CHEMISTRY-CY

(d) SO_3

Q.1 – Q.20 : Carry ONE mark each.

- 1. The rate of sulphonation of benzene can be significantly enhanced by the use of
 - (a) a mixture of HNO_3 and H_2SO_4 (b) conc. H_2SO_4

(c) a solution of SO_3 in H_2SO_4

2. The reaction,

+
$$2Na + 2C_2H_5OH$$
 + $2C_2H_5ONa$

is an example of a

- (a) Birch reduction
- (c) Wolff-Kishner reduction

(b) Clemmenson reduction(d) hydride reduction

3. The major product (X) of the monobromination reaction is

4. Benzene can not be iodinated with I_2 directly. However, in presence of oxidants such as HNO₃, iodination is possible. The electrophile formed in this case is

(a)
$$\begin{bmatrix} I^+ \end{bmatrix}$$
 (b) I^* (c) $\begin{bmatrix} *\delta & \delta \\ I & OH_2 \end{bmatrix}^+$ (d) $\begin{bmatrix} *\delta & \delta \\ I & OH_2 \end{bmatrix}^+$

- 5. Classify the following species as electrophiles (E) and nucleophiles (N) in routine organic synthesis $SO_3 Cl^+ CH_3NH_2 H_3O^+ BH_3 CN^-$
 - (a) $E = SO_3, Cl^+, BH_3$; $N = CH_3NH_2, H_3O^+, CN^-$ (b) $E = Cl^+, H_3O^+$; $N = SO_3, CH_3NH_2, BH_3, CN^-$ (c) $E = Cl^+, H_3O^+, BH_3$; $N = SO_3, CH_3NH_2, H_3O^+, CN^-$ (d) $E = SO_3, Cl^+, H_3O^+, BH_3$; $N = CH_3NH_2, CN^-$
- 6. The major product obtained upon treatment of compound X with H_2SO_4 at 80°C is:

GAT	E-CY 2007	QUES	FION PAPER	2
7.	$BaTi[Si_3O_9]$ is a class of			
	(a) ortho silicate	(b) cyclic silicate	(c) chain silicate	(d) sheet silicate
8.	The ground state ter	m fro V^{3+} ion is		
	(a) ³ F	(b) ² F	(c) ³ P	(d) ${}^{2}D$
9.	In photosynthesis, th (a) Zn	ne predominant metal pre (b) Cu	esent in the reaction cent (c) Mn	rre of photosystem II is (d) Fe
10.	The octahedral complex/complex ion which shows both facial and meridonial isomers is(a) Triglycinatocobalt (III)(b) Tris(etihylenediamine) cobalt(III)(c) Dichlorodiglycinatocobalt(III)(d) Trioxalactocobaltate (III)			
11.	Zn in carbonic anhydrase is co-ordinated by three histidine and one water molecule. The reaction of CO_2 with this enzyme is an example of			
	(a) electrophilic addi (c) nucleophilic addit	tion tion	(b) electron transfer (d) electrophilic subs	titution
12.	12. The difference in the measured and calculated magnetic moment (based on spin-orbit coupling) is obs for			
	(a) Pm^{3+}	(b) Eu ³⁺	(c) Dy ³⁺	(d) Lu^{3+}
13.	For a redox reaction	, $\operatorname{Cd}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Cd}$,	the $\left(E_{p}\right)_{anodic}$ observed	in cyclic voltametry at hanging mercury
	drop electrode is –650 mV vs. SCE. The expected value for $(E_p)_{\text{cathodic}}$ is			
	(a) -708 mV	(b) –679 mV	(c) -650 mV	(d) -621 mV
14.	The dimension of Pla	anck constant is (M, L a	nd T denote mass, length	n and time respectively)
	(a) ML^3T^{-2}	(b) ML^2T^{-1}	(c) $M^2 L^{-1} T^{-1}$	(d) $M^{-1}L^2T^{-2}$
15.	15. For a homonuclear diatomic molecule, the bonding molecular orbital is			
	(a) σ_u of lowest energy	ergy	(b) σ_u of second low	west energy
16.	(c) π_g of lowest energy The selection rules diatomic molecule w	ergy for the appearance, of ithin rigid rotor-harmoni	(d) π_u of lowest energy (d) π_u of lowest energy P branch in the rotation c oscillator model are	ergy nal-vibrational absorption spectra of a
	(a) $\Delta v = \pm 1$ and $\Delta J =$	=±1	(b) $\Delta v = +1$ and ΔJ	=+1
	(c) $\Delta v = +1$ and $\Delta J =$	=-1	(d) $\Delta v = -1$ and ΔJ	=-1
17.	The S_2 operation of	n a molecule with the axi	s of rotation as the z axi	s, moves a nucleus at (x, y, z) to
	(a) $(-x, -y, x)$	(b) $(x, -y, -z)$	(c) $(-x, y, -z)$	(d) $(-x, -y, -z)$
18.	The expression whic	ch represents the chemic	al potential of the i th spec	cies(μ_i) in a mixture ($i \neq j$) is:
	(a) $\left(\partial E / \partial n_i\right)_{s,v,nj}$	(b) $\left(\partial H / \partial n_i\right)_{s,v,nj}$	(c) $\left(\partial A / \partial n_i\right)_{s,v,nj}$	(d) $\left(\partial G / \partial n_i\right)_{s,v,nj}$
19.	Which of the followi (a) It increases the ra (b) It is not consume	ing statements is NOT co ate of a reaction ed in the course of a reac	orrect for a catalyst?	

