a good
grasp of the problem :
• What is the problem?
• Why is it important to solve the problem?
• What are the possible solutions to the problem?
• What exactly are the data input to the system and what exactly are the data output required of the system?
• What are the likely complexities that might arise, while solving the problem?

Software Requirements Specification (SRS):
After the analyst has collected all the required information regarding the software to be developed and has
removed all incompletences, inconsistencies, and amomalies from the specification, he starts to systematically
organize the requirement in the form of an SRS document. The SRS documnet usually contains all the user
requirements in an informal form.
• Among all the documents produced during a software development life cycle, writing the SRS document is

expected to cater of audience.
Different people need the SRS document for very different purposes.

The important categories of users of the SRS document and their needs are as follows :
(i) Users, customer and marketing personnel

Software requirements analysis & specification

2
CHAPTER

8 Software requirements & Analysis specifiction

www.careerendeavour.com

(ii) Software engineers
(iii) Test engineers
(iv) User documentation writer
(v) Project manager
(vi) Maintenance engineer

Contents of the SRS Document:
An SRS document should clearly document the following aspects of a system:

(i) Functional reuirement
(ii) Non functional requirements
(iii) Goals of implementation

• The functional requirements part should discuss the functionalities required for the system. To consider a
system as performing a set of functions.

Each function of the system can be considered as a transformation of a set of input data (ii) to the
corresponding set of output data (oi). The functional requirements of the system as documented in the SRS
document should clearly describe each function which the system would support along with the corresponding
input and output data set.

The nonfunctional requirements deal with the characteristics of the system that cannot be expressed as
functions. Examples of non-functional requirements include aspects concerning maintainability, portability and
usability. The non-functional requirement may also include reliablity issues, accuracy of the result, human-
computer interface issues and constraint on the system implementation. The contraints on the system
implementation describes, aspects such as the specific DBMS to be used as per customer request.

The goals of implementation part of the SRS document gives some general suggestions regarding
developement. These suggestion guide trade-off among design decisions. The goal of implement section might
document issues such as revision to the system functionalities that may be required to the future new devices to
be supported in the future, reusuability issues etc. These are the items which the developers might keep in their
mind during development system may meet some aspects that are not required immediately. It is useful to
remember that anything that can be quantitavely stated is usually documented as a requirement and not as goal
vice-versa.

Characteristics of a Good SRS document :
1. Concise: The SRS document should be concise and at the same time unambigous, consistent and complete.
2. Structured: The SRS document should be well structured. A well structured document is easy to understand

and modify.
3. Black box view: It should only specify what the system should do and retain from stating how to do.
4. Conceptual Integrity: The SRS document should exhibit conceptual integrity. So, that the reader can

easily understand the contents.
5. Reponse to undesired events: The document should characterize acceptable response to undesired

events. These are called system response to exeptional conditions
6. Verifiable: All requirements of the system as documented in the SRS document should be verifiable.

Organization of SRS document:
1. Introduction
(a) Background (b) Overall description
(c) Environmental characteristics
(i) Hardware (ii) Peripherals (iii) People

2. Goals of implementation
3. Functional requirements
4. Non-functional requirements
5. Behavioural Description
(a) System states (b) Events and Actions

9

www.careerendeavour.com

Software requirements & Analysis specifiction

Techniques for Representing Complex logic :
There are two main techniques available to analyze and represent complex processing logic :
1. Decision trees 2. Decision tables
1. Decision tree: A decision tree gives a graphic view of the procesing logic involved in decision making

and the corresponding action taken. Decision tables specify which variables are to be tested, and based
on this what action need to be taken depending upon the outcome of the decision making logic and the
order in which decision making is performed.
The edges of a decision tree represent conditions and the leaf nodes represent the actions to be performed
depending on the outcome of testing the condition.

Example : A Library Membership Software (LMS) should support the following three options:
(a) New member (b) Renewal (c) Cancel Membership

Decision of LMS

1. Decision table: A decision table shows the decision making logic and the corresponding actions taken in
tablular or matrix form. The upper rows of the table specify the variables or condition to be evaluated and
the lower rows specify the actions to be taken. When an evaluation test is satisfied. A column in the table is
called rule. A rule imples that if a condition is true, then the corresponding actions is to executed.

