Chapter 6

Operational Amplifier

Symbol:

$(+)$ Non-inverting terminal, (-) Inverting terminal
Input impedance : Few mega Ω (Very high), Output impedance : Less than 100Ω (Very low)
Differential and Common Mode Operation: One of the more important features of a differential circuit connection as provided in an op-amp is the circuit ability to greatly amplify signals that are opposite at the two inputs while only slightly amplifying signals that are common to both inputs.
An op-amp provides an output component that is due to the amplification of the difference signals applied to the plus and minus input and a component due to the signals common to both inputs.
Since amplification of the opposite input signals is much greater than that of common input signals the circuit provides a common-mode rejection as described by a numerical value called COMMON MODE REJECTION RATIO (CMRR).
Differential Input: When separate inputs are applied to the op-amp, the resulting difference signal is the difference between the two inputs. $V_{d}=V_{2}-V_{1}=V_{+}=V_{-} \mathrm{CADOUR}^{2}$
Common Input: When both input signals applied to an op-amp is common, signal element due to the two inputs can be defined as the average of the sum of the two signals. $V_{C}=\left(\frac{V_{1}+V_{2}}{2}\right)$.
Output Voltage: Since any signal applied to op-amp in general have both in phase and out of phase components the resulting output can be expressed as $V_{0}=A_{d} V_{d}+A_{c} V_{c}$.

Where $V_{d}=$ difference voltage, $V_{C}=$ common mode voltage,
$A_{d}=$ difference mode gain of the amplifier, $A_{c}=$ Common mode gain of the amplifier.
CMRR \{Common Mode Rejection Ratio\}: $C M R R=\frac{A_{d}}{A_{c}}$
The value of CMRR can also be expressed in log term as
$\operatorname{CMRR}\left(\operatorname{in} d_{B}\right)=20 \log _{10} \frac{A_{d}}{A_{c}}(d B)$

Equivalent Circuit: While an input to the minus (-) input results in on opposite polarity output. The ac equivalent circuit of the op-amp is shown in figure. As shown the input signal applied between input terminals sees as input impedance Ri typically very high. The output voltage is shown to be the amplifier gain times the input signal taken through output impedance R_{0}, which is typically very low. An ideal op-amp circuit, as shown in figure would have infinite input impedance zero output impedance and infinite voltage gain.

Inverting Amplifier: The most widely used constant gain amplifier circuit is the inverting amplifier.

Non-inverting Amplifier: The connection of figures shows an op-amp that works as a non-inverting amplifier or constant gain multiplier. It should be noted that the inverting amplifier connection is more widely used because it has better frequency stability.

By virtual ground law: $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{i}}$

$$
\Rightarrow V_{i}=\frac{R_{1} V_{0}}{R_{1}+R_{f}} \Rightarrow \frac{V_{0}}{V_{i}}=\frac{R_{1}+R_{f}}{R_{1}}=1+\frac{R_{f}}{R_{1}} \Rightarrow V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{i}
$$

Voltage Follower or Unity Follower: The unity follower circuit as shown in figure provides a gain of unity (1) with number polarity or phase reversal. From the equivalent circuit, it is clear that $V_{0}=V_{1}$ and that the output is the same polarity and magnitude as the input. The circuit operates like an emitter or source follower circuit except that the gain is exactly unity.

Summing Amplifier: Three input summing amplifier.

Differentiator : A differentiator circuit is shown in figure while not as useful as the circuit forms covered above the differentiator does provide a useful operation, the resulting far the circuit being

$$
V_{0}(t)=-R C \frac{d V_{1}(t)}{d t}
$$

where the scale factor is -RC .

Offset Currents and Voltages \{d.c. characteristic of op-amp\}:

(1) Input bias current: $: \frac{i_{B}^{+}+i_{B}^{-}}{2}$
(2) Input offset current: $\mathrm{I}_{0 \mathrm{~s}}=\left|\mathrm{I}_{\mathrm{B}}{ }^{+}\right|-\left|\mathrm{I}_{\mathrm{B}}{ }^{-}\right|$
(3) Input offset voltage : $\mathrm{V}_{0 \mathrm{~s}}=\mathrm{V}_{2}-\mathrm{V}_{1}$

Note:
Due to mismatching between V_{1} and V_{2} output voltage may be positive or negative so we apply offset voltage (V_{os}).
Slew Rate: Another parameter reflecting the op-amp's ability to handling varying signal is slew rate, defined as slew rate $=$ maximum rate at which amplifier output can change in volts per micro second.

$$
S R=\frac{\Delta V_{0}}{\Delta t} V / \mu s \text { with } t \text { in } \mu s .
$$

CAREER ENDEAVOUR)

SOLVED PROBLEMS

1. Calculate the slew rate of given circuit.

Soln. For a gain of magnitude $A_{C L}=\left|\frac{R_{F}}{R_{1}}\right|=\frac{240 K \Omega}{10 K \Omega}=24$. The output voltage provides.
$\mathrm{K}=\mathrm{A}_{\mathrm{CL}}, \mathrm{V}_{\mathrm{i}}=24(0.2 \mathrm{~V}) \Rightarrow 0.48 \mathrm{~V}$
$\omega \leq \frac{S R}{K}=\frac{0.5 \mathrm{v} / \mu s}{0.48}=1.1 \times 10^{6} \mathrm{rad} / \mathrm{sec}$
Voltage Buffer: A voltage buffer circuit provides a means of isolation on input signal from a load by using a stage having unity gain with no phase or polarity inversion.

