CHEMISTRY-CY

Q.1 - Q.20: Carry ONE mark each.

- 1. A molecule has a 2-fold axis and a mirror plane perpendicular to that. The point group must have a
 - (a) C₂ axis
- (b) Centre of inversion (c) σ_h plane
- (d) σ_v plane
- In the Huckel model for benzene, the π electronic transitions from the occupied to the unoccupied molecular 2. orbitals do NOT occur at
 - (a) 4β
- (b) 3β
- (c) 2β
- (d) 1β

3. The plot that describes a Carnot cycle is:

- As the temperature tends to infinity, the partition function for a two-level system is 4.
 - (a) 0
- (b) 1
- (c) 2

- (d) infinity
- As per the kinetic theory of ideal gases, which of the following statements is NOT correct? 5.
 - (a) gas particles have mass but no volume
 - (b) particles are in a Brownian motion between collisions.
 - (c) during the collision, the system does not lose energy
 - (d) particles exert same force per unit area on all sides of the container.
- 6. Which of the following statements in NOT correct regarding fugacity of a Van der Waals gas?
 - (a) fugacity increases with increase in b
 - (b) fugacity decreases with increase in a
 - (c) fugacity is equal to zero if compressibility is zero
 - (d) fugacity is equal to one if compressibility is one
- 7. The homogeneous catalyst that is used in the hydroformylation or hydrocarbonylation is based on
- (a) Co
- (b) Cr
- (c) Ti
- The pair of ions that most commonly forms complexes with coordination number 2 is 8.
 - (a) Cd (II) and Hg(II) (b) Cu (II) and Hg (I) (c) Cd (II) and Hg(I)

- (d) Cu (I) and Hg(II)
- The experimental magnetic moment of $K_3 \lceil Fe(CN)_6 \rceil$ is 2.3 μ_B and is attributable to the 9.
 - (a) spin only value of a low spin Fe
- (b) spin-only value of a high-spin Fe.
- (c) low-spin Fe with orbital contribution
- (d) high-spin Fe with orbital contribution.
- 10. Iron-sulphur clusters in biological systems are involved in
 - (a) proton transfer
- (b) atom transfer
- (c) group transfer
- (d) electron transfer

- 11. Mg₆Si₄O₁₀(OH)₈ is commercially known as
 - (a) asbestos
- (b) water-glass
- (c) soda-glass
- (d) zeolite
- The series with the correct order of decreasing ionic size is 12.
 - (a) $K^+ > Ca^{2+} > S^{2-} > Cl^{-}$

(b) $S^2 > Cl^- > K^+ > Ca^{2+}$

(c) $K^+ > Cl^- > Ca^{2+} > S^{2-}$

(d) $Cl^- > K^+ > S^{2-} > Ca^{2+}$

13. The most stable conformation of the following compound is:

$$(a) \ ^{\text{t-Bu}} \underbrace{ \bigwedge^{\text{Me}}_{\text{Me}}(b)}_{\text{Me}} \ ^{\text{t-Bu}} \underbrace{ \bigwedge^{\text{Me}}_{\text{Me}}(c) \ ^{\text{t-Bu}}}_{\text{Me}} \ ^{\text{Me}}$$

The correct order of the basicity of the following compound is 14.

(c) IV > III > I > II

- (d) III > IV > II > I
- Match the following compounds with their respective classes. 15.

- (a) I:Steroid; II: terpenoid; III: alkaloid; IV DNA base
- (b) I:terpenoid; II; steroid; III: alkaloid; IV: DNA base
- (c) I:terpenoid; II:steroid; III: DNA base; IV: alkaloid.
- (d) I:steroid; II: terpenoid; III: DNA base; IV: alkaloid.
- 16. Which of the following absorptions is shown by 1, 3-butadiene in its UV absorption spectrum recorded in nhexane (ε_{max} is the molar absorptivity)?
 - (a) $\lambda_{\text{max}} 217 nm (\epsilon_{\text{max}} = 21,000)$
- (b) $\lambda_{\text{max}} 214 \text{ nm} (\epsilon_{\text{max}} = 210)$
- (c) $\lambda_{\text{max}} 253 \, \text{nm} (\epsilon_{\text{max}} = 50,000)$
- (d) $\lambda_{\text{max}} 250 \text{ nm} \left(\epsilon_{\text{max}} = 500 \right)$
- Which of the following compounds is expected to show a sharp singlet for one of its protons at $\delta \ge 8$ ppm 17. in ¹H NMR spectrum, given that this signal remains unaffected on shaking the solution thoroughly with D₂O?
 - (a) CH₃CO₂H
- (b) $CH_3CONHC_6H_5$ (c) $n C_6H_{13}C \equiv CH$ (d) $n C_6H_{13}CHO$

