CHEMISTRY-CY

Q. 1 - Q. 20 : Carry ONE mark each.

1. A molecule has a 2-fold axis and a mirror plane perpendicular to that. The point group must have a
(a) C_{2} axis
(b) Centre of inversion
(c) σ_{h} plane
(d) σ_{v} plane
2. In the Huckel model for benzene, the π electronic transitions from the occupied to the unoccupied molecular orbitals do NOT occur at
(a) 4β
(b) 3β
(c) 2β
(d) 1β
3. The plot that describes a Carnot cycle is:
(a)

(b)

(c)

(d)

4. As the temperature tends to infinity, the partition function for a two-level system is
(a) 0
(b) 1
(c) 2
(d) infinity
5. As per the kinetic theory of ideal gases, which of the following statements is NOT correct?
(a) gas particles have mass but no volume
(b) particles are in a Brownian motion between collisions.
(c) during the collision, the system does not lose energy
(d) particles exert same force per unit area on all sides of the container.
6. Which of the following statements in NOT correct regarding fugacity of a Van der Waals gas?
(a) fugacity increases with increase in b
(b) fugacity decreases with increase in a
(c) fugacity is equal to zero if compressibility is zero
(d) fugacity is equal to one if compressibility is one
7. The homogeneous catalyst that is used in the hydroformylation or hydrocarbonylation is based on
(a) Co
(b) Cr
(c) Ti
(d) V
8. The pair of ions that most commonly forms complexes with coordination number 2 is
(a) Cd (II) and Hg (II)
(b) Cu (II) and Hg (I)
(c) Cd (II) and Hg (I)
(d) Cu (I) and Hg (II)
9. The experimental magnetic moment of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is $2.3 \mu_{\mathrm{B}}$ and is attributable to the
(a) spin - only value of a low - spin Fe
(b) spin-only value of a high-spin Fe .
(c) low-spin Fe with orbital contribution
(d) high-spin Fe with orbital contribution.
10. Iron-sulphur clusters in biological systems are involved in
(a) proton transfer
(b) atom transfer
(c) group transfer
(d) electron transfer
11. $\quad \mathrm{Mg}_{6} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{8}$ is commercially known as
(a) asbestos
(b) water-glass
(c) soda-glass
(d) zeolite
12. The series with the correct order of decreasing ionic size is
(a) $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
(b) $\mathrm{S}^{2}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
(c) $\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{Ca}^{2+}>\mathrm{S}^{2-}$
(d) $\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{S}^{2-}>\mathrm{Ca}^{2+}$
13. The most stable conformation of the following compound is:

(a)

(c)

(d)

14. The correct order of the basicity of the following compound is

(a) IV $>$ III $>$ II $>$ I
(c) IV $>$ III $>$ I $>$ II

IV
15. Match the following compounds with their respective classes.

I

II

III

(b) III $>$ IV $>$ I $>$ II
(d) $\mathrm{III}>$ IV $>$ II $>$ I

II

III

IV
(a) I:Steroid; II: terpenoid; III: alkaloid; IV DNA base
(b) I:terpenoid; II; steroid; III: alkaloid;IV: DNA base
(c) I:terpenoid; II:steroid; III: DNA base; IV: alkaloid.
(d) I:steroid; II: terpenoid; III: DNA base; IV: alkaloid.
16. Which of the following absorptions is shown by 1,3 -butadiene in its UV absorption spectrum recorded in n hexane ($\varepsilon_{\text {max }}$ is the molar absorptivity) ?
(a) $\lambda_{\text {max }} 217 \mathrm{~nm}\left(\varepsilon_{\text {max }}=21,000\right)$
(b) $\lambda_{\text {max }} 214 \mathrm{~nm}\left(\varepsilon_{\text {max }}=210\right)$
(c) $\lambda_{\text {max }} 253 \mathrm{~nm}\left(\varepsilon_{\text {max }}=50,000\right)$
(d) $\lambda_{\text {max }} 250 \mathrm{~nm}\left(\varepsilon_{\text {max }}=500\right)$
17. Which of the following compounds is expected to show a sharp singlet for one of its protons at $\delta \geq 8 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR spectrum, given that this signal remains unaffected on shaking the solution thoroughly with $\mathrm{D}_{2} \mathrm{O}$?
(a) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(b) $\mathrm{CH}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{5}$
(c) $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CH}$
(d) $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CHO}$
18. The most appropriate starting materials for one step synthesis of the compound (I) are