Controlled Sources: Op-amp can be used to form various types of controlled sources. An input voltage can be used to control on output voltage or current or an input current can be used to control on output voltage or current. There type of connections are suitable far use in various instrument system (circuit). It has four types:
(1) Voltage Controlled Voltage Source
(2) Voltage Controlled Current Source
(3) Current Controlled Current Source
(4) Current Controlled Voltage Source
(1) Voltage Controlled Voltage Source: An ideal form of a voltage source whose output V_{0} is controlled by on input voltage V_{J} is shown in figure. The output voltage is seen to be independent on the input voltage. This type of circuit can be built using an op-amp as shown in figure.
(i) Inverting op-amp:

By virtual ground condition $V_{n}=V_{p}=0$
Now KCL at point A, $\frac{V_{i}-0}{R_{i}}=\frac{0-V_{0}}{R_{f}} \Rightarrow \frac{V_{0}}{V_{i}}=-\left(\frac{R_{f}}{R_{i}}\right)$
(CAREER ENDEAVOUR
(ii) Non-inverting op-amp:

By virtual ground condition $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{i}}$
Now KCL at point A
$\frac{O-V_{i}}{R_{i}}=\frac{V_{i}-V_{o}}{R_{f}} \Rightarrow \frac{V_{0}}{R_{f}}=\left(\frac{R_{f}+R_{i}}{R_{f}+R_{i}}\right) V_{i} \Rightarrow \frac{V_{0}}{V_{i}}=1+\frac{R_{f}}{R_{i}}$
(2) Voltage Controlled Current Source: An ideal form of circuit providing an output current controlled by an input voltage is that of figure. The output current is dependent on the input voltage.

Practical Circuit:

(3) Current Controlled Voltage Source: An ideal form of a voltage source controlled by a input current is shown in figure. The output voltage is dependent on the input current.

Practical Circuit:

(4) Current Controlled Current Source: An ideal form of a circuit providing on output current dependent on an input current is shown in figure. In this type of circuit on output current is provided dependent on the input current.

Practical Circuit:

Low Pass Filter: A ${ }^{\text {st }}$ order, low pass filter using resistor and capacitor as in figure shown has a practical slope of -20 dB per decade as shown in figure (rather them the ideal response of figure). The voltage gain below the cutoff frequency is constant at
$A_{\mathrm{v}}=1+\frac{R_{f}}{R_{G}}$, at a cut off frequency of $f_{O H}=\frac{1}{2 \pi R_{1} C_{1}}$

Second Order Filter: Connecting two sections of filter as in given figure result in a second order low pass filter with cut off at 40 dB decade closer to the ideal characteristic.

High-Pass Active Filter: First and second order high-pass active filter can be built as shown in figure.
The amplifier cut off frequency is $f_{O L}=\frac{1}{2 \pi R_{1} C_{1}}$ with a second order filter $\mathrm{R}_{1}=\mathrm{R}_{2}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}$ result is the same cut off frequency as in figure.

Band Pass Filter: Figure shows a band pass filter using two stages. The $1^{\text {st }}$ a high pass filter and the second a low pass filter. The combined operation being the desired band pass response.

High Pass Section
Low Pass Section

Instrument Amplifier:

Calculation of output voltage:
$V_{0}=\frac{R_{2}}{R_{1}}\left(V_{2}^{\prime}-V_{1}^{\prime}\right) \quad I=\frac{V_{1}-V_{2}}{R}$
$V_{1}^{\prime}-V_{1}=I R^{\prime}$
$V_{2}-V_{2}^{\prime}=I R^{\prime}$
$V_{1}^{\prime}-V_{2}^{\prime}=2 I R^{\prime}+V_{1}-V_{2} \quad I=\frac{V_{1}-V_{2}}{R}$
$\Rightarrow V_{1}^{\prime}-V_{2}^{\prime}=\frac{\left(2 R^{\prime}+R\right)\left(V_{1}-V_{2}\right)}{R} \Rightarrow V_{0}=\left(1+\frac{2 R^{\prime}}{R}\right)\left(\frac{R_{2}}{R_{1}}\right)\left(V_{2}-V_{1}\right)$ /OUR
2. An Active filter shown in figure. The DC gain and 3 dB out off frequency are nearly.

$\mathrm{R}_{1}=15.9 \mathrm{~K} \Omega, \mathrm{R}_{2}=159 \mathrm{~K} \Omega, \mathrm{C}=1 \mathrm{nF}$
(a) $40 \mathrm{~dB}, 3.14 \mathrm{KHz}$
(b) $40 \mathrm{~dB}, 1 \mathrm{KHz}$
(c) $20 \mathrm{~dB}, 628 \mathrm{KHz}$ (d) $20 \mathrm{~dB}, 1 \mathrm{KHz}$

Soln: $\frac{V_{D(s)}}{V_{i(S)}}=\frac{-R_{2} /\left(1+R_{2} C_{1} S\right)}{R_{1}}=\frac{-R_{2}}{R_{1}\left(1+R_{2} C_{1} S\right)}$
$A_{V}=-\frac{R_{2}}{R_{1}}=10=20 \log _{10} 10=20 d B\left\{\log _{10} 10=1\right\}$
At 3dB frequency $\left|\frac{V_{0(S)}}{V_{1(S)}}\right|=\frac{1}{\sqrt{2}} ; \frac{1}{\sqrt{1+\left(R_{2} C_{1} \omega\right)^{2}}}=\frac{1}{\sqrt{2}} \quad$ Since, DC gain $\omega=0$
On putting the value of $\mathrm{R}_{2}, \mathrm{C}_{1}$ and comparing L.H.S. and R.H.S. $\omega=1 \mathrm{KHz}$
3. In the given op-amp find, the value of output voltage. Given $\mathrm{V}_{1}=2 \mu \mathrm{~V}$ d.c. and $\mathrm{V}_{2}=4 \mu \mathrm{~V}$ d.c., $\mathrm{A}_{\mathrm{OL}}=$ $2 \times 10^{5}, \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.