18. The most appropriate starting materials for one step synthesis of the compound (I) are

$$(a) \qquad \qquad (b) \qquad \qquad (d) \qquad \qquad Me$$

$$(c) \qquad \qquad Me$$

$$(d) \qquad \qquad Me$$

$$(d) \qquad Me$$

19. Identify the major product P in the following reaction.

$$(a) \qquad (b) \qquad (c) \qquad (d) \qquad (d)$$

20. Which of the statement is CORRECT about the mechanism of the following reaction?

- (b) (COCl)₂ reacts with the alcohol initially to give CI, which reacts with DMSO
- (c) DMSO reacts with (COCl)₂ initially to give CI—S, which reacts with the alcohol.
- (d) (COCl)₂ reacts with DMSO initially to give Cl—O—S which reacts with the alcohol.

Q.21-Q.85: Carry TWO marks each.

To demonstrate the variational principle, a trial function $\psi = C_1 \frac{\psi_{2s} + \psi_{3s}}{\sqrt{2}} + C_2 \frac{\psi_{2s} - \psi_{3s}}{\sqrt{2}}$ 21.

where C_1 and C_2 are the variational parameters and ψ_{2s} and ψ_{3s} are the 2s, and 3s orbitals of the hydrogen atom, is constructed. The corresponding secular determinant for the hydrogen atom (in eV) is

(a)
$$\begin{vmatrix} 3.4(1+4/9) & 2-E & 3.4(1-4/9)/2 \\ 3.4(1-4/9)/2 & 3.4(1+4/9)& 2-E \end{vmatrix}$$

(b)
$$\begin{vmatrix} 3.4(1+4/9) & 2-E & 3.4(1-4/9)/2 \\ 3.4(1-4/9) & 2 & 3.4(1-4/9) & 2-E \end{vmatrix}$$

(c)
$$\begin{vmatrix} 3.4(1+4/9)2-E & 3.4(1+4/9)/2 \\ 3.4(1-4/9)/2 & 3.4(1-4/9)2-E \end{vmatrix}$$

(d)
$$\begin{vmatrix} 3.4(1+4/9)2-E & 0\\ 0 & 3.4(1+4/9)2-E \end{vmatrix}$$

The $A_1 \rightarrow A_2$ transition for a molecule having C_{3v} symmetry is 22.

- (a) due to dipole pointing in x direction
- (b) due to dipole pointing in y direction
- (c) due to dipole pointing in z direction
- (d) not allowed

23. Which of the following pairs of operators commute?

(a) x and
$$\frac{d}{dx}$$

(b)
$$\frac{d}{dx}$$
 and $\frac{d^2}{dx^2} + 2\frac{d}{dx}$ (c) $x^2 \frac{d}{dx}$ and $\frac{d^2}{dx^2}$ (d) x^2 and $\frac{d}{dx}$

(c)
$$x^2 \frac{d}{dx}$$
 and $\frac{d^2}{dx^2}$

(d)
$$x^2$$
 and $\frac{d}{dx}$

The zero-point energy of the vibration of $^{35}\text{Cl}_2$ mimicking a harmonic oscillator with a force cosntant k=24. 2293.8 Nm⁻¹ is

(a)
$$10.5 \times 10^{-21}$$
 J

(b)
$$14.8 \times 10^{-21} \text{J}$$
 (c) $20 \times 10^{-21} \text{J}$

(c)
$$20 \times 10^{-21}$$
 J

(d)
$$29.6 \times 10^{-21} \text{J}$$

25. The moleculer active in rotational microwave, infrared absorption as well as rotational Raman spectra is:

One mole each of H₂CO₃, NaHCO₃ and Na₂CO₃ are added to water to prepare one litre solution. The 26. pH of the solution is