(a)

(b)

(c)

(d)

19. Identify the major product P in the following reaction.

(a)

(b)

(d)

20. Which of the statement is CORRECT about the mechanism of the following reaction?

(a) DMSO reacts with alcohol initially to give

(b) $(\mathrm{COCl})_{2}$ reacts with the alcohol initially to give

(c) DMSO reacts with $(\mathrm{COCl})_{2}$ initially to give $\mathrm{Cl}-\overbrace{-}^{(4)}$
(d) $(\mathrm{COCl})_{2}$ reacts with DMSO initially to give $\mathrm{Cl}-\mathrm{O} \stackrel{\text { - }}{\text { - }}$

Q.21- Q.85 : Carry TWO marks each.

21. To demonstrate the variational principle, a trial function $\psi=\mathrm{C}_{1} \frac{\psi_{2 \mathrm{~s}}+\psi_{3 \mathrm{~s}}}{\sqrt{2}}+\mathrm{C}_{2} \frac{\psi_{2 \mathrm{~s}}-\psi_{3 \mathrm{~s}}}{\sqrt{2}}$
where C_{1} and C_{2} are the variational parameters and $\psi_{2 \mathrm{~s}}$ and $\psi_{3 \mathrm{~s}}$ are the 2 s , and 3 s orbitals of the hydrogen atom, is constructed. The corresponding secular determinant for the hydrogen atom (in eV) is
(a) $\left|\begin{array}{ll}3.4(1+4 / 9) 2-\mathrm{E} & 3.4(1-4 / 9) / 2 \\ 3.4(1-4 / 9) / 2 & 3.4(1+4 / 9) 2-\mathrm{E}\end{array}\right|$
(b) $\left|\begin{array}{ll}3.4(1+4 / 9) 2-\mathrm{E} & 3.4(1-4 / 9) / 2 \\ 3.4(1-4 / 9) / 2 & 3.4(1-4 / 9) 2-\mathrm{E}\end{array}\right|$
(c) $\left|\begin{array}{ll}3.4(1+4 / 9) 2-\mathrm{E} & 3.4(1+4 / 9) / 2 \\ 3.4(1-4 / 9) / 2 & 3.4(1-4 / 9) 2-\mathrm{E}\end{array}\right|$
(d) $\left|\begin{array}{ll}3.4(1+4 / 9) 2-\mathrm{E} & 0 \\ 0 & 3.4(1+4 / 9) 2-\mathrm{E}\end{array}\right|$
22. The $\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}$ transition for a molecule having $\mathrm{C}_{3 \mathrm{v}}$ symmetry is
(a) due to dipole pointing in x direction
(b) due to dipole pointing in y direction
(c) due to dipole pointing in z direction
(d) not allowed
23. Which of the following pairs of operators commute?
(a) x and $\frac{d}{d x}$
(b) $\frac{d}{d x}$ and $\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}$
(c) $x^{2} \frac{d}{d x}$ and $\frac{d^{2}}{d x^{2}}$
(d) x^{2} and $\frac{d}{d x}$
24. The zero-point energy of the vibration of ${ }^{35} \mathrm{Cl}_{2}$ mimicking a harmonic oscillator with a force cosntant $\mathrm{k}=$ $2293.8 \mathrm{Nm}^{-1}$ is
(a) $10.5 \times 10^{-21} \mathrm{~J}$
(b) $14.8 \times 10^{-21} \mathrm{~J}$
(c) $20 \times 10^{-21} \mathrm{~J}$
(d) $29.6 \times 10^{-21} \mathrm{~J}$
25. The moleculer active in rotational microwave, infrared absorption as well as rotational Raman spectra is:
(a) CO_{2}
(b) SF_{6}
(c) HCl
(d) H_{2}.
26. One mole each of $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are added to water to prepare one litre solution. The pH of the solution is
(a) 6.37
(b) 8.31
(c) 10.25
(d) 7
27. Given the standard potential for the following half-cell reaction at 298 K