Soln: Let $A_{O L}$ is open loop voltage gain. In this care $V_{0}=\left(V_{2}-V_{1}\right) A_{O L}$
$\Rightarrow \mathrm{V}_{0}=(4.2) \times 2 \times 10^{5} \times 10^{-6} \Rightarrow 4 \times 10^{-1}=0.4 \mathrm{~V}$
$\left[\mathrm{V}_{\text {sat }} \rightarrow\right.$ output will vary between $+\mathrm{V}_{\text {sat }}$ and $\left.-\mathrm{V}_{\text {sat }}\right]$
If $\mathrm{V}_{1}=-2 \mu \mathrm{~V}, \mathrm{~V}_{2}= \pm 4 \mu \mathrm{~V}$
$\mathrm{V}_{0}=(4+2) \times 2 \times 10^{5} \times 10^{-6}=12 \times 10^{-1}=1.2 \mathrm{~V}$
For Ideal Op-amp (Open Loop): Input and output voltage characteristic of open loop Op-amp.

It is clear that open loop op-amp is able to amplify signals of very small amplitude. So, practically, open loop Op-amp is not used.

For Ideal Op-Amp (Open loop):

(i) $\mathrm{R}_{\mathrm{i}}=\infty$, (ii) $\mathrm{A}_{\mathrm{OL}}=\infty$, (iii) $\mathrm{R}_{0}=0$, (iv) Slew rate $=\infty$ (v) CMRR $=\infty$
(vi) Band width $=\infty$

$\Rightarrow \quad V_{0}=A_{O L}\left(V_{p}-V_{n}\right) \Rightarrow \quad\left(V_{p}-V_{n}\right)=\frac{V_{0}}{A_{O L} \rightarrow \infty} \quad \mathrm{~V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}$

Concept of Virtual Ground:

$\mathrm{V}_{1}-\mathrm{V}_{2}=\frac{V_{0}}{A_{O L} \rightarrow \infty(\text { idealcase })}=0 \Rightarrow V_{1}=V_{2}$
In ideal case, $\mathrm{I}_{1}=\mathrm{I}_{2}=0$
4. In the given op-amp circuit. Find the output voltage.

Soln. The given op-amp is inverting amplifier. By the inverting amplifier gain formula

$$
\begin{aligned}
& A=\frac{V_{0}}{V_{i}}=-\frac{R_{f}}{R_{1}} . \text { Given, } R_{f}=400 \mathrm{~K}, \mathrm{R}_{1}=40 \mathrm{~K}, \mathrm{~V}_{\mathrm{i}}=0.1 \mathrm{~V} \\
& \Rightarrow \mathrm{~V}_{0}=-\frac{400}{40} \times 0.1=-1 \mathrm{~V}
\end{aligned}
$$

5. For the given op-amp circuit. Find voltage gain $\left(\frac{V_{0}}{V_{i}}\right)$.

Soln. Applying KCL at point A.
$\frac{V_{i}-0}{100}=\frac{0-V}{450} \Rightarrow \frac{V_{i}}{V}=\frac{-100}{450} \Rightarrow V=-4.5 V_{i}$
Now KCL at point B.
$\frac{0-V}{450}=\frac{V}{100}+\frac{V-V_{0}}{100} \quad$ (Now by equation (i) $\mathrm{V}=-4.5 \mathrm{~V}_{\mathrm{i}}$)
$\Rightarrow \frac{+4.5 V_{i}}{450}=\frac{-4.5 V_{i}}{100} \frac{-4.5 V_{i}-V_{0}}{100}$
On solving $\Rightarrow \frac{-V_{0}}{100}=\frac{4.5 V_{i}}{450}+\frac{4.5 V_{i}}{100}+\frac{4.5 V_{i}}{100} \Rightarrow \frac{V_{0}}{V_{i}}=\frac{20}{9}$
6. In the given figure of OP-amp. Find the value of resistance R. $\operatorname{Given} \frac{V_{0}}{V_{i}}=-10$

Soln. By virtual ground condition $V_{p}=V_{n}=0$
KCL at point A
$\frac{V_{i}-0}{100 K}=\frac{0-V_{2}}{R} \Rightarrow \frac{V_{i}}{100 K}=\frac{-V_{2}}{R}$
$\Rightarrow V_{2}=\frac{-R . V_{i}}{100 K}$
Now KCL at point B
$\frac{0-V_{2}}{R}=\frac{V_{2}-V_{0}}{100 K}+\frac{V_{2}}{100 K}$
$\frac{V_{0}}{V_{i}}=-10$ (Given)
By equation (i), (ii) and (A), $\mathrm{R}=450 K \Omega$
7. In the given circuit of op-amp. Find I_{0} and I_{L}.

Soln. This is inverting amplifier $\frac{V_{0}}{V_{i}}=-\left(\frac{R_{f}}{R_{i}}\right)=-\left(\frac{100}{10}\right)=-10$
$\mathrm{V}_{0}=-10 \mathrm{~V}$
\Rightarrow For current $\mathrm{I}_{\mathrm{L}} 0-(-10)=I_{L} \times 25 K \Omega$
$\Rightarrow I_{L}=\frac{10}{25}=0.4 m A \Rightarrow$ For current I ,
$\Rightarrow 0-(-10)=100 \mathrm{~K} \times I \Rightarrow \mathrm{I}=0.1 \mathrm{~mA}$
$\Rightarrow \mathrm{I}_{0}=\mathrm{I}+\mathrm{I}_{\mathrm{L}}=0.4+0.1 \Rightarrow 0.5 \mathrm{~mA}$
8. Based on Non-inverting amplifier.

. From the above given op-amp. Find I_{L} and I_{0} ?