Decision table for the LMS

Condition
ValidSelection No Yes Yes Yes
New Member - Yes No No

Renewal - No Yes No
Cancelation - No No Yes

Actions ×
Displayerror message ×

Ask for members nameetc.
Build customer record ×

Generate bill × ×
Ask for membership bill × ×

Updateexp



iry date ×
Print cheque ×
Delete record ×

10 Software requirements & Analysis specifiction

www.careerendeavour.com

Formal System Development Techniques: Formal methods provide us with tools to describe a system and
show that a system is correctly implemented. We say a system is correctly implemented when it satisfies in
given specification. The specification of a system can be either as a list of desirable properties. (Property
oriented approach) or an abstract model of the system model oriented approach

In a property oriented approach, we would probably start by listing of the properties of the system like, the
consumer can start consuming only after the consumer has consumed the last item etc.
Example of property oriented specifiction styles are those of axiomatic specification and algebraic specification.
In model-oriented approach, we start by defining the basic opertions p (produce) and c (consume). Then we
can start S1 + p  S, S + c = S1. Thus the model-oriented approaches essential specify a program by writing
another. Examples of popular model-oriented specifiction technique or Z, CSP, CCS, etc.

Formal Technique: A formal technique is a mathematical method used to specify a hardware and/or a software
system, verify whether a specificaion is reliable, verify whether an implementation satisfies in specification
prove properties of a system without necessarily running the system and so on. More precisely a formal
specification language consists of two sets syn and sem and relation at between them. The set syn is called the
syntactic domain, the set sem is called sematic domain and the relation set is called the satisfaction relation.

Operational Semanties : The operational semanties of a formal method constitute the way computations are
represented. There are different type of operational semanties :
1. Linear Semantics : In this approach, run of a system is described by a sequence of events or states.
2. Branching Semantics : In this approach the behaviour of a system is represented by a directed graph.

The nodes of the graph represent the possible states in the evolution of a system
3. Maximum Parallel Semantics : In this approach, all the concurrent actions enabled at any state or

assumed to be taken.
4. Partial Order Semantics : Under this view, the semantics described to a system constitute a structure of

states satisfying a partial order relation among the states.

Axiomatic Specificaton: In axiomatic specification of a system, the first order logic is used to write the pre
and post condition in order to specify the opertions of the system in the form of axioms. The pre-conditions
basically capture the conditions that must be satisfied before an operation can be successfully involved. In
essence the pre-conditions capture the requirements on the input parameters of a function. The post-conditions
are the condition that must be satisfied when a function to be considered to have executed successfully. Thus,
the post condition essentially check the constraints on the result produced for the function execution to be
consider successful.

Steps to develop an axiomatic specification :
1. Establish the range of input values over which the function should behave correctly. Establish the constraints

on the input parameters as a predicate.
2. Specify a predicate defining the condition which must hold on the output of the function if it behaved

properly.
3. Establish the changes made to the functions input parameters after execution of the function. Pure mathematical

functions do not change their input and therefore this type of assertion is not necessary for pure functions.
4. Combines all of the above into pre and post condition of the functions.

Algebraic Specification: In the algebraic specification technique an object class or type is specified in
terms of relationship existing between the operations defined on that type.
Essentially, algebraic specification define a system as a heterogenous algebra. A heterogenous algebra is a
collection of different sets on which several operationals are defined. Traditional algebras are homogeneous. A
homogeneous algebra consists of a single set and several operations (+, –, *, /).
Each set of symbols in the algebra is called a sort of the algebra.
An algeraic specification is divided into four sections :
1. Type Section: In this section the sorts being used are specified.

11

www.careerendeavour.com

Software requirements & Analysis specifiction

2. Exception section: This section gives the names of the exceptional conditions that might occur when
different operations are carried out.