$$
\begin{array}{ll}
\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & \mathrm{E}_{0}=0.52 \mathrm{~V} \\
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) & \mathrm{E}_{0}=0.16 \mathrm{~V}
\end{array}
$$

Calculate the $\Delta \mathrm{G}^{0}(\mathrm{~kJ})$ for the reaction, $2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}$
(a) -34.740
(b) -65.720
(c) -69.480
(d) -131.440
28. One mole each of acetic acid and sodium acetate are dissolved in 1 kg of water. Boiling point of the resulting solution is
(a) $100.51^{\circ} \mathrm{C}$
(b) $101.02^{\circ} \mathrm{C}$
(c) $101.53^{\circ} \mathrm{C}$
(d) $102.04^{\circ} \mathrm{C}$
29. $\Delta \mathrm{S}_{\text {univ }}^{0}$ for the following reaction, at 298 K is:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

$$
\Delta \mathrm{S}_{\mathrm{sys}}^{0}=-197 \mathrm{JK}^{-1}, \quad \Delta \mathrm{H}_{\mathrm{sys}}^{0}=-91.8 \mathrm{~kJ}
$$

(a) $-197 \mathrm{~J} \mathrm{~K}^{-1}$
(b) $0 \mathrm{~J} \mathrm{~K}^{-1}$
(c) $-308 \mathrm{~J} \mathrm{~K}^{-1}$
(d) $111 \mathrm{~J} \mathrm{~K}^{-1}$
30. Consider an exothermic reaction $A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{I}$ as the temperature increases
(a) $\mathrm{k}_{1}, \mathrm{k}_{-1}$, and $\mathrm{k}_{1} / \mathrm{k}_{-1}$ increases
(b) k_{1} increases, k_{-1} decreases, and $\mathrm{k}_{1} / \mathrm{k}_{-1}$ increases.
(c) $\mathrm{k}_{1}, \mathrm{k}_{-1}$ increases and $\mathrm{k}_{1} / \mathrm{k}_{-1}$ decreases
(d) k_{1} and k_{-1} decrease, and $\mathrm{k}_{1} / \mathrm{k}_{-1}$ increases.
31. A radical contains ${ }^{14} \mathrm{~N}(\mathrm{I}=1)$ with hyperfine constant 1.61 mT and two equivalent protons $(\mathrm{I}=1 / 2)$ with hyperfine constant 0.35 mT . The ESR spectrum will exhibit.
(a) 3 lines
(b) 6 lines
(c) 7 lines
(d) 9 lines.
32. The set of ions expected to show Janh-Teller distortion in their complexes is
(a) Ti (III), Cu (II), High-spin Fe (III)
(b) Cu (I), Ni (II), High-spin Fe(III)
(c) Cu (II), Low-spin Fe (III), Ti(III)
(d) Low-spin Fe (III), Mn (II), Cu (I)
33. The series with correct order of increasing Δ_{0} in their complexes is:
(a) $\mathrm{I}^{-}<\mathrm{PR}_{3}<\mathrm{CH}_{3}^{-}<\mathrm{CO}$
(b) $\mathrm{PR}_{3}<\mathrm{CH}_{3}^{-}<\mathrm{I}^{-}<\mathrm{CO}$
(c) $\mathrm{CH}_{3}^{-}<\mathrm{PR}_{3}<\mathrm{I}^{-}<\mathrm{CO}$
(d) $\mathrm{I}^{-}<\mathrm{CH}_{3}^{-}<\mathrm{PR}_{3}<\mathrm{CO}$
34. Coordinated water molecules of a $\mathrm{Cd}($ II $)$ complex can be successively replaced by Br^{-}finally to result in $\left[\mathrm{CdBr}_{4}\right]^{2-}$. In this process, the fourth equilibrium constant is observed to be higher than the third one, because
(a) equilibrium constant for the last step is always the highest.
(b) three molecules of $\mathrm{H}_{2} \mathrm{O}$ are released during the fourth step.
(c) the aquo- $\mathrm{Cd}(\mathrm{II})$ species is octahedral.
(d) an anion $\left(\mathrm{Br}^{-}\right)$replaces a neutral $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecule from the coordination sphere.
35. The CORRECT statement regarding the thermodynamic stability and kinetic reactivity of metal ion complexes is that
(a) more stable complexes are less reactive.
(b) there exists a dependence on the bulkiness of the ligand.
(c) there exists no direct relation between these two phenomenon.
(d) there exists a dependence on the size of the metal ion.