Soln. By VGP, $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=1 \mathrm{~V} . \mathrm{KCL}$ at point $\mathrm{A}, \frac{0-1}{5}=\frac{1-V_{0}}{20} \Rightarrow V_{0}=5 \mathrm{~V}$
$I_{L}=1 m A=\frac{5}{5}=1 m A, \quad I=\frac{1-5}{20}=-0.2 m A, I_{0}=I-I_{L}=-(1+0.2)=-(1.2) m A$
So, the current direction of I and I_{0} will be reverse.
9. In the given figure of op-amp. Find the value of I_{0} and I_{L} ?

Soln. This is non-inverting amplifier. $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=5 \mathrm{~V}$ by VGP.
Now, KCL at point A,

$$
\frac{0-5}{1 K}=\frac{5-V_{D}}{4 K} \Rightarrow V_{D}=25 \mathrm{~V}, I_{L}=\frac{25}{5 K}=5 \mathrm{~mA}, I=\frac{5-25}{4 K}=-\frac{20}{4}=-5 \mathrm{~mA}
$$

$I_{0}=I-I_{L}=-5-5=-10 m A$
Voltage Follower: Means a unity gain non-inverting op-amp.

(a) $R_{f}=0, R_{1}=0$
(b) $R_{f}=0, R_{1}=\infty$
(c) $R_{f}=0$, any value of R_{1}
(d) $R_{f}=R_{1}$

For which value of R_{f} and R_{1} it makes voltage follower.
Voltage Follower: $\left\{\begin{array}{l}R_{\text {in }}=\text { Very high } \\ R_{\text {out }}=\text { Very low }\end{array}\right\}$
This resistance range is used for impedance matching or used as buffer.

Difference Amplifier:

In the above given op-amp figure. Find the value of output voltage in term of V_{1} and V_{2}.
Soln. By the VGP condition $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=\mathrm{V}$.
For the upper loop, $\frac{V_{1}-V}{R_{1}}=\frac{V-V_{0}}{R_{2}}$
For the lower loop, $\frac{V_{2}-V}{R_{1}}=-\frac{V}{R_{2}}$
$\Rightarrow \frac{V_{2}}{R_{1}}=V\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \Rightarrow V\left(\frac{R_{2}-R_{1}}{R_{1} R_{2}}\right)$
$\Rightarrow V=\frac{V_{2} \cdot R_{2}}{\left(R_{2}-R_{1}\right)}$
Now putting the value of equation (A) in equation (i)
$V_{0}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)$
for ideal subtractor circuit CMRR is ∞

Super Position, Principle: Let V_{1} be at ground, then $V_{2}=\left(1+\frac{R_{2}}{R_{1}}\right) V$
$V=\frac{R_{2} V_{2}}{R_{1}+R_{2}} \therefore V_{02}=\left(1+\frac{R_{2}}{R_{1}}\right) \cdot \frac{R_{2} V_{2}}{R_{1}+R_{2}}$
$\Rightarrow V_{02}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \cdot \frac{R_{2} V_{2}}{\left(R_{1}+R_{2}\right)} ; V_{02}=\frac{R_{2}}{R_{1}} V_{2}$
Now, when V_{2} be at ground, then, $V_{01}=-\frac{R_{2}}{R_{1}} \cdot V_{1} ; V_{0}=V_{01}+V_{02}$
Total $V_{0}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)$
10. In the given op-amp circuit. Find the output voltage V_{0} ?

Soln. $\quad \mathrm{V}_{0}=3(4-2), \mathrm{V}_{0}=6$ volt
Hence, $\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$, then $V_{0}=\frac{R_{2}}{R_{1}}\left(V_{1}-V_{2}\right)$ or $V_{0}=\frac{R_{4}}{R_{3}}\left(V_{1}-V_{2}\right)$
11. In the given op-amp circuit. Find the value of V_{0}.

Soln. Firstly, considering first inverting loop, $V_{01}=-\frac{R_{f}}{R_{1}} V_{i} \Rightarrow \frac{-100}{10} \times 2=-20 \mathrm{~V}$
Now, considering non-inverting loop $\mathrm{V}_{\mathrm{P}}=\frac{4 \times 90}{90+10} \Rightarrow \frac{360}{100} \Rightarrow 3.6 \mathrm{~V}$
$\Rightarrow \mathrm{V}_{02}=\left(1+\frac{100}{10}\right) 3.6 \Rightarrow 39.6 \quad \therefore V_{0}=(39.6+(-20 \mathrm{~V})) \Rightarrow 19.6$ Volt

Adder:

Soln: By VGP $\Rightarrow \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=0$
KCL at point A $\frac{V_{1}}{R}+\frac{V_{2}}{R}+\frac{V_{3}}{R}=\frac{0-V_{0}}{3 R} \Rightarrow V_{0}=-3\left(V_{1}+V_{2}+V_{3}\right)$
So, the above op-amp is working as a inverting adder.
For the given op-amp circuit. Find the value of output voltage.

Soln. KCL at point B $\frac{V_{1}-V}{R}+\frac{V_{2}-V}{R}+\frac{V_{3}-V}{R}=0$ or $\quad V=\frac{1}{3}\left(V_{1}+V_{2}+V_{3}\right)$
$\therefore V_{0}=\left(1+\frac{2 R}{R}\right) V \Rightarrow V_{0}=(1+2) \cdot \frac{1}{3}\left(V_{1}+V_{2}+V_{3}\right) \quad V_{0}=\left(V_{1}+V_{2}+V_{3}\right)$
So, this is non-inverting adder.
12. In the given op-amp figure. Find the output voltage.