27. Given the standard potential for the following half-cell reaction at 298 K

$$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$$
 $E_0 == 0.52 \text{ V}$

$$E_0 == 0.52 \text{ V}$$

$$Cu^{2+}(aq)+e^{-} \rightarrow Cu^{+}(aq)$$
 $E_0 = 0.16 \text{ V}$

Calculate the $\Delta G^{0}(kJ)$ for the reaction, $2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}$

$$(a) -34.740$$

$$(b) -65.720$$

$$(c) - 69.480$$

$$(d) -131.440$$

28. One mole each of acetic acid and sodium acetate are dissolved in 1 kg of water. Boiling point of the resulting solution is

- (a) 100.51 °C
- (b) 101.02 °C
- (c) 101.53 °C
- (d) 102.04 °C

 ΔS_{univ}^0 for the following reaction, at 298 K is: 29.

$$N_2 + 3H_2 \longrightarrow 2NH_3$$
 $\Delta S_{sys}^0 = -197 \text{ JK}^{-1}, \quad \Delta H_{sys}^0 = -91.8 \text{ kJ}$

$$\Delta S_{\rm sys}^0 = -197 \, \mathrm{JK}^{-1},$$

$$\Delta H_{\rm sys}^0 = -91.8 \, \mathrm{k}$$

(a)
$$-197 \text{ J K}^{-1}$$
 (b) 0 J K^{-1}

(c)
$$-308 \text{ J K}^{-1}$$

(d)
$$111 \text{ J K}^{-1}$$

Consider an exothermic reaction $A \xrightarrow{k_{\perp}} I$ as the temperature increases 30.

- (a) k_1, k_{-1} , and k_1/k_{-1} increases
- (b) k_1 increases, k_{-1} decreases, and k_1/k_{-1} increases.
- (c) k_1, k_{-1} increases and k_1/k_{-1} decreases
- (d) k_1 and k_{-1} decrease, and k_1/k_{-1} increases.

- 31. A radical contains 14 N(I = 1) with hyperfine constant 1.61 mT and two equivalent protons (I = 1/2) with hyperfine constant 0.35 mT. The ESR spectrum will exhibit.
 - (a) 3 lines
- (b) 6 lines
- (c) 7 lines
- (d) 9 lines.
- 32. The set of ions expected to show Janh-Teller distortion in their complexes is
 - (a) Ti (III), Cu(II), High-spin Fe (III)
- (b) Cu (I), Ni(II), High-spin Fe(III)
- (c) Cu (II), Low-spin Fe(III), Ti(III)
- (d) Low-spin Fe (III), Mn(II), Cu(I)
- 33. The series with correct order of increasing Δ_0 in their complexes is:
 - (a) $I^- < PR_3 < CH_3^- < CO$

(b) $PR_3 < CH_3^- < I^- < CO$

(c) $CH_3^- < PR_3 < I^- < CO$

- (d) $I^- < CH_3^- < PR_3 < CO$
- 34. Coordinated water molecules of a Cd(II) complex can be successively replaced by Br^- finally to result in $\left[\text{CdBr}_4 \right]^{2^-}$. In this process, the fourth equilibrium constant is observed to be higher than the third one, because
 - (a) equilibrium constant for the last step is always the highest.
 - (b) three molecules of H₂O are released during the fourth step.
 - (c) the aquo-Cd(II) species is octahedral.
 - (d) an anion (Br^-) replaces a neutral (H_2O) molecule from the coordination sphere.
- 35. The CORRECT statement regarding the thermodynamic stability and kinetic reactivity of metal ion complexes is that
 - (a) more stable complexes are less reactive.
 - (b) there exists a dependence on the bulkiness of the ligand.
 - (c) there exists no direct relation between these two phenomenon.
 - (d) there exists a dependence on the size of the metal ion.
- 36. The CORRECT order of the rate of exchange of water molecules between the coordination sphere and the bulk is:

(a)
$$Cr^{3+} < Al^{3+} < Cr^{2+} < Ni^{2+}$$

(b)
$$Cr^{3+} < Al^{3+} < Ni^{2+} < Cr^{2+}$$

(c)
$$Cr^{3+} < Ni^{2+} < Cr^{2+} < Al^{3+}$$

(d)
$$Cr^{3+} < Cr^{2+} < Al^{3+} < Ni^{2+}$$

- 37. The amino acid side chain high affinity for Ca²⁺ and Cu²⁺ in metallo-proteins is:
 - (a) carboxylate in both the cases.
 - (b) imidazole in both the cases.
 - (c) caboxylate for Ca²⁺ and imidazole for Cu²⁺.
 - (d) imidazole for Ca²⁺ and carboxylate for Cu²⁺.
- 38. The CORRECT order of the soft character (as per HSAB principle) of the central metal ion is