36. The CORRECT order of the rate of exchange of water molecules between the coordination sphere and the bulk is:
(a) $\mathrm{Cr}^{3+}<\mathrm{Al}^{3+}<\mathrm{Cr}^{2+}<\mathrm{Ni}^{2+}$
(b) $\mathrm{Cr}^{3+}<\mathrm{Al}^{3+}<\mathrm{Ni}^{2+}<\mathrm{Cr}^{2+}$
(c) $\mathrm{Cr}^{3+}<\mathrm{Ni}^{2+}<\mathrm{Cr}^{2+}<\mathrm{Al}^{3+}$
(d) $\mathrm{Cr}^{3+}<\mathrm{Cr}^{2+}<\mathrm{Al}^{3+}<\mathrm{Ni}^{2+}$
37. The amino acid side chain high affinity for Ca^{2+} and Cu^{2+} in metallo-proteins is:
(a) carboxylate in both the cases.
(b) imidazole in both the cases.
(c) caboxylate for Ca^{2+} and imidazole for Cu^{2+}.
(d) imidazole for Ca^{2+} and carboxylate for Cu^{2+}.
38. The CORRECT order of the soft character (as per HSAB principle) of the central metal ion is
(a) $\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{CrCl}_{4}\right]^{-}<\left[\mathrm{Cr}(\text { bipy })_{3}\right]<\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}$
(b) $\left[\mathrm{CrCl}_{4}\right]^{-}<\left[\mathrm{Cr}(\text { bipy })_{3}\right]<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}$
(c) $\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{Cr}(\text { bipy })_{3}\right]<\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}<\left[\mathrm{CrCl}_{4}\right]^{-}$
(d) $\left[\mathrm{CrCl}_{4}\right]^{-}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}<\left[\mathrm{Cr}(\mathrm{bipy})_{3}\right]$
39. The crystal structure of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ contains
(a) octahedral and tetrahedral units
(b) only octahedral units
(c) octahedral and pyramidal units
(d) octahedral and square-planar units
40. The symmetry elements that are present in BF_{3} are
(a) $\mathrm{C}_{3}, \sigma_{\mathrm{v}}, \sigma_{\mathrm{h}}, 3 \mathrm{C}_{2}$
(b) $\mathrm{C}_{3}, 3 \mathrm{C}_{2}, \mathrm{~S}_{2}, \sigma_{v}$
(c) $\mathrm{C}_{3}, 3 \mathrm{C}_{2}, \sigma_{\mathrm{h}}, \mathrm{S}_{2}$
(d) $\mathrm{C}_{3}, \sigma_{\mathrm{h}}, \sigma_{\mathrm{v}}, \mathrm{i}$
41. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is isolobal with
(a) CH_{4}
(b) CH_{3}
(c) CH_{2}
(d) CH
42. The CORRECT order of the CO stretching vibrational frequency is
(a) $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\mathrm{CO}>\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
(b) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]>\mathrm{CO}>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$
(c) $\mathrm{CO}>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}>\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
(d) $\mathrm{CO}>\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$
43. When a reduced cytochrome transfers an electron from its $\mathrm{Fe}(\mathrm{II})$ to the bound O_{2},
(a) The bond order of O_{2} is reduced by one and $v_{O_{2}}$ decreases.
(b) A metal bound superoxide is formed and $v_{O_{2}}$ decreases.
(c) A metal bound superoxide is formed and $v_{O_{2}}$ increases
(d) The bond order of O_{2} is reduced by one and $v_{O_{2}}$ increases.
44. The atomic radius (in cm) of an element with a body centered cubic unit cell of volume $75.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, molecular weight 137.3 and density $3.62 \mathrm{~g} \mathrm{~cm}^{-3}$ is
(a) 1.5×10^{-8}
(b) 1.6×10^{-8}
(c) 2.0×10^{-8}
(d) 2.2×10^{-8}