Soln. By VGP condition (Virtual Ground Position) $\left(\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}\right)$
Let $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{p}}=\mathrm{V}$.
Now, KCL at point $\mathrm{B}, \frac{4-V_{p}}{10}+\frac{5-V_{p}}{20}=0 \Rightarrow V_{p}=\frac{13}{3}$ Volt
Now, KCL at point A, $\frac{2-V_{n}}{40}+\frac{3-V_{n}}{25}=\frac{V_{n}-V_{0}}{50}, \frac{2}{40}+\frac{3}{25}=\frac{V_{n}}{40}+\frac{V_{n}}{25}+\frac{V_{n}}{50}-\frac{V_{0}}{50}$
Now putting the value of $\mathrm{V}_{\mathrm{n}}, \frac{2}{40}+\frac{3}{25}=\frac{13}{120}+\frac{13}{75}+\frac{13}{150}-\frac{V_{0}}{50} \Rightarrow V_{0}=9.9 \mathrm{~V} \quad \because \mathrm{~V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}$
13.

In the above given op-amp circuit, find output voltage.
Soln. $\quad \mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=\mathrm{V}$ (By VGP)
KCL at positive terminal, $\frac{18-V}{20}+\frac{15-V}{40}=0 \Rightarrow V=\frac{41}{3}$ Volt .
KCL at positive terminal, $\Rightarrow \frac{0-\frac{41}{3}}{100 K}=\frac{\frac{41}{3}-V_{0}}{100} \Rightarrow V_{0}=\frac{82}{3}$ Volt
14. For the given op-amp circuits. Find $\frac{V_{01}}{V_{02}}$.

Soln. For the op-amp ... (1), this is non-inverting amplifier.
$V_{A}=\left(1+\frac{10}{1}\right) V_{i}=11 V_{i} \Rightarrow$ Op-amp (2) is working like buffer, $\mathrm{V}_{01}=11 \mathrm{~V}_{\mathrm{i}}$
$\Rightarrow \mathrm{Op}-\mathrm{amp}$ (3) is working like inverting amplifier, $V_{02}=\frac{-R}{R} 11 V_{i}=-11 V_{i}$
$\Rightarrow \frac{V_{01}}{V_{02}}=-\frac{11 V_{i}}{11 V_{i}}=-1$
15. In the given op-amp circuit find output voltage.

Soln. Because $I_{1}=I_{2} \Rightarrow V_{1}-V_{2}=0$

$$
\Rightarrow \frac{-2.4-V_{0}}{4}=2.4 \Rightarrow V_{0}=-12.0 V
$$

16. In the given op-amp circuit find V_{0} and I_{0}.

Soln: By VGP $\rightarrow \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=2 \mathrm{~V}$
Now, KCL at point A
$0.1=\frac{2-V_{0}}{8} \Rightarrow V_{0}=-2.8$ Volt, $I_{L}=\frac{2.8}{R_{L}}=1.4 m A, \mathrm{I}_{0}=1.4+0.1=1.5 \mathrm{~mA}$
17. In the given op-amp figure. Find the output voltage.

Soln. By VGP, $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}=0$, Now, KCL at point $\mathrm{A}, \frac{2}{20}+\frac{5}{25}=\frac{0-V_{0}}{100} \Rightarrow V_{01}=-30$ Volt
Now, KCL at second OP-amplifier $\frac{10-(-30)}{50}=\frac{V_{0}-10}{200} ; \frac{40}{50}=\frac{V_{0}-10}{200}$
$\therefore V_{0}=1 T_{0}$ Volt
18. In the given $O p-a m p$ circuit. Find V_{0} ?

Soln. $\quad V_{p}=\frac{10 \times 1}{10+10}=0.5 \mathrm{~V}$, By VGP condition, $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=0.5 \mathrm{~V}$
Now, KCL at point $\mathrm{A}, \Rightarrow \frac{2-0.5}{150}=\frac{0.5-V_{0}}{300} \Rightarrow V_{0}=-2.5$ Volt
19. In the given Op-amp circuit. Find output voltage.

Soln. We will 1st calculate $\mathrm{V}_{\mathrm{A}}, \frac{20 \times 10^{-6}-0}{18}=\frac{V_{A}-20 \times 10^{-6}}{510}$
$\Rightarrow 20 \times 10^{-6}\left[\frac{1}{18}+\frac{1}{510}\right]=\frac{V_{A}}{510} ; V_{A}=\frac{528}{18} \times 20 \times 10^{-6}, V_{A}=5.86 \times 10^{-4} \mathrm{Volt}$
Similarly on solving, $V_{B}=\frac{-680}{22} \times 5.86 \times 10^{-4} V, V_{B}=-0.081$ Volt, $\mathrm{V}_{0}=0.409$ Volt
20. Calculate the output voltage for the circuit with input $V_{1}=40 \mathrm{mV}, \mathrm{V}_{2}=20 \mathrm{mV}$.

Soln. $\quad V_{A}=V_{B}=0$, Now applying KCL in inverting loop
$\frac{V_{1}-0}{47}+\frac{V_{2}-0}{12}=\frac{0-V_{0}}{470}, \Rightarrow \frac{40}{47}+\frac{20}{12}=-\frac{V 0}{470} \Rightarrow V_{0}=\frac{-(40 \times 12+20 \times 47) \times 470}{47 \times 12}$
$\Rightarrow \therefore V_{0}=\frac{-(480+940) \times 5}{6}=\frac{7100}{6}=-1183.93 m V \Rightarrow V_{0}=-1.183 \mathrm{Volt}$
21. Calculate the output current I_{0} in the given circuit.

Soln. Potential at A and B points are equal by VGP. i.e. $V_{A}=V_{B}=0$
Now applying KCL in inverting loop
$\frac{V_{i}-0}{200}=\frac{0-V_{0}}{100 K} \Rightarrow V_{0}=\frac{10 \times 100 \times 10^{-3} \times 10^{3}}{200} V_{0} \Rightarrow 5 \mathrm{~V}$
Now, $I_{0}=\frac{5}{10}+\frac{5}{100 k \Omega}=0.5+0.00005 \simeq 0.5 \mathrm{~A}$
22. In the given Op-amp circuit. Find I_{0} and V_{0} ?