3. Equations section: This section given a set of rewrited rules (or equation) defining the meaning of the
interface procedures in terms of each other.

Pros and Cons. of Algebraic Specification: Algebraic specification have a strong mathematical base and
can be viewed as heterogeneous algebra. therefore, they are unambigous and precise. Using an algebrais
specification, the effect of any arbitary sequences of operations involving the interface procedures can be
automatically.

A major short coming of algebraic specification is that they cannot deal with side effects. Therefore,
algebraic specification are difficult to integrates with typical programming language.
Also, algebraic specification are hard to understand.

SRS Document (IEEE–830):
(i) Introduction : (a) Overview (b) Motivation (c) Brief history
Introduction work like header.

(ii) Goals of Implementation: Miles stone are written
(iii) Functional requirement: Functionalities are define. It take input and give output
Login

username
sucessful login ouptut

password
 

 
 

(iv) Non-functional requirements: Tell the qualities of functional requirements
[login-non-functional requirement is response time]

(v) Environmental constraints: Constraints of environments ae eleborated.
Reliability: Probability that system works correctly in given period time [system works without failure]
e.g. Reliability of ceiling fan = 0.99 for one year.
The arrangements of modules either serial or parallel.
Reliability of serial system:

R1 R2

Module1 Module2

Reliability of serial system = series system works if module1 and module2 both works

1 2R R 

R1 R2 Ri Rn

Module1 Module2 Module3 Module n
Reliability (R) = 1 2 i nR RRR

i
1

R= R
n

i


12 Software requirements & Analysis specifiction

www.careerendeavour.com

SOLVED EXAMPLES

1. In serieal system there are two component having reliabilty 0.9 each. What is reliability of serial system
Soln. 1 2R R R 

0.9 0.9R  
0.81R 

2. In serial system there are three component having reliability 0.9 each. What is reliability of serial system.
Soln. 1 2 3R R R R  

0.9 0.9 0.9R   
0.729R 

Note: “If we increase the component in serial system the reliability decreases”

0 1iR 

• Reliability follows : ‘Exponential Distribution’
Exponential Distribution

3.   xP x e 

Mean   xE x x e dx 






   
P()x

x
Variance = 2
x is Random variable [vary value]

Bionomial Distribution:
n = number of trials

Mean = np p = success problem
Variance = npq q = 1–p

Reliability in parallel system: If we have two component in parallel system

R1

R2

System works when either component R1 or component R2 or both.

   1 2 2 1 1 21 1R R R R R R R    

Or

   1 21 1 1R R R   

If we have ‘n’ components then reliability

      1 21 1 1 1 1i nR R R R R     

 
1

1 1
n

i
i

R R


  

13

www.careerendeavour.com

Software requirements & Analysis specifiction

Example: If we have two component having reliability 0.9 each. What is reliability in parallel system?

Soln.      1 21 1 1 1 1 0.9 1 0.9 1 0.1 0.1 1 0.01 0.99R R R             

Example: If we have three component having reliability 0.9 each. What is reliability in parallel system?

Soln.        1 2 31 1 1 1 1 1 0.9 1 0.9 1 0.9 1 0.1 0.1 0.1 1 0.001 0.999R R R R                

Note “If we increase number of component in parallel system then reliability increase”

Availability: Probability that system is available in given period of time

Availability of serial system:
For two sytsem, A = A1.A2

More than two, 1 2
1

, ,..........
n

n i
i

A A A A A


 
Availability of Parallel system:

Two component    1 21 1 1A A A   

More than two  
1

1 1
n

i
i

A A


  
Predicate: Generalized version of preposition.
e.g. x is even number, /x x 

s.t.  2, 4,6x
Predicate logic for more then one.