- (c) It provides an alternate pathway for the reaction
- (d) It increases the activation energy of the reaction $% \left({{{\bf{n}}_{{\rm{n}}}}} \right)$

GAT	E-CY 2007	QUES	FION PAPER	
20.	The value of the rate 300 K. The order of t	constant for the gas pha he reaction is	ase reaction $2NO_2 + F_2$	$\rightarrow 2NO_2F$ is 38 dm ³ mol ⁻¹ s ⁻¹ at
	(a) 0	(b) 1	(c) 2	(d) 3
	Q.21 – Q.75 : Carr	y TWO marks each.		
21.	Boric acid in aqueou (a) an anionioc meta (c) glycerate ion	us solution in presence Il-chelate	of glycerol behaves as (b) borate anion (d) a charge transfer	a strong acid due to the formation of
22.	Match the compound List - I	ls in List I with the corre	esponding structue / prop List - II	perty given in List II
	A. $(Ph_3P)_3$ RhCl		(i) Spinel	
	B. LiC ₆		(ii) Intercalation	
	C. PtF_6		(iii) Oxidising agent	
	D. Ni_3S_4		(iv) Catalyst for alker	ne hydrogenation
	(a) A-iii, B-i, C-ii, D(c) A-iii, B-ii, C-i, D	-iv -iv	(b) A-iv, B-ii, C-iii, I (d) A-iv, B-iii, C-ii, I	D-i D-i
23. $W(CO)_6$ reacts with MeLi to give an intermediate which upon treatment with X is represented as			ment with CH_2N_2 gives a compound X.	
	(a) WMe ₆		(b) $(CO)_5$ W–Me	
	(c) $(CO)_5 W = C(Me)$	e)OMe	(d) $(CO)_5 W \equiv CMe$	
24. Considering the quadrupolar nature of M-M bond in $[\text{Re}_2 \text{Cl}_8]^{2-}$, the M-M				$\left[e_2 \operatorname{Cl}_8\right]^{2-}$, the M-M bond order in
	$\left[\operatorname{Re}_{2}\operatorname{Cl}_{4}\left(\operatorname{PMe}_{2}\operatorname{Ph}\right)\right]$	$_{4} \right]^{+}$ and $\left[\operatorname{Re}_{2} \operatorname{Cl}_{4} \right] (\operatorname{PMe}_{2} \operatorname{Cl}_{4} \left(\operatorname{PMe}_{2} \operatorname{Cl}_{4} \right) \left(PM$	$e_2 Ph)_4$ respectively ar	e
	(a) 3.0 and 3.0	(b) 3.0 and 3.5	(c) 3.5 and 3.5	(d) 3.5 and 3.0
25.	A student recorded a polarogram of 2.0 mM Cd ²⁺ solution and forgot to add KCl solution. What type of erro do you expect in his results? (a) Only migration current will be observed (b) Only diffusion current will be observed (c) both migration current as well as diffusion current will be observed (d) Both catalytic current as well as diffusion current will be observed			
26.	The separation of trivalent lanthanide ions, Lu^{3+} , Yb^{3+} , Dy^{3+} , Eu^{3+} can be effectively done by a cation exchange resion using ammonia o-hydroxy isobutyrate as the eluent. The order n which the ions will be separated (a) Lu^{3+} , Yb^{3+} , Dy^{3+} , Eu^{3+} (b) Eu^{3+} , Dy^{3+} , Lu^{3+} (c) Dy^{3+} , Yb^{3+} , Eu^{3+} , Lu^{3+} (d) Yb^{3+} , Dy^{3+} , Lu^{3+}			be effectively done by a cation exchange r n which the ions will be separated is Lu^{3+} Eu^{3+}
27.	Arrange the following	g metal complexes in ord	ler of their increasing hyd	dration energy.
	$\left[\mathrm{Mn}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}\right]^{2+}$	$\left[V(H_2O)_6 \right]^{2+}$	$\left[\operatorname{Ni}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}\right]^{2+}$	$\left[\mathrm{Ti}(\mathrm{H}_{2}\mathrm{O})_{6}\right]^{2+}$
	(a) $P < S < Q < R$	(b) $P < Q < R < S$	(c) $Q < P < R < S$	(d) $\mathbf{S} < \mathbf{R} < \mathbf{Q} < \mathbf{P}$