(a)
$$\left[\operatorname{CrO}_{4}\right]^{2-} < \left[\operatorname{CrCl}_{4}\right]^{-} < \left[\operatorname{Cr}\left(\operatorname{bipy}\right)_{3}\right] < \left[\operatorname{Cr}\left(\operatorname{CO}\right)_{5}\right]^{2-}$$

(b)
$$[CrCl_4]^- < [Cr(bipy)_3] < [CrO_4]^{2-} < [Cr(CO)_5]^{2-}$$

(c)
$$\left[\text{CrO}_4 \right]^{2-} < \left[\text{Cr} \left(\text{bipy} \right)_3 \right] < \left[\text{Cr} \left(\text{CO} \right)_5 \right]^{2-} < \left[\text{CrCl}_4 \right]^{-}$$

(d)
$$\left[\operatorname{CrCl}_{4}\right]^{-} < \left[\operatorname{CrO}_{4}\right]^{2-} < \left[\operatorname{Cr}\left(\operatorname{CO}\right)_{5}\right]^{2-} < \left[\operatorname{Cr}\left(\operatorname{bipy}\right)_{3}\right]$$

- 39. The crystal structure of Pb₃O₄ contains
 - (a) octahedral and tetrahedral units
- (b) only octahedral units
- (c) octahedral and pyramidal units
- (d) octahedral and square-planar units

- 40. The symmetry elements that are present in BF₃ are (a) $C_3, \sigma_v, \sigma_h, 3C_2$ (b) $C_3, 3C_2, S_2, \sigma_v$ (c) $C_3, 3C_2, \sigma_h, S_2$ (d) $C_3, \sigma_h, \sigma_v, i$ [Co(CO)₄] is isolobal with 41.
- (d) CH (a) CH₄
- The CORRECT order of the CO stretching vibrational frequency is 42. (a) $\left[\text{Ti} \left(\text{CO} \right)_6 \right]^{2-} > \left[\text{V} \left(\text{CO} \right)_6 \right]^{-} > \text{CO} > \left[\text{Cr} \left(\text{CO} \right)_6 \right]^{-} > \text{CO} > \left[\text{Cr} \left(\text{CO} \right)_6 \right]^{-} > \text{CO} > \text{Cr} \left(\text{CO} \right)_6 \right]^{-}$
 - (b) $\left[\operatorname{Cr} \left(\operatorname{CO} \right)_{6} \right] > \operatorname{CO} > \left[\operatorname{V} \left(\operatorname{CO} \right)_{6} \right]^{-} > \left[\operatorname{Ti} \left(\operatorname{CO} \right)_{6} \right]^{2}$
 - (c) $CO > V(CO)_6^{-} > Ti(CO)_6^{-} > Cr(CO)_6^{-}$
 - (d) $CO > \left[Cr(CO)_{6} \right] > \left[V(CO)_{6} \right]^{-} > \left[Ti(CO)_{6} \right]^{2-}$
- When a reduced cytochrome transfers an electron from its Fe(II) to the bound O₂, 43.
 - (a) The bond order of O_2 is reduced by one and v_{O_2} decreases.
 - (b) A metal bound superoxide is formed and v_{O_2} decreases.
 - (c) A metal bound superoxide is formed and v_{O_2} increases
 - (d) The bond order of O_2 is reduced by one and V_{O_2} increases.
- The atomic radius (in cm) of an element with a body centered cubic unit cell of volume 75.8 cm³ mol⁻¹, 44. molecular weight 137.3 and density 3.62 g cm⁻³ is
 - (a) 1.5×10^{-8}
- (b) 1.6×10^{-8}
- (c) 2.0×10^{-8}
- (d) 2.2×10^{-8}
- If the dipole moment of HCl is 1.08 D and the bond distance is 1.27 Å, then partial charge on hydrogen and 45. chlorine, respectively, are
 - (a) + 1.0 and -1.0