Soln. Applying KCL at point B, $2 \times 10^{-3}+\frac{12}{4 K}=\frac{0-V_{0}}{3 K}$

$$
\begin{aligned}
& \Rightarrow 2 \times 10^{-3}+3 \times 10^{-3}=\frac{-V_{0}}{3 K} \Rightarrow V_{0}=-(15 \text { Volt }) \\
& I_{L}=\frac{V_{0}}{6}=2.5 \mathrm{mAmp}, \quad I=\frac{0+15}{3 K}=5 \mathrm{~mA}, I_{0}=I+I_{L} \Rightarrow 7.5 \mathrm{~mA}
\end{aligned}
$$

23. In the given circuit find voltage gain $\frac{V_{0}}{V_{i}}$.

Soln. In the non-inverting loop applying KCL let $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=\mathrm{V}$
In the $\frac{0-V}{1}=\frac{V-V_{0}}{3} \Rightarrow V_{0}=4 V, V=\frac{V_{0}}{4}$.
In the inverting loop applying KCL, $\frac{V_{i}-V}{1}=\frac{V-V_{0}}{2} \Rightarrow V_{i}-\frac{V_{0}}{4}=\frac{\frac{V_{0}}{4}-V_{0}}{2} \Rightarrow \frac{V_{0}}{V_{i}}=-8$
24. In the given circuit. Find $\frac{V_{0}}{V_{1}-V_{2}}$?

Soln. $\quad V_{0}=6 I+2 I+4 I=12 I ; V_{1}-V_{2}=2 I \quad \therefore \frac{V_{0}}{V_{1}-V_{2}}=\frac{12 I}{2 I}=6$
25. In the given circuit find V_{0} ?

Soln. $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=0\{\mathrm{VGP}\}$, Now, KCL at point $\mathrm{A}, \frac{6-0}{3}=\frac{0-V_{B}}{2} \Rightarrow V_{B}=-4 V$
Now, KCL at point $\mathrm{B}, \frac{0-V_{B}}{2}=\frac{V_{B}-V_{0}}{3} \Rightarrow \because V_{B}=-4 V, \frac{4}{2}=\frac{-4-V_{0}}{3} \Rightarrow V_{0}=-10 \mathrm{~V}$
26. In the circuit calculate the output voltage V_{0} ?

(i) If $\mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$, then V_{0} ?
(ii) If $\mathrm{V}_{\mathrm{i}}=-3 \mathrm{~V}$, then V_{0} ?

Soln. (i) When $\mathrm{V}_{\mathrm{i}}=3 \mathrm{~V}$, diode D_{1} will on, Now KCL in D_{1} loop

$$
\frac{3-0}{2}=\frac{0-V_{0}}{6} \Rightarrow V_{0}=-9 \text { Volt }
$$

(ii) When $\mathrm{V}_{\mathrm{i}}=-3 \mathrm{~V}$, diode D_{2} will on, Now, KCL in D_{2} loop
$\frac{V_{i}-0}{2}=\frac{0-V_{0}}{3} \Rightarrow-\frac{3}{2}=-\frac{V_{0}}{3} \Rightarrow V_{0}=4.5$ Volt
27. In the given circuit calculate $\frac{V_{0}}{I_{S}}$.

Now, KCL at point A.

$$
\frac{V-V_{0}}{4}+\frac{V-V_{0}}{2}+\frac{V}{10}=0 \Rightarrow 5\left(V-V_{0}\right)+10\left(V-V_{0}\right)+2 V=0
$$

$\Rightarrow 5 V-5 V_{0}+10 V-10 V_{0}+2 V=0 \Rightarrow 17 \mathrm{~V}=15 V_{0} \Rightarrow V=\frac{15 V_{0}}{17}$
Now, KCL at point A
$\frac{V_{0}-V}{2}+\left(-I_{S}\right)=0 \Rightarrow V_{0}-V-2 I_{S}=0 \Rightarrow V_{0}-\frac{15 V_{0}}{17}=2 I_{S} \Rightarrow \frac{2 V_{0}}{17}=2 I_{S} \Rightarrow \frac{V_{0}}{I_{S}}=17$
28. In the given circuit find value of I_{L}.

Soln. By VGP, $\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}=\mathrm{V}$. Firstly, KCL in non-inverting terminal
$\frac{V_{i}-V}{R}=I_{L}+\frac{V-V_{0}}{R}$
Similarly, KCL in inverting terminal
$\frac{0-V}{R}=\frac{V-V_{0}}{R} \Rightarrow V_{0}=2 V \Rightarrow V=\frac{V_{0}}{2}$
Now, putting value of (ii) in equation (i)
$\frac{V_{i}-\frac{V_{0}}{2}}{R}=I_{L}+\frac{\frac{V_{0}}{2}-V_{0}}{R}, V_{i}-\frac{V_{0}}{2}=I_{L} R+\frac{V_{0}}{2}-V_{0} \Rightarrow I_{L}=\frac{V_{i}}{R}$

DC Characteristic of Op-amp:

(i) Input bias current (For DC analysis)
(ii) Input offset current
(iii) Input offset voltage

(i) Input bias current $=\frac{\left|I_{B}{ }^{+}\right|+\left|I_{B}{ }^{-}\right|}{2}$. Let $\left|I_{B}{ }^{+}\right|=\left|I_{B}{ }^{-}\right|, \quad 0-V_{0}=\left|I_{B}{ }^{-}\right| R_{f} ; V_{0}=\left|I_{B}{ }^{-}\right| R_{f}$

To compensate effect of input bias current $\mathrm{R}_{\text {comp }}$ is used. $\therefore R_{\text {comp }}=R_{1} \| R_{f}$
(ii) Input offset current; $I_{O S}=\left|I_{B}{ }^{+}\right|-\left|I_{B}{ }^{-}\right|, V_{0}=R_{f} I_{O S} \rightarrow$ output if $V_{i}=0$, due to input offset current.
(iii) Input offset voltage; $V_{O S}=V_{1}-V_{2}$, output to input offset; $V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{O S}$.
29.