4

28.	In the complex, $\left[Ni_2 \left(\eta^5 - Cp \right)_2 (CO)_2 \right]$, the	e IR stretching frequency appears at 1857 cm ⁻¹ (strong) and
	1897 cm^{-1} (weak). The valence electron count(a) 16 e^- , bridging(b) 17 e^- , bridging	t and the nature of the M-CO bond respectively are (c) $18 e^{-}$, terminal (d) $18 e^{-}$, briding.
29.	The correct classification of $[B_5H_5]^{2-}$, B_5H_9	and $B_5 H_{11}$ respectively is
	(a) closo, arachno, nido(c) closo, nido, arachno	(b) arachno, closo, nido (d) nido, arachno, closo
30.	The compounds X and y in the following react	ion are
	$P_4S_{10} \xrightarrow{EtOH} (X) \xrightarrow{Cl_2} \rightarrow$	$(Y) \xrightarrow{p-O_2NC_6H_4ONa} Parathion$
	(a) $X = (Et)_2 P(S)SH$; $Y = (Et)_2 P(S)Cl$	(b) $X = (EtO)_2 P(S)SH$; $Y = (EtO)_2 P(S)Cl$
	(c) $X = (EtO)_2 PSH$; $Y = (EtO)_2 PCl$	(d) $X = (Et)_3 PO$; $Y = (Et)_3 PCl$
31.	Consider the reactions	
	$1. \left[Cr(H_2O)_6 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+} \rightarrow \left[Cr(H_2O)_6 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+} \rightarrow \left[Cr(H_2O)_6 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+} \rightarrow \left[Cr(H_2O)_6 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+} \rightarrow \left[Cr(H_2O)_6 \right]^{2+} + \left[CoCl(NH_3)_5 \right]^{2+}$	$(NH_3)_5 (H_2O)^{2+} + [CrCl(H_2O)_5]^{2+}$
	2. $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} + \left[\operatorname{Mo}(\operatorname{CN})_{8}\right]^{3-} \rightarrow \left[\operatorname{Fe}(\operatorname{CR})_{8}\right]^{3-}$ Which one of the following is the correct states (i) Both involve an inner sphere mechanism. (ii) Both involve an outer sphere mechanism	$N_{6}^{3^{-+}} + \left[Mo(CN)_{8}^{4^{-}}\right]^{4^{-}}$ nent?
	(iii) Reaction 1 follows inner sphere and reaction (iv) Reaction 1 follows outer sphere and reaction	on 2 follows outer sphere mechanism
	(a) i (b) ii	(c) iv (d) iii
32.	The pair of compounds having the same hybrid	lization for the central atom is
	(a) XeF ₄ and $[SiF_6]^{2-}$	(b) $\left[\operatorname{NiCl}_{4}\right]^{2-}$ and $\left[\operatorname{PtCl}_{4}\right]^{2-}$
	(c) Ni(CO) ₄ and XeO ₂ F ₂	(d) $\left[\text{Co} \left(\text{NH}_3 \right)_6 \right]^{3+}$ and $\left[\text{Co} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}$
33.	In the reaction shown below, X and Y respecti	vely are
	$\operatorname{Mn}_{2}(\operatorname{CO})_{10} \xrightarrow{\operatorname{Na}} (X) \xrightarrow{\operatorname{CH}_{3}\operatorname{COC}} (Y)$ (a) $\left[\operatorname{Mn}(\operatorname{CO})_{4}\right]^{2^{-}}, \left[\operatorname{CH}_{3}\operatorname{C}(O)\operatorname{Mn}(\operatorname{CO})_{5}\right]^{2^{-}}$	(b) $\left[Mn(CO)_{4} \right]^{2^{-}}$, CH ₃ C(O)Mn(CO) ₅
	(c) $\left[Mn(CO)_{5} \right]^{-}$, $\left[ClMn(CO)_{5} \right]^{-}$	(b) $\left[Mn(CO)_{4} \right]^{2-}$, $\left[ClMn(CO)_{5} \right]^{-}$
34.	The Lewis acid character of BF_3 , BCl_3 and H_3	BBr_3 follows the order
	(a) $BF_3 < BBr_3 < BCl_3$	(b) $BCl_3 < BBr_3 < BF_3$
	(c) $BF_3 < BCl_3 < BBr_3$	(d) $BBr_3 < BCl_3 < BF_3$
35.	The compound which shows $L \leftarrow M$ charge t	ransfer is
	(a) $Ni(CO)_4$ (b) $K_2Cr_2O_7$	(c) HgO (d) $\left[Ni \left(H_2 O \right)_6 \right]^{2+}$
36.	The reaction of $[PtCl_4]^{2-}$ with NH ₃ gives rise	to
	(a) $\left[PtCl_4 \left(NH_3 \right)_2 \right]^{2-}$	(b) trans $-\left[PtCl_2(NH_3)_2\right]$
	(c) $\left[PtCl_2 \left(NH_3 \right)_4 \right]$	(d) $\operatorname{cis} - \left[\operatorname{PtCl}_2(\operatorname{NH}_3)_2\right]$