45. If the dipole moment of HCl is 1.08 D and the bond distance is $1.27 \AA$, then partial charge on hydrogen and chlorine, respectively, are
(a) +1.0 and -1.0
(b) +0.85 and -0.85
(c) +0.356 and -0.356
(d) +0.178 and -0.178
46. One gram of ${ }^{90} \mathrm{Sr}$ gets converted to 0.953 g after 2 years. The half life of ${ }^{90} \mathrm{Sr}$, and the amount of ${ }^{90} \mathrm{Sr}$ remaining after 5 years are
(a) 1.44 years and 0.916 g
(b) 57.6 years and 0.75 g
(c) 28.8 years and 0.887 g
(d) 100 years and 0.982 g
47. The metal ion that is expected to shift the C_{r}-methylene group in heptanol from 2 to 10 ppm in ${ }^{1} \mathrm{H}$ NMR is
(a) $\mathrm{Eu}($ III)
(b) Tl (III)
(c) Al (III)
(d) Sc (III)
48. When $\mathrm{Al}_{4} \mathrm{C}_{3}$ and $\mathrm{Mg}_{2} \mathrm{C}_{3}$ reacts with $\mathrm{H}_{2} \mathrm{O}$, then major products formed respectively, are
(a) ethyne and ethane
(b) methane and propyne
(c) propane and propene
(d) methane and propene
49. The arrangement of sulphur in zinc blende and wurtzite structures, respectively, are
(a) hexagonal close packing and cubic close packing
(b) cubic close packing and hexagonal close packing
(c) simple cubic packing in both the structures
(d) hexagonal close packing in both the structures
50. The reaction between $\operatorname{Pr}_{6} \mathrm{O}_{11}$ and dilute HCl leads to the formation of
(a) a coloured solution
(b) only a black precipitate PrO_{2}
(c) a black precipitate of PrO_{2} and soluble PrCl_{3}
(d) only soluble PrCl_{3}
51. $\left[\mathrm{XeO}_{6}\right]^{4-}$ is octahedral whereas XeF_{6} is a disordered one, because
(a) fluorine is more electronegative than oxygen
(b) Xe has a lone-pair in XeF_{6}
(c) XeF_{6} is neutral whereas $\left[\mathrm{XeO}_{6}\right]^{4}$ is anionic.
(d) $\mathrm{Xe}-\mathrm{F}$ bond has more ionic character
52. In biological systems, the metal ion involved in the dioxygen transport besides Fe is
(a) Co
(b) Zn
(c) Mg
(d) Cu
53. $\left[\mathrm{Ru}\left(2,2^{\prime}-\text { bipyuridyl }\right)_{3}\right]^{2+}$, when it absorbs at 452 nm , is a very good oxidizing as well as reducing agent due to the formation of
(a) $\left[\mathrm{Ru}^{\mathrm{I}}\left(2,2^{\prime}-\text { bipyridyl }\right)_{3}\right]^{+}$
(b) $\left[\mathrm{Ru}^{\mathrm{I}}\left(2,2^{\prime}-\text { bipyridyl }\right)_{2}\left(2,2^{\prime} \text { bipyridyl }{ }^{+}\right)\right]^{2+}$
(c) $\left.\left[\mathrm{Ru}^{\text {III }}\left(2,2^{\prime}-\text { bipyridyl }\right)_{3}\right)\right]^{3+}$
(d) $\left[\mathrm{Ru}^{\text {III }}\left(2,2^{\prime}-\text { bipyridyl }\right)_{2}\left(2,2^{\prime}-\text { bipyridyl }\right)\right]^{2+}$
54. In the proton decoupled ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}=0$, the number of lines observed, respectively, are
(a) two and one
(b) one and two
(c) three and one
(d) two and two.
55. Among, $\mathrm{RO}^{-}, \mathrm{AsMe}_{3}, \mathrm{ROR}^{\prime}, \mathrm{CN}^{-}, \mathrm{RCO}_{2}^{-}, \mathrm{SCN}^{-}$, the set of ligands with good π-acceptor nature are
(a) $\mathrm{RO}^{-}, \mathrm{RCO}_{2}^{-}, \mathrm{SCN}^{-}$
(b) $\mathrm{RO}^{-}, \mathrm{RCO}_{2}^{-}, \mathrm{AsMe}_{3}$
(c) $\mathrm{AsMe}_{3}, \mathrm{CN}^{-}, \mathrm{SCN}^{-}$
(d) $\mathrm{RO}^{-}, \mathrm{ROR}^{\prime}, \mathrm{RCO}_{2}^{-}$
56. Identify the correct stereochemical relationship amongst the hydrogen atoms $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} in the following molecule:

(a) H_{a} and H_{b} : enantiotopic
(b) H_{a} and H_{b} : diastereotopic
(c) H_{a} and H_{c} : enantiotopic
(d) H_{b} and H_{c} : diastereotopic.
57. The configurations of the reactant and the product in the following reaction, respectively, are

(a) R, R
(b) R, S
(c) S, R
(d) S, S
58. Match the reactions of some p-substituted benzene derivatives (a)-(d) given in List I with the Hammett's pvalues (i) - (iv) in List II and identify the correct match.

List - I

(a) $\mathrm{ArCH}_{2}-\mathrm{Cl} \xrightarrow[70^{\circ} \mathrm{C}]{\text { aq.actone }} \mathrm{ArCH}_{2}-\mathrm{OH}+\mathrm{HCl}$
(b) $\mathrm{ArCH}_{2}-\mathrm{CO}_{2} \mathrm{H} \underset{25^{\circ} \mathrm{C}}{\stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons}} \mathrm{ArCH}_{2}-\mathrm{COO}^{-}+\mathrm{H}^{+}$
(c) $\mathrm{Ar}-\mathrm{Cl} \xrightarrow[50^{\circ} \mathrm{C}]{\mathrm{MeON} / \mathrm{MeH}} \mathrm{Ar}-\mathrm{OMe}+\mathrm{Cl}^{-}$
(d) $\mathrm{Ar}-\mathrm{CO}_{2} \mathrm{H} \underset{25^{\circ} \mathrm{C}}{\stackrel{\mathrm{H}, \mathrm{O}}{\rightleftharpoons}} \mathrm{Ar}-\mathrm{COO}^{-}+\mathrm{H}^{+}$
(a) a-i, b-iv, c-iii, d-ii
(b) a-iv, b-i, c-ii, d-iii
(c) a-i, b-ii, c-iv, d-iii
(d) a-iv, b-iii, c-i, d-ii

(iv) -1.88

List - II

(i) +8.50
(ii) +1
(iii) +0.49
59. On heating with dilute sulfuric acid, napththalene-1 sulfonic acid gives predominantly
(a) natphthalene
(b) napththalene-2-sulfonic acid
(c) 1-naphthol
(d) 2-naphthol
60. Predict the major product P in the following reaction

(a)

(b)

(c)

(d)

61. Select the correct classification in the following reaction from option I to IV gives below.

(I) Conrotatory electrocyclic reaction
(III) Valence isomerization
(a) I and III (b) II and IV

Identify the major product P in the following reaction.