Calculate I_{L}, Given $\mathrm{V}_{\mathrm{OS}}=10 \mathrm{mV},\left|\mathrm{I}_{\mathrm{B}}{ }^{-}\right|=300 \mathrm{nA}, \mathrm{I}_{\mathrm{OS}}=100 \mathrm{pA}$.
Find (a) Calculate maximum output voltage due to V_{OS} and $\mathrm{I}_{\mathrm{B}}{ }^{-}$. (b) Calculate R comperate.
(c) Calculate output voltage if $\mathrm{R}_{\text {comp }}$ is connected.

Soln. (i) If we are considering input bias current then $\mathrm{I}_{\mathrm{OS}}=0$, as we have already assumed $\left|I_{B}{ }^{+}\right|=\left|I_{B}{ }^{-}\right|$.
(ii) If $\mathrm{R}_{\text {comp }}$ is connected, then input bias current will not considered, only I_{OS} will be considered. If $R_{\text {comp }}$ is connects then for zero input = zero output.
(a) $V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) \cdot V_{O S}+R_{f} \cdot I_{B}^{-}=\left(1+\frac{10}{1}\right) \cdot 10+10 \cdot 300 n A=110+3 m V=113 m V$
(b) $R_{\text {comp }}=R_{1} \| R f=\frac{10}{11} K \Omega$
(c) $V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) \cdot V_{O S}+R_{f} I_{O S}=\left(1+\frac{10}{1}\right) \times 10 \mathrm{mV}+10 \mathrm{~K} \times 100 \mathrm{pA}$
$=110 \mathrm{mV}+0.001 \mathrm{mV}=110.001 \mathrm{mV}$
30. If input offset voltage $=4 \mathrm{mV}$, input offset current $=150 \mathrm{nA}$, input bias current $=300 \mathrm{nA}$.

Soln. $\quad V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{O S}+R_{f} \cdot I_{O S}=\left(1+\frac{500}{5}\right) \cdot 4 m V+500 K \times 150 n A=101 \times 4+75$
$=404+75=479 \mathrm{mvolt}$.
Calculation of CMRR
$C M R R=\frac{A_{d}}{A_{C}} \quad \mathrm{~A}_{\mathrm{d}}=$ differential mode gain, $\mathrm{A}_{\mathrm{C}}=$ Common mode gain

$$
V_{0}=A_{d} V_{d}+A_{C} V_{C} \quad V_{d}=V_{1}-V_{2}, V_{C}=\frac{V_{1}+V_{2}}{2}, \quad A_{d}=\left.\frac{V_{0}}{V_{d}}\right|_{V_{C}=0,} A_{C}=\left.\frac{V_{0}}{V_{C}}\right|_{V d=0}
$$

31. In the given circuit. Find the value of CMRR?

Soln. $\quad V_{0}=\frac{R}{R}\left(V_{1}-V_{2}\right), V_{0}=\left(V_{1}-V_{2}\right) \quad \therefore V_{d}=V_{1}-V_{2}, \Rightarrow A_{d}=1$
For $A_{C}, V_{1}=V_{2} \Rightarrow A_{C}=0 \quad \therefore C M R R=\frac{1}{0}=\infty$
32. In the op-amp circuit, $C M R R=40 \mathrm{~dB}$ and $\mathrm{A}_{\mathrm{d}}=50 \mathrm{~dB}$. Find A_{C}.

Soln. Here, CMRR $=$ Common Mode Rejection Ratio
$A_{d}=$ Difference Mode gain, $A_{C}=$ Common Mode gain
CMRR and A_{d} are given in $d B$. First off all we will change it in normal value.
$40 \mathrm{~dB}=20 \log _{10} \mathrm{CMRR}$

$$
\begin{aligned}
& \Rightarrow \mathrm{CMRR}=(10) \frac{40}{20}=10^{2}=100 \Rightarrow 50 \mathrm{~dB}=20 \log _{10} \mathrm{~A}_{\mathrm{d}} \\
& \Rightarrow \mathrm{~A}_{\mathrm{d}}=10^{2.5}=316.22 \Rightarrow \mathrm{CMRR}=\frac{A_{d}}{A_{C}} \Rightarrow \mathrm{~A}_{\mathrm{C}}=\frac{A_{d}}{C M R R} \Rightarrow \frac{316.27}{100}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{C}}=3.16
$$

Slew Rate: $V_{i}=\sin _{0} \omega t$

33. What is the maximum value of input voltage given to an voltage follower so, that there is no distortion (Slew rate is given).

Soln: $\quad V_{0}=V_{m} \sin \omega t$, Slew Rate $=V m . \omega \cos \omega t$, S.R. $=$ Vm. $\omega . \therefore V_{m}=\frac{S . R}{2 \pi f}$
34. For the circuit shown below the value of V_{0} is

(a) $\frac{4}{3} \mathrm{~V}$
(b) $-\frac{2}{3} \mathrm{~V}$
(c) $\frac{2}{3} \mathrm{~V}$
(d) $-\frac{4}{3} \mathrm{~V}$

Soln. $\quad \mathrm{V}_{\mathrm{p}}=\frac{6 \times 6}{48+6}=\frac{2}{3} V, V_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{p}=\left(1+\frac{10}{10}\right) \cdot \frac{2}{3}=(2) \times \frac{2}{3}=\frac{4}{3}$
35. For the circuit shown below the input resistance is

(a) $38 \mathrm{~K} \Omega$
(b) $17 K \Omega$
(c) $25 K \Omega$
(d) $47 K \Omega$

Soln. Since op-amp is ideal, $V_{n}=V_{p}, 2 k i_{s}=4 k i_{1} \Rightarrow i_{s}=2 i_{1}, V_{s}=2 k i_{s}+10 k i_{2}, i_{2}=i_{s}+i_{1}$

$$
V_{s}=2 k i_{s}+10 k\left(i_{s}+i_{1}\right) \because i_{1}=\frac{i_{s}}{2} \Rightarrow V_{s}=2 k i_{s}+10 k\left(i_{s}+\frac{i_{s}}{2}\right) \Rightarrow \frac{V_{s}}{i_{s}}=17 K=R_{i n}
$$

36. The voltage transfer characteristic of an operation amplifier is shown in figure. What are the values of gain and offset voltage for this op-amp.