GAT	E-CY 200	7	QU	ESTION PAPEI	R	5
37. Zeise's salt is represented as						
	(a) H ₂ P	rtCl ₆	(b) $\left[\text{PtCl}_4 \right]^{2-}$	(c) $\left[ZnCl_{4} \right]$	$(d) \left[PtCl_{3} \left(\eta^{2} - C_{2} \right) \right]^{2}$	H_4
38.	The cata	alyst used in the o	conversion of eth	ylene to acetaldel	hyde using Wacker process is	
	(a) HCo	$p(CO)_4$	(b) $\left[PdCl_4 \right]^{2-}$	(c) V_2O_5	(d) $TiCl_4$ in the presence of	$f Al(C_2H_5)_3$
39. The temperature of 54 g of water is raised from 15°C to 75°C at con			C at constant pressure. The change	e in the enthalpy		
	of the sy	of the system (given that $C_{p.m}$ of water =75 JK ⁻¹ mol ⁻¹) is:				
	(a) 4.5 k	κJ ((b) 13.5 kJ	(c) 9.0 kJ	(d) 18.0 kJ	
40.	The specific volume of liquid water is 1.001 mL g ⁻¹ and that of ice is 1.0907 mL g ⁻¹ at °C. If the heat of fusi of ice at this temperature is 333.88 J g ⁻¹ , the rate of change of melting point of ice with pressure in deg atm ⁻¹ v			he heat of fusion in deg atm ⁻¹ will		
	(a) - 0.0	075 ((b) 0.0075	(c) 0.075	(d) -0.075	
41. Given that $E_0(Fe^{3+}, Fe) = -0.04 V$ and $E_0(Fe^{2+}, Fe) = -0.44 V$, the value of $E_0(Fe^{3+}, Fe^{2+})$ is:				e^{2+}) is:		
	(a) 0.76	V	(b) -0.40 V	(c) -0.76 V	V (d) 0.40 V	
42. For the reaction $P + Q + R \longrightarrow S$, experimental data for the measured initial rates is given by			below.			
	Expt.	Initial conc. P	Initial conc. Q	Initial conc. R	Initial rate	
		(M)	(M)	(M)	(Ms^{-1})	
	1	0.2	0.5	0.4	8.0×10^{-5}	
	2	0.4	0.5	0.4	3.2×10^{-4}	
	3	0.4	2.0	0.4	1.28×10^{-3}	

The order of the reaction with respect to P, Q and R respectively is:

0.25

(a) 2 2, 1 (b) 2, 1, 2 (c) 2, 1, 1 (d) 1, 1, 2

43. Sucrose is converted to a mixture of glucose and fructose in a pseudo first order process under alkaline conditions. The reaction has a half life of 28.4 min. The time required for the reduction of a 8.0mM sample of sucrose to 1.0 mM is (a) 56.8 min (b) 170.4 min (c) 85.2 min (d) 227.2 min

1.6

 4.0×10^{-5}

44. The reaction, $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

proceeds via the following steps

0.1

4

$$\begin{array}{ccc} \text{NO} + \text{NO} & \underline{k_a} & N_2\text{O}_2 \\ N_2\text{O}_2 & \underline{k_{a'}} & \text{NO} + \text{NO} \\ N_2\text{O}_2 + \text{O}_2 & \underline{k_b} & \text{NO}_2 + \text{NO}_2 \end{array}$$

The rate of this reaction is equal to

(a) $2k_b[NO][O_2]$ (b) $(2k_ak_b[NO]^2[O_2])/(k_a + k_b[O_2])$ (c) $2k_b[NO]^2[O_2]$ (d) $k_a[NO]^2[O_2]$