SRS Document representation:
(i) English Language (logic)
(ii) Algebric Expression (Regular Expression)
(iii) Transition Diagrams (State Diagram)
(iv) UML (unified modelling language (Analysis Modelling)

Decision table and Decision tree are used to ensure the correctness of SRS

Decision table: It is table which contains conditions, C1, C2, C3
Rules/Actions – A1, A2An

Condition either true or false i.e. if there are n conditions then = 2×2×2 n times

2 are maximum actionsn

If all actions are present than that table i.e. known as ‘complete table’

14 Software requirements & Analysis specifiction

www.careerendeavour.com

Rule1 Rule2

C1

C1

C1

A1

A2

T F

X T

TF
not clearX 

There are 3 conditions and 2 action. So, it is not complete table
3 condition = 23 = 8 action

Rule 1: if (C1 = = T) and (C3 = = F) then A1
Rule 2 : if (C1 = = F) and (C2 = = T) and (C3 = = T) then A2.

Problem: Which one of the following is NOT desired in a good software Requirement Specifications (SRS)
document ?

(a) Functional Requirements (b) Non-Functional Requirements
(c) Goals of Implementation (d) Algorithm for Software Implementation

[GATE-2011]
Ans. (d)
Soln. A software requirements specification (SRS), a requirements specification for a software system, is a complete

description of the behaviour of a system to be developed. In addition it also contains non-functional require-
ments. Algorithms are developed during design phase.

Problem: A Software Requirements Specification (SRS) document should avoid discussing which one of the
following ?

(a) User interface issues (b) Non-functional requirements
(c) Design specification (d) Interfaces with third party software

[GATE-2015]
Ans. (c)
Soln. SRS document should avoid discussing design specification.

Data Flow Diagrams (DFD):
DFD shows the flow of data through system. The system may be compnay an organization, a set of proce-
dures, a computer hardware system, a software system, or any combination of the precedding. DFD is also
known as a data flow graph or a bubble chart in DFD:
(i) All name should be unique

(ii) DFD is not a flowchart, because Arrow   in a flow chart shows the flow of events, where as arrow in
DFD shows the flow of data.
(iii) No logical decision in DFD (unlike flow chart)
(iv) Do not become bogged down with details.
• The following symbols used in DFD:

•
Data Flow: Used to connect process to each other. The arrow head indicated directions of data flow.
•
Process: Perform some transformation of I/P data to yield O/P data.

15

www.careerendeavour.com

Software requirements & Analysis specifiction

•
Source/Sink (External Entity): A source of system inputs, or sink of system outputs.

•

Data Store: A repository of data; he arroead indicates net inputs and not outputs to store.
• The DFD is mainly used to represent a system a software at any level of abstraction. Infact, DFDs may be
partitioned into levels that represent increasing information flow and functionality details.
• A O-level DFD, also called a fundamental DFD represents the entire S/W element as a single with I/P and O/
P data.

P0

(O-level DFD)
Now the system is decomposed and represented as a DFD with multiple bubbles called 1-level DFD.

P0

P01 P02

If again process of P01 does not give the more details then further it can be divided into multiple bubbles, and
this type of DFD is called 2-levels DFD.

P011

P010 P012

P013

• Entity Relationship (E-R) Diagram
It is a detailed logical representation of the data and uses the main constructs namely Entity, Relationship
and Attributes.

• Entity:
An entity is a thing or object in a real world that is distinghuishable from other objects. Entity is de-
scribed by a set of attributes.

• Entityt set:
It is a entities of same type that share same prosperties or attributes. It is denoted by

E
e.g. Customer, Employee etc.

Relationship: Relationship is an associate among entities. It is dentoed by R diamond

e.g. A customer is insured by a policy is represented as below:

insured
by

Customer Policy

16 Software requirements & Analysis specifiction

www.careerendeavour.com

Attributes: An attribute is a property or characteristic of an entity and each entity type has a set of attributes

assocaited with it. It is denoted by A .
e.g. student entity has student_ID, Name, Address, and Phone No, attributes and is represented as follows:

STUDENT

Student_ID Name Address Phone No.

• Degree of relationship
The 3 most common relationships in E-R models are-unary, binary, and ternary.

• UNARY Relationship
This is also called recursive relationship. It is a relationship between the instances of one entity set.
e.g. each person may be married to one another person.