(a) $10,1 \mathrm{mV}$
(b) $7500,-1 \mathrm{mV}$
(c) $20,2 \mathrm{mV}$
(d) $7500,-2 \mathrm{mV}$

Soln. $\quad V_{0}=A_{V}\left(V_{i n}+V_{\text {OS }}\right), V_{O S} \rightarrow$ Offset Voltage, $\mathrm{A}_{\mathrm{V}} \rightarrow$ Voltage Gain
$A_{V}=\frac{d V_{0}}{d V_{i n}}=\frac{10-(-5)}{(2-0) m V}=7500$, When $\mathrm{V}_{0}=0, \mathrm{~V}_{\mathrm{in}}=-\mathrm{V}_{\mathrm{OS}}$
Offset voltage is $V_{O S}=-V_{\text {in }} / V_{0}=0=-1 \mathrm{mV}$
37. An inverting operational amplifier shown in figure has an open gain of 1000 and closed loop gain of 4, gain error is

(a) 0.4%
(b) 0.5%
(c) 2.5%
(d) 2%

Soln. Gain error is given as $\Delta g=\frac{1}{A_{0}}\left(1+\frac{R_{2}}{R_{1}}\right), \mathrm{A}_{0}=1000$ (Open loop gain)
$\frac{R_{2}}{R_{1}}=4\left(\right.$ Closed loop gain), $\Delta g=\frac{1}{1000}(1+4)=0.5 \%$
38. In the following non-inverting amplifier. The op-amp has an open loop gain of 86 dB , gain error is

(a) 0.0125%
(b) 0.13%
(c) 0.930%
(d) 0.0675%

Soln. Gain error for non-inverting amplifier is given by $\Delta g=\frac{1}{A_{0}}\left(1+\frac{R_{2}}{R_{1}}\right)$
where $A_{0} \rightarrow$ open loop gain $20 \log _{10} A_{0}=86$ (given) $A_{0} \simeq 20,000, \mathrm{R}_{2}=150 \mathrm{~K} \Omega, \mathrm{R}_{1}=12 \mathrm{~K} \Omega$
So, gain error is $\Delta g=\frac{1}{20,000}\left(1+\frac{150}{2}\right)=6.75 \times 10^{-4}$ or $\Delta g=0.0675 \%$
39. Op-Amp of a given figure has open loop gain of 45 . What is closed loop gain of an op-amp.

Soln. For non-inverting $A_{C L}=\frac{\left(1+\frac{R_{f}}{R_{1}}\right)}{\left.1+\frac{\left(1+\frac{R_{f}}{R_{1}}\right)}{\left(A_{O L}\right.}\right)} \Rightarrow \frac{\left(1+\frac{20}{2}\right)}{\left(1+\frac{20}{2}\right)}=\frac{11}{1+\frac{11}{45}}=\frac{4 \times 11}{56} \Rightarrow$
Differentiator:

By VGP, $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{n}}=0$, Now, KCL at point $\mathrm{N}, i_{C}=C_{1} \frac{d}{d t}\left(V_{i}-V_{N}\right)=C_{1} \frac{d V_{i}}{d t}$, this is far capacitor current.
For feedback resistor Rf. $i_{f}=\frac{V_{0}}{R_{f}} \Rightarrow C_{1} \frac{d V_{i}}{d t}+\frac{V_{0}}{R_{f}}=0 \Rightarrow V_{0}=-R f C_{1} \frac{d V_{i}}{d t}$
We may now write the magnitude of gain A of the differentiator as,
$|A|=\left|\frac{V_{0}}{V_{i}}\right|=\left|-J \omega R f C_{1}\right|=\omega R f C_{1}$ or $|A|=\frac{f}{f_{a}}$ where $f_{a}=\frac{1}{2 \pi R f C_{1}}$
40. In the given differentiator, if $\mathrm{V}_{\mathrm{i}}=\sin \left(2 \pi \times 10^{2} t\right)$. Draw wave form of V_{0}.

Soln. $\quad V_{0}=-C R_{f} \frac{d V_{i}}{d t}, V_{0}=-0.1 \times 10^{-6} \times 1.5 \times 10^{3} \cdot \cos \left(2 \pi \times 10^{2} t\right) .2 \pi \times 10^{2}$

$$
V_{0}=-3 \pi \times 10^{-2} \cos \left(2 \pi \times 10^{2} t\right)=-0.09 \cos \left(2 \pi \times 10^{2} t\right)
$$

Practical Differentiator:

This is inverting op-amp: $\frac{V_{0(s)}}{V_{i(s)}}=-\frac{Z_{f}}{Z_{i}}=-\frac{S R_{f} C_{1}}{\left(1+S R f(f)\left(1+S C_{1} R_{1}\right)\right.}$
For $R_{f} C_{f}=R_{1} C_{1}$, we get $\frac{V_{0(S)}}{V_{i(S)}}=-\frac{S R_{f} C_{1}}{\left(1+S R_{1} C_{1}\right)^{2}}=-\frac{S R_{f} C_{1}}{\left(1+j \frac{f}{f_{b}}\right)^{2}}$
Where, $f_{b}=\frac{1}{2 \pi R_{1} C_{1}}$