GAT	E-CY 2007	QUEST	TION PAPER	6		
45.	40 millimoles of NaOH are added to 100 mL of a 1.2 M HA and Y M NaA buffer resulting in a solution 5.30 . Assuming that the volume of the buffer remains unchanged, the pH of the buffer ($K_{HA} = 1.00$			NaA buffer resulting in a solution of pH pH of the buffer ($K_{HA} = 1.00 \times 10^{-5}$) is		
	(a) 5.30	(b) 5.00	(c) 0.30	(d) 10.30		
46.	The entropy of mixing assuming both to be id	g of 10 moles of helium leal gas, is:	and 10 moles of oxygen	at constant temperature and pressure,		
	(a) $115.3 \mathrm{JK}^{-1}$	(b) $5.8 \mathrm{JK}^{-1}$	(c) $382.9 \mathrm{JK}^{-1}$	(d) $230.6 \mathrm{JK}^{-1}$		
47.	The ionisation potentia that the energy of its or of 1.84, is	al of hydrogen atom is 1 uter electron can be repr	3.6 eV. The first ionistaio resented by a H-atom like	on potential of a sodium atom, assuming e model with an effective nuclear charge		
	(a) 46.0 eV	(b) 11.5 eV	(c) 5.1 eV	(d) 2.9 eV		
48.	The quantum state of a	a particle moving in a ci	rcular path in a plane is g	given by		
		$\Psi_{\rm m}(\phi) = (1/\sqrt{2\pi}) e^{im\phi}, m = 0, \pm 1, \pm 2, \dots$				
	When a perturbation a energy of the m th state	When a perturbation $H_1 = P \cos \phi$ is applied (P is a constant), what will be the first order correction to the energy of the m th state				
	(a) 0	(b) $P/(2\pi)$	(c) $P/(4\pi)$	(d) $Pm^2/(4\pi^2)$		
49.	The correct statement (i) The vibrational ene	(s) among the following orgy levels of a real diate	is/are mic molecule are equall	y spaced.		
	(ii) At 500K, the reaction A \rightarrow B is spontaneous when $\Delta H = 18.83 \text{ kJ mol}^{-1}$ and $\Delta S = 41.84 \text{ J K}^{-1} \text{mol}^{-1}$.					
	(iii) The process of fluorescence involves transition from a singlet electronc state to another singlet electronic					
	(iv) When a constant l	light. P is added to each of the	e possible energies of a s	vstem, its entropy remains unchanged.		
	(a) Only i	(b) Only ii	(c) Both i and iii	(d) Both ii and iv		
50.	Assuming H_2 and HD	molecules having equal	lengths, the ratio of the r	otational partition functions of these		
	molecules, at tempera (a) 3/8	ture above 100K is (b) $3/4$	(c) 1/2	(d) 2/3		
51	N non interacting mal	(0) 574	(c) 1/2	(d) 2/5		