(b) + 0.85 and - 0.85

(c) + 0.356 and -0.356

- (d) + 0.178 and -0.178
- One gram of ${}^{90}\text{Sr}$ gets converted to 0.953 g after 2 years. The half life of ${}^{90}\text{Sr}$, and the amount of ${}^{90}\text{Sr}$ 46. remaining after 5 years are
 - (a) 1.44 years and 0.916 g

(b) 57.6 years and 0.75 g

(c) 28.8 years and 0.887 g

- (d) 100 years and 0.982 g
- The metal ion that is expected to shift the C_1 -methylene group in heptanol from 2 to $10 \, \mathrm{ppm}$ in $^1\mathrm{H}$ NMR is 47.
 - (a) Eu(III)
- (b) Tl(III)
- (c) Al (III)
- (d) Sc (III)
- When Al₄C₃ and Mg₂C₃ reacts with H₂O, then major products formed respectively, are 48.
 - (a) ethyne and ethane

(b) methane and propyne

(c) propane and propene

- (d) methane and propene
- 49. The arrangement of sulphur in zinc blende and wurtzite structures, respectively, are
 - (a) hexagonal close packing and cubic close packing
 - (b) cubic close packing and hexagonal close packing
 - (c) simple cubic packing in both the structures
 - (d) hexagonal close packing in both the structures
- 50. The reaction between Pr₆O₁₁ and dilute HCl leads to the formation of
 - (a) a coloured solution
 - (b) only a black precipitate PrO,
 - (c) a black precipitate of PrO₂ and soluble PrCl₃
 - (d) only soluble PrCl₂

- $\left[\text{XeO}_{6}\right]^{4-}$ is octahedral whereas XeF₆ is a disordered one, because 51.
 - (a) fluorine is more electronegative than oxygen
 - (b) Xe has a lone-pair in XeF₆
 - (c) XeF₆ is neutral whereas [XeO₆]⁴⁻ is anionic.
 - (d) Xe-F bond has more ionic character
- 52. In biological systems, the metal ion involved in the dioxygen transport besides Fe is
 - (a) Co
- (b) Zn
- (c) Mg
- (d) Cu
- $[Ru(2, 2' bipyuridyl)_3]^{2+}$, when it absorbs at 452 nm, is a very good oxidizing as well as reducing agent 53. due to the formation of
 - (a) $[Ru^{I}(2, 2' bipyridyl)_{3}]^{+}$
- (b) $[Ru^{I}(2,2'-bipyridyl)_{2}(2,2'bipyridyl^{+})]^{2+}$
- (c) $[Ru^{III}(2, 2' bipyridyl)_2)]^{3+}$
- (d) $[Ru^{III}(2,2'-bipyridyl)_2(2,2'-bipyridyl)]^{2+}$
- In the proton decoupled ^{13}C and ^{31}P NMR spectra of $(CH_3)_3P=0$, the number of lines observed, respec-54. tively, are
 - (a) two and one
- (b) one and two
- (c) three and one
- (d) two and two.
- 55. Among, RO⁻, AsMe₃, ROR', CN⁻, RCO₂, SCN⁻, the set of ligands with good π -acceptor nature are
 - (a) RO⁻, RCO₂, SCN⁻

(b) RO^- , RCO_2^- , $AsMe_3$

(c) AsMe₃, CN⁻, SCN⁻

- (d) RO⁻, ROR', RCO₂
- Identify the correct stereochemical relationship amongst the hydrogen atoms H_a, H_b and H_c in the following 56. molecule:

- (a) H_a and H_b: enantiotopic
- (c) H and H enantiotopic

- (b) H_a and H_k: diastereotopic
- (d) H, and H: diastereotopic.
- 57. The configurations of the reactant and the product in the following reaction, respectively, are

(a) R, R

- (d) S, S
- 58. Match the reactions of some p-substituted benzene derivatives (a)–(d) given in **List I** with the Hammett's pvalues (i) - (iv) in List II and identify the correct match.