Person
is

married
to

• Binary Relatinship:
It is a relationship between instances of two entity sets. A binary relationship is of degree 2. e.g. A
country has a country flag.

Country has Country Flag

• Ternary Relationship:
It is a simultaneous relationship among instances of three entity sets. A ternary relationship if of degree 3.
e.g. The relationship ship tracks the part, that is shipped by a vendor to a selected warehouse.

Vendor Ships Warehouse

Part

Candidate keys and Identifier:
• A candidate key may be of one or more attribute or combination of attributed or combination of attributes

that uniquely identifies each instancesof an entity set.
• An identifier is a candidate key that has been selected to be used for uniquely identifies each instance of an

entity set.
e.g. The candidate keys for a student entity might be student ID, or student with Address. Here we have
shown student-ID as an key indentifier for student entity.

STUDENT

Student_ID Name Address Phone No.

Candinalities and optionality:
• The candinality express the number of entities of an entity set to which another entity can be associated via

a relationship, it can be one of the following

17

www.careerendeavour.com

Software requirements & Analysis specifiction

Employee is
assignes Parking Place

one-to-one

Movie
is

stocked
as

Video Tape

one-to-many

Student enrolls
for Course

many-to-many

• An optionality shows an entity set may be/may not be associated with another entity set through the rela-
tionship. It is denoted by 0 in the cordinality
e.g. A movie may have many video tapes in stock or may not have any video tape in stock. It is represent
by as follows.

Movie
is

stocked
as

Video Tape

• If there is one video tape exist in stock, then if contains one move. So, it is represented as follows:

Movie
is

stocked
as

Video Tape

Cardinality

Modulity

Cardinality

Modulity

Example: Consider example of insurance that offfers both home and automobile insurance policies. These
policies are offered to individuals and business. A customer can be insured by many policies. Similarly, a
policy can cover many customers. One policy can be impacted by many policy claims. However, a policy
may not have any policy claims field against it. Draw the E-R diagrams.

Customers insured
by

Policy

made
against

Policy claim

• A customer can be insured by many ‘policy’ and a ‘policy’ can cover many ‘customer’. This is a many-to-
many relationship. A ‘Policy Claim’ is made against one ‘Policy’ and one ‘Policy’ can be imacted by many
‘Policy Claims’. This is a one-to-one and one-to-many relationship.

• A ‘Policy Claim’ is made against one ‘Policy’ and one ‘Policy’ can be imacted by many ‘Policy Claims’.
This is a one-to-one and one-to-many relationship
(a) ‘Policy’ may not have nay ‘Policy Claim’ field against it, it means the relationship is optional.

18 Software requirements & Analysis specifiction

www.careerendeavour.com

• Example: Draw the E-R diagrams of the following
(a) Patient has patient history. Each patient has one or more patient histories. Assume that the initial patient
visit is always recorded as an instance of patient history. Each instance of patient history belongs to exactly
one patient.
(b) ‘Employee is asigned to project. Each project has altleast one assigned employee. Some projects have
than one employee. Each employee may or may not be assigned to any existing project, or may be as-
signed to served projects.
(c) Person is married to Person.

• Explanation:

(a) Patient has Patient History

• There are two entities ‘Patient’ and Patient-History’ Each ‘patient’ has one or more ‘patient-History’.
This is one-top-many relationship with mandatory cardinality.
• Initial ‘patient visit is always recorded as an instance of ‘Patient History’. This is mandatory cardinality
near the manycardinality of ‘patient History’.
• Each ‘patient History’ belongs ot exactly one ‘Patient’. This is modulity near the mandotry cardinality
relationship of ‘Patient’.

(b) Employee
is

assigned
to

Project

• There are two entities ‘Employee’ and ‘Project’. Each ‘Project’ has atleast one assigned ‘Employee’.
This is one-to-many relationship with mandatory cordinality.
• Each ‘Employee’ may or may not be assigned to any existing ‘Project’, or may not be assigned to any
existing ‘Project’, or may be assigned to several Project. This is one-to-many relationship with optional
cardinality.