51.	IN non-interacting molecules are distributed among three non-degenerate energy levels $c_{\rm e} = 0$, $c_{\rm e} = 1.38 \times 10^{-21}$ L and $c_{\rm e} = 2.76 \times 10^{-21}$ L at 100K. If the average total energy of the system at this					
	$z_0 = 0, z_1 = 1.50 \times 10^{-18}$ J and $z_2 = 2.70 \times 10^{-13}$, at 100 K. If the average total energy of the system at this temperature is 1.20, 10 ⁻¹⁸ L the number of molecular in the system in					
	(a) 1000	(b) 1503	(c) 2354	(d) 2987		
53.	The rate constants of t	wo reactions at tempera	ature T are $k_1(T)$ and k	$_{2}(T)$ and the corresponding activation		
	energies are E_1 and E_2 with $E_2 > E_1$. When temperature is raised from T_1 and T_2 , which one of the following relations is correct?					
	(a) $\frac{k_1(T_2)}{k_1(T_1)} = \frac{k_2(T_2)}{k_2(T_1)}$	(b) $\frac{k_1(T_2)}{k_1(T_1)} > \frac{k_2(T_2)}{k_2(T_1)}$	(c) $\frac{k_1(T_2)}{k_1(T_1)} \ge \frac{k_2(T_2)}{k_2(T_1)}$	$(d) \frac{k_{1}(T_{2})}{k_{1}(T_{1})} < \frac{k_{2}(T_{2})}{k_{2}(T_{1})}$		
54.	The number of degree	es of freedom for a syste	em consisting of NaCl(s)	, Na ⁺ (aq) and Cl ⁻ (aq) at equilibrium		
	(a) 2	(b) 3	(c) 4	(d) 5		

55. Match the structures in List - I with their correct names in List - II. List - I List - II CH₃ (i) 3-methyl furan (ii) Imidazole (iii) 5-hydroxybenzothiazole (\mathbf{R}) NH_2 (S) (iv) 2-amino piperidine. (v) 2-amino morpholine (T) NH_2 (a) P-i, Q-ii, R-v, S-iii, T-iv (b) P-ii, Q-iii, R-iv, S-v, T-i (c) P-iii, Q-iv, R-v, S-i, T-ii (d) P-iv, Q-v, R-i, S-ii, T-iii 56. The result of the reduction of either (R) or (S) 2-methylcyclohexanone, in separate reactions, using LiAlH, is that the reduction of (b) The R enantiomer is stereospecific. (a) The R enantiomer is stereoselective (c) The S enantiomer is stereospecific (d) Both the R and S enantiomers is stereoselective. The increasing order of basicity among the following is 57. N(CH₃)₂ $(CH_3)_2N$ (CH₃)₂N $N(CH_3)_2$ CH₃)₂ $N(CH_3)_2$ H₃CC OCH ÓCH₃ H₃CÒ (X) (Y) (Z) (a) Y < X < Z(b) Y < Z < X(c) X < Z < Y(d) X < Y < Z58. In the reaction, H_3C OH⁻(aq) C2H51111 Br C_3H_7 if the concentration of both the reactants is doubled, then the rate of the reaction will (a) remain unchanged (b) quadruple (c) reduce to one fourth (d) double