List - I

List - II

(a) $ArCH_2 - Cl \xrightarrow{\text{aq.acetone}} ArCH_2 - OH + HCl$

(i) + 8.50

(b) $ArCH_2 - CO_2H \xrightarrow{H_2O} ArCH_2 - COO^- + H^+$

(ii) + 1

(c) $Ar - Cl \xrightarrow{MeONa/MeOH} Ar - OMe + Cl^{-}$

(iii) +0.49

(d) $Ar - CO_2H \xrightarrow{H_2O} Ar - COO^- + H^+$

- (iv) 1.88
- (a) a-i, b-iv, c-iii, d-ii (b) a-iv, b-i, c-ii, d-iii (c) a-i, b-ii, c-iv, d-iii (d) a-iv, b-iii, c-i, d-ii

- 59. On heating with dilute sulfuric acid, napththalene-1 sulfonic acid gives predominantly
 - (a) natphthalene

(b) napththalene-2-sulfonic acid

(c) 1-naphthol

- (d) 2-naphthol
- 60. Predict the major product P in the following reaction

$$\begin{array}{c|c}
OH & Me \\
Me & HNO_2
\end{array}$$

$$NH_2$$

$$(c) \begin{picture}(c){c} \begin{picture}($$

$$(d)$$
 OH Me CH_2

61. Select the correct classification in the following reaction from option I to IV gives below.

- (I) Conrotatory electrocyclic reaction
- (II) Disrotatory electrocyclic reaction

(III) Valence isomerization

(IV) $\left[{}_{x}4_{s} + {}_{\pi}2_{a} \right]$ cycloaddition reaction

- (a) I and III
- (b) II and IV
- (c) II and II
- (d) I and IV
- 62. Identify the major product P in the following reaction.

63. Identify the major product P and Q in the following reactions from the list of compounds I to IV.

Q
$$\frac{hv/\text{n-hexane}}{\text{PhCOPh}}$$
 $\frac{hv/\text{n-hexane}}{\text{PhCOCH}_3}$ P

- (a) P:I and Q:II
- (b) P:II and Q:III
- (c) P:IV and Q:II
- (d) P:IV and Q: III
- 64. Identify the major product P in the following reaction:

OLi OLi
$$(i) CH_3CH_2I/THF$$
 P

OCH₂CH₃

(a) H_3CH_2C
OEt

OEt

OCH₂CH₃
OOCH₂CH₃

65. Identify the Correct set of stereochemical relationships amongst the following monosaccharides I-IV

- (a) I and II are anomers; III and IV are epimers
- (b) I and III are epimers; II and IV are anomers
- (c) I and II are epimers; III and IV are anomers
- (d) I and III are anomers; I and II are epimers.
- 66. Select the correct pair of statements:
 - (I) Complementary strands run antiparallel in a double stranded DNA.
 - (II) The triplet codons, represented by the genetic code, are expressed by ribonucleic acids.
 - (III) t-RNA carries the genetic information to the site of DNA replication.
 - (IV) A nucleoside contains a ribose or deoxyribose and phosphate constituents only.
 - (a) I and II
- (b) II and III
- (c) III and IV
- (d) I and IV.

67. Match the compounds in **List - I** with the stretching frequencies (cm⁻¹) of the principal functional groups given in **List-II**.

List - I

(i) 2240

(ii) 1795

(iii) 1750

(iv) 1725

(b) 1-iii, 2-iv, 3-ii, 4-v

(d) 1-iv, 2-iii, 3-v, 4-i

68. Pick the major product P in the following reaction

69. Identify the major product P in the following reaction:

SiMe₃
$$CH_3COCI \rightarrow P$$

$$TiCl_4 \rightarrow P$$

$$COCH_3 \rightarrow COCH_3 \rightarrow C$$

70. Identify the major P in the following two-step reaction:

Common Data for Q.71, Q.72 and Q.73:

Methyl ethyl ether (A) and diborane (B) form a compound, which melts congruently at 133 K. The system exhibits two eutectics, one at 25 mole percent B and 123 K and a second at 90 mole percent B and 104 K. The melting points of pure A and b are 131 K and 110 K, respectively.

- 71. The phases at 55 mole percent B and 108 K are,
 - (a) solid AB and a solid B phase
- (b) solid AB and a liquid phase
- (c) solid B and a liquid phase
- (d) solid A and a liquid phase
- 72. What happens if a small amount of solid B is added to the above mixture while keeping the temperature constant?
 - (a) added B forms compound AB
 - (b) added B precipitates out
 - (c) overall liquid phase percentage increases with respect to the overall solid phase
 - (d) complete solidification takes place
- 73. The mixture at 25 mole percent B and at 124 K is cooled slowly to 114 K. The resulting phases are
 - (a) solid AB and solid A

(b) solid AB and liquid

(c) solid AB and solid B

(d) liquid and solid A

Common Data for Q. 74 and Q. 75.