(c)
Person

is
married

to

• There is only one entity ‘Person’. A ‘Person’ may or may not be married and if married then one person
with one person and not more than person. This is one-to-one relationship with optional cardinality.

DATA FLOW DIAGRAM (DFD):
We will explore one of the three major graphical modeling tools of structured analysis; the dataflow diagram.
The dataflow diagram is a modeling tool that allows us to picture a system as a network of funtional processes,
connected to one another by “pipelines” and “holding tanks” of data. In the computer literature, and in your
conversions with other systems analysis and users, you may use any of the following terms as synonyms for
dataflow diagram:

• Bubble chart
• DFD
• Bubble diagram.
• Process model
• Work flow diagram
• Function model
• “a picture of what’s going on around here”

19

www.careerendeavour.com

Software requirements & Analysis specifiction

The dataflow diagram is one of the commonly used systems-modeling tools, particularly for operational sys-
tems in which the functions of the system are of paramout importance and more complex than the data that the
system manipulates. DFSs were list used in the software engineering field as a notation for studying system
design issues (e.g. in early structured design books and articles such as, in turn, the notation had been bor-
rowed from earlier papers on graph theory, and it continues to be used as a convenient notation by software
engineers concerned with direct implementation of models of user requirements.

This is interesting background, but is likely to be irrelevant to the users to whom you show DFD system
models; indeed, probably the worst thing you can do say, “Mr. Users, I’d like to show you a top-down,
partitioned, graph-theoretic model of your system”. Actually, many users will be familiar with the uderlying
concept of DFD’s because the same kind of notation has been used by operations research scientists for nearly
70 years to build work-flow models information - processing systems, but also as a way of modeling whole
organizations, that is, as a tool for business planning and strategic planning.

We will begin our study of dataflow diagrams by examining the components of typical dataflow dia-
gram: the process, the flow, the store, and the terminator. We will use a fairly standard notation for DFDs.
However, we will also include DFD notation for modeling real-time systems (i.e. control flows and control
processes). This additional notation is generally not required for business-oriented systesms, but is crucial
when modeling a variety of engineering and scientific systesm.

SOLVED PROBLEMS

1. The diagram that helps in understanding and representing user requirements for a software project using UML
(Unified Modeling Language) is
(a) Entity Relationship Diagram (b) Deployment Diagram
(c) Data Flow Diagram (d) Use Case Diagram

[GATE-2004]
Ans. (d)
Soln. Use case Diagram: It gives the external view of the system that helps in understanding and representing user

requirements for a software project using UML.

2. In a data flow diagram, the segment shown below is identified as having transaction flow characteristics, with
p2 identified as the transaction center

p1 p2 p4

p3

p5

A first level architectural design of this segment will result in a set of process modules with an associated
invocation sequence. The most appropriate architecture is
(a) p1 invokes p2, p2 invokes either p3, or p4, or p5.
(b) p2 invokes p1, and then invokes p3, or p4, or p5.
(c) A new module Tc is defined to control the transaction flow. This module Tc first invokes p1 and then

invokes p2. p2 in turn invokes p3, or p4, or p5.
(d) A new module Tc is defined to control the transaction flow. This module Tc invokes p2. p2 invokes p1,

then invokes p3, or p4 or p5.
[GATE-2005]

Ans. (c)

20 Software requirements & Analysis specifiction

www.careerendeavour.com

Soln. A new module Tc is defined to control the transaction flow. This module Tc first invokes p1 and then invokes
p2. p2 in turn invokes p3, or p4 or p5.

3. 9. Which of the following statements are TRUE ?

I. The context diagram should depict the system as a single bubble.
II. External entities should be identified clearly at all levels of DFD.
III. Control information should not be represented in a DFD.
IV. A data store can be connected either to another data store to an external entity.
(a) II and III (b) I, II and IV (c) I and III (d) I, II and III

[GATE-2009]
Ans. (c)
Soln. The context diagram depict the system as a single bubble and control information should not represent in DFD.

In DFD external entities are represented only at level 0 DFD or context diagram. Between every external agent
and data store process is compulsory.