Match the structures in List - I with the coupling constant $\begin{bmatrix} {}^{1}H J(Hz) \end{bmatrix}$ given in List - II 59.

List - I	List - II
$(1) \xrightarrow{Br}_{H} \xrightarrow{CI}_{H}$	(i) ~ 1 Hz
(2) H CI	(ii) ~ 10 Hz
$(3) \xrightarrow{Br}_{CI} \xrightarrow{H}_{H}$	(iii) ~ 15 Hz
(a) 1-(i), 2-(ii), 3-(iii) (c) 1-(iii), 2-(ii), 3-(i)	(b) 1-(ii), 2-(iii), 3-(i) (d) 1-(iii), 2-(i), 3-(ii)

60. Phenol on reaction with formaldehyde and dimethyl amine mainly gives

(X) and (Y) respectively are

(a) ¹:CH₂ and cis 1, 2-dimethylcyclopropane

65.

(a)P

- (b) 3 :CH₂ and cis 1, 2-dimethylcyclopropane
- (c) ¹:CH₂ and a mixture of cis/trans 1, 2-dimethylcyclopropane
- (d) ³:CH₂ and a mixture of cis/trans 1, 2-dimethylcyclopropane
- 63. The major products obtained upon treating a mixture of

with a strongly acidic solution of H_2SO_4 is

64. Match the observed pricipal absorptions in the visible spectrum shown in **List - I** with the bond shows this absorption in **List - II**.

(b) Q

(d) S

(c) R

9

66.

(d)

and

ĊOOH

and

CH2COOH

(c)

Common data for Q.71, Q.72, Q.73:

(11

Trans 1, 2–difluoroethylene molecule has a 2-fold rotational axis, a symmetry plane perpendicular to the rotatinal axis and an inversion centre.

- 71. The number of distinct symmetry operations that can be performed on the molecule is:
- (a) 2 (b) 4 (c) 6 (d) 8
- 72. The number of irreducible representations of the point group of the molecule is: (a) 1 (b) 2 (c) 3 (d) 4
- 73. If two H atoms of the above molecule are also replaced by F atoms, the point group of the resultant molecule will be

(a) C_i (b) C_{2h} (c) C_{2v} (d) D_{2h}

Common Data for Q.74 and Q.75 :

Reactivity of ary1 amines towards electrophilic aromatic substitution is much higher than that of aliphatic amines. Hence differential reactivity of the amino group is desirable in many reactions.

74. The compound which on reacting with aniline will NOT form an acetanilide is

Linked Answer Type Q. 84 and Q.85.

- 84. In the mixture obtained by mixing 25.0 mL 1.2×10^{-3} M MnCl₂ and 35.0 mL of 6.0×10^{-4} M KCl solution, the concentrations (M) of Mn²⁺, K⁺ and Cl⁻ ions respectively are
 - (a) 6.0×10^{-4} , 3.0×10^{-4} , 1.5×10^{-3} (b) 6.0×10^{-4} , 3.0×10^{-4} , 9.0×10^{-4} (c) 5.0×10^{-4} , 3.5×10^{-4} , 1.35×10^{-3} (d) 5.0×10^{-4} , 3.5×10^{-4} , 8.5×10^{-4}
- 85. The activity (M) of Mn^{2+} ions in the above solution is

(a) 1.0×10^{-4} (b) 2.0×10^{-4} (c) 3.0×10^{-4} (d) 4.0×10^{-4}

***** END OF THE QUESTION PAPER *****