(a)

(b)

(c)

(d)

63. Identify the major product P and Q in the following reactions from the list of compounds I to IV.

I

(a) P:I and Q:II
(b) P:II and Q:III
(c) P:IV and Q:II
(d) P:IV and Q: III
64. Identify the major product P in the following reaction:

(i) $\mathrm{CH}_{3} \mathrm{CH}_{2}$ I/THF

(a)

(b)

(c)

(d)

65. Identify the Correct set of stereochemical relationships amongst the following monosaccharides I-IV

I

III

IV
(a) I and II are anomers; III and IV are epimers
(b) I and III are epimers; II and IV are anomers
(c) I and II are epimers; III and IV are anomers
(d) I and III are anomers; I and II are epimers.
66. Select the correct pair of statements:
(I) Complementary strands run antiparallel in a double stranded DNA.
(II) The triplet codons, represented by the genetic code, are expressed by ribonucleic acids.
(III) t-RNA carries the genetic information to the site of DNA replication.
(IV) A nucleoside contains a ribose or deoxyribose and phosphate constituents only.
(a) I and II
(b) II and III
(c) III and IV
(d) I and IV.
67. Match the compounds in List - I with the stretching frequencies $\left(\mathrm{cm}^{-1}\right)$ of the principal functional groups given in List-II.

List - I

(1)
(2)

(3)

(4)

(iv) 1725
(v) 1695
(a) 1-iii, $2-\mathrm{iv}, 3-\mathrm{i}, 4-\mathrm{v}$
(b) 1-iii, 2-iv, 3-ii, 4-v
(c) 1-iv, 2-v, 3-ii, 4-i
(d) 1-iv, 2-iii, 3-v, 4-i
68. Pick the major product P in the following reaction

[CbzCl is $\left.\mathrm{PhCH}_{2} \mathrm{OCOCl}\right]$
KHCO_{3}, acetone, $40^{\circ} \mathrm{C}$
(a) CbzO

(b)

(c)

69. Identify the major product P in the following reaction:

(a)

(b)

(c)

(d)

70. Identify the major P in the following two-step reaction:
(i) $\mathrm{Cl}_{3} \mathrm{CCOCl}$

(ii) $90 \% \mathrm{HNO}_{3}$ $-50^{\circ} \mathrm{C}$
(b)

(c)

(d)

Common Data for Q.71, Q. 72 and Q.73:

Methyl ethyl ether (A) and diborane (B) form a compound, which melts congruently at 133 K . The system exhibits two eutectics, one at 25 mole percent B and 123 K and a second at 90 mole percent B and 104 K . The melting points of pure A and b are 131 K and 110 K , respectively.
71. The phases at 55 mole percent B and 108 K are,
(a) solid AB and a solid B phase
(b) solid AB and a liquid phase
(c) solid B and a liquid phase
(d) solid A and a liquid phase
72. What happens if a small amount of solid B is added to the above mixture while keeping the temperature constant?
(a) added B forms compound AB
(b) added B precipitates out
(c) overall liquid phase percentage increases with respect to the overall solid phase
(d) complete solidification takes place
73. The mixture at 25 mole percent B and at 124 K is cooled slowly to 114 K . The resulting phases are
(a) solid AB and solid A
(c) solid AB and solid B
CARECR
(b) solid AB and liquid

Common Data for Q. 74 and Q. 75.
Consider the following P-V diagram for an ideal gas that follows the diagonal path fromA to B .