Consider the following P-V diagram for an ideal gas that follows the diagonal path from A to B.

74. The work done (in atm-L) on the gas in the process is

(a) 9.5

(b) 99.75

(c) 190

(d) $10 \ln (20)$

- 75. For the above process,
 - (a) $\Delta H = W$
- (b) $\Delta H = Q$
- (c) $\Delta H = \Delta G$
- (d) $\Delta H = \Delta E$

Linked Answer Q. 76 and Q.77.

- The first excited state wavefunction for a particle in a box that spans from -a to +a is 76.
- (a) $\sqrt{\frac{1}{a}}\cos\left(\frac{\pi x}{a}\right)$ (b) $\sqrt{\frac{1}{a}}\sin\left(\frac{\pi x}{a}\right)$ (c) $\sqrt{\frac{2}{a}}\cos\left(\frac{2\pi x}{a}\right)$ (d) $\sqrt{\frac{2}{a}}\sin\left(\frac{2\pi x}{a}\right)$
- A perturbation $V = \delta(x a/2)$ is introduced in the box. The first order energy correction to the first excited 77. state is
 - (a) 0
- (b) 2/a
- (c) 1/a
- (d) 1/2a

Linked Answer Q. 78 and Q.79.

A reaction proceeds through the formation of an intermediate B in an unimolecular reaction 78.

$$A \xrightarrow{k_a} B \xrightarrow{k_b} C$$

The integrated rate law for this reaction is

(a)
$$[A] = [A]_0 e^{-k_a t}$$

(b)
$$[A] = [A]_0 (e^{-k_a t} - e^{-k_b t})$$

(c)
$$[A] = \frac{[A]_0}{2} \left(1 + \frac{k_a e^{-k_b t} - k_b e^{-k_a t}}{k_a - k_b} \right)$$
 (d) $[A] = [A]_0 \left(1 + e^{-k_a t} - e^{-k_b t} \right)$

(d)
$$[A] = [A]_0 (1 + e^{-k_a t} - e^{-k_b t})$$

If $k_a \gg k_b$, then concentration vs. time plot for the above reaction is: 79.

Time

Linked Answer Q.80 and Q.81:

80. Identify the major product P in the following reaction

81. Product P of the above reaction transforms to a product Q on treatment with n-Bu₃SnH in the presence of AIBN in benzene solution. Identify Q.

Linked Answer Q.82 and Q.83:

82. In the following wittig reaction, the structure of the major product P and the intermediate [X], respectively, are

ArCHO +
$$Ph_3P = CH - CH_2CH_3$$
 Benzene $Product Y and the Free of inorganic salts$

$$(c) \text{ Ar} \qquad \qquad (d) \text{ Ar} \qquad \qquad H \qquad \qquad H \qquad \qquad (d) \text{ Ar} \qquad \qquad H \qquad (d) \text{ Ar} \qquad \qquad (d)$$

- 83. Which of the following sets of characteristic NMR signals will be compatible with the structure of P in the above reaction?
 - (a) $\delta 7.18(d, J = 6 Hz, 2H), 7.01(d, J = 6 Hz, 2H), 6.41(d, J = 18 Hz, 1H)$
 - (b) $\delta 7.11(d, J = 6 Hz, 1H), 7.10(s, 1H), 7.09(t, J = 5 Hz, 1H)$ 6.94(d, J = 5 Hz, 1H), 6.41(d, J = 17 Hz, 1H)
 - (c) $\delta 7.18$ (d, J = 6 Hz, 2H), 7.01 (d, J = 6 Hz, 2H), 6.35 (d, J = 9 Hz, 1H)
 - (d) $\delta 7.11$ (d, J = 6 Hz, 1H), 7.10 (s, 1H), 7.09 (t, J = 5 Hz, 1H), 6.94 (d, J = 5 Hz, 1H), 6.35 (d, J = 10 Hz, 1H)

Linked Answer Type Q.84 and Q.85

84. The products P and Q in the following sequence of reactions, respectively, are

- 85. The reagent for selective reduction of the aldehyde group in Q obtained in the above reaction is
 - (a) H₂, (Ph₂P)₃RhCl

(b) $((H_3C)_2 CHCH_2)_2 AlH$

(c) Na(CH₃COO)₃ BH

(d) LiAlH₄

***** END OF THE QUESTION PAPER *****