74. The work done (in atm-L) on the gas in the process is
(a) 9.5
(b) 99.75
(c) 190
(d) $10 \ln (20)$

75. For the above process,
(a) $\Delta H=W$
(b) $\Delta H=Q$
(c) $\Delta H=\Delta G$
(d) $\Delta H=\Delta E$

Linked Answer Q. 76 and Q.77.

76. The first excited state wavefunction for a particle in a box that spans from $-a$ to $+a$ is
(a) $\sqrt{\frac{1}{a}} \cos \left(\frac{\pi x}{a}\right)$
(b) $\sqrt{\frac{1}{a}} \sin \left(\frac{\pi x}{a}\right)$
(c) $\sqrt{\frac{2}{a}} \cos \left(\frac{2 \pi x}{a}\right)$
(d) $\sqrt{\frac{2}{a}} \sin \left(\frac{2 \pi x}{a}\right)$
77. A perturbation $V=\delta(x-a / 2)$ is introduced in the box. The first order energy correction to the first excited state is
(a) 0
(b) $2 / a$
(c) $1 / a$
(d) $1 / 2 a$

Linked Answer Q. 78 and Q.79.

78. A reaction proceeds through the formation of an intermediate B in an unimolecular reaction

$$
\mathrm{A} \xrightarrow{k_{a}} \mathrm{~B} \xrightarrow{\mathrm{k}_{\mathrm{b}}} \mathrm{C}
$$

The integrated rate law for this reaction is
(a) $[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{k}_{\mathrm{a}} \mathrm{t}}$
(b) $[\mathrm{A}]=[\mathrm{A}]_{0}\left(\mathrm{e}^{-\mathrm{k}_{\mathrm{a}} \mathrm{t}}-\mathrm{e}^{-\mathrm{k}_{\mathrm{b}} \mathrm{t}}\right)$
(c) $[\mathrm{A}]=\frac{[\mathrm{A}]_{0}}{2}\left(1+\frac{\mathrm{k}_{\mathrm{a}} \mathrm{e}^{-\mathrm{k}_{\mathrm{b}} \mathrm{t}}-\mathrm{k}_{\mathrm{b}} \mathrm{e}^{-\mathrm{k}_{\mathrm{a}} \mathrm{t}}}{\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{b}}}\right)$
(d) $[\mathrm{A}]=[\mathrm{A}]_{0}\left(1+\mathrm{e}^{-\mathrm{k}_{\mathrm{a}} \mathrm{t}}-\mathrm{e}^{-\mathrm{k}_{\mathrm{b}} \mathrm{t}}\right)$
79. If $\mathrm{k}_{\mathrm{a}} \gg \mathrm{k}_{\mathrm{b}}$, then concentration vs. time plot for the above reaction is:
(a)

Time
(b)

(c)

Time
(d)

Time

Linked Answer Q. 80 and Q.81:

80. Identify the major product P in the following reaction

(a)

(b)

(c)

(d)

81. Product P of the above reaction transforms to a product Q on treatment with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN in benzene solution. Identify Q .
(a)

(b)

(c)

(d)

Linked Answer Q. 82 and Q.83:
82. In the following wittig reaction, the structure of the major product P and the intermediate $[\mathrm{X}]$, respectively, are

(a)

(b)

(c)

(d)

83. Which of the following sets of \&haracteristic NMR signals will be compatible with the structure of P in the above reaction?
(a) $\delta 7.18(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H})$
(b) $\delta 7.11(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H})$
$6.94(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H})$
(c) $\delta 7.18(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H})$
(d) $87.11(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.94(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H})$

Linked Answer Type Q. 84 and Q. 85

84. The products P and Q in the following sequence of reactions, respectively, are

(a)

(b)

(c)

COMe
(d)

85. The reagent for selective reduction of the aldehyde group in Q obtained in the above reaction is
(a) $\mathrm{H}_{2},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$
(b) $\left(\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{CHCH}_{2}\right)_{2} \mathrm{AlH}$
(c) $\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{BH}$
(d) LiAlH_{4}
