1

		CHE	MISTRY-CY	
	Q.1 – Q.20 : Carry ON	E mark each.		
1.	The ³¹ P NMR spectrum of (a) a singlet (c) a doublet and a quarte	of P_4S_3 consists of et	(b) a doublet and a trip (d) two doublets.	blet
2.	The geometry around the (a) square planar (c) octahedral	e central atom in ClF_4^+	is (b) square pyramidal (d) trigonal bipyramida	1
3.	The correct statement ab (a) all the bond distances (b) the axial bonds are lon (c) the equatorial bonds a (d) all the bond distances	out the Cu-N bond di are equal nger than the equator are longer than the axi are unequal.	istances in $\left[Cu \left(NH_3 \right)_6 \right]$ ial ones. ial ones.] ²⁺ is:
4.	The reaction of phosger	ne with an excess of	NH ₃ produces	
	(a) $HN = C = O$		(b) $H_2N-C(Cl)=0$)
	(c) $\left(H_2N\right)_2 C = O$		(d) $\left(H_2N\right)_2 CCl_2$	
5.	The number of metal – m (a) zero (l	tetal bonds in $[(C_5H_5)]$)Fe(CO)] ₂ is (c) two	(d) three
6.	The coordination number is:	of the Ba^{2+} ions in ba	rium fluoride is 8. The co	pordination number of the fluoride ion
7.	(a) 8 (f In the transformation of o (a) Fe^{2+} in the low spin s (b) Fe^{2+} in the low spin s (c) Fe^{2+} in the high spin s	b) 4 xyhaemoglobin to dec state changes to Fe^{2+} state changes to Fe^{3+} state changes to Fe^{2+}	(c) I oxyhaemoglobin in the high spin state in the low spin state. in the low spin state	(d) 2.
8.	(d) Fe ²⁺ in the high spin For the compound	state changes to Fe ³⁺	OH OH	UR
	the stereochemical notation (a) 2Z, 4R (b)	ons are b) 2Z, 4S	0 (c) 2E, 4R	(d) 2E, 4S
9.	The compound	is		
	 (a) aromatic and has high (b) aromatic and has no d (c) non-aromatic and has (d) anti-aromatic and has 	dipole moment ipole moment high dipole moment no dipole moment.		

10. In the reaction,

13. The most suitable reagent combination to bring out the following transformation

- (c) PhBr, CO and $Pd(PPh_3)_4$
- (b) DCC and PhCOOH(d) EtOOC–N=N–COOEt, PPh₃ and PhCOOH
- 14. In the two steps reaction sequence :

the major product Y is :

- 15. Among the following the system that would require the least amount of thermal energy to bring its temperature to 80°C is:
 - (a) 200 gm of water at 40°C
 (b) 100 gm of water at 20°C
 (c) 150 gm of water at 50°C
 (d) 300 gm of water at 30°C.
- 16. Among the following, the reaction that is accompanied by a decrease in the entropy is

(a)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 (b) $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
(c) $PCl_5(s) \rightarrow PCl_3(l) + Cl_2(g)$ (d) $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

17. The number of degrees of freedom of a system consisting of solid sucrose in equilibrium with an aqueous solution of sucrose is

- (a) 0 (b) 1 (c) 2 (d) 3
- 18. The lowest allowed energy is equal to zero for
 (a) the hydrogen atom
 (b) a rigid rotor
 (c) a harmonic oscillator
 (d) a particle in a 3-dimensional box

19. According to the Debye-Hückel limiting law, if the concentration of a dilute aqueous solution of KCl is increased

4-fold, the value of ln $\gamma_{\pm}(\gamma_{\pm})$ is the molal mean ionic activity coefficient) will

rease by a factor of 2

(c) decrease by a factor of 4 (d) increase by a factor of 4.

20. For the parallel first order reaction shown below

the value of k_1 is 1×10^{-4} s⁻¹. If the reaction starts from X, the ratio of the concentrations of Y and Z at any given

time during the course of the reaction is found to be $\frac{[Y]}{[Z]} = \frac{1}{4}$

The value of k, is:

(a) $1 \times 10^{-4} s^{-1}$ (b) $2.5 \times 10^{-5} s^{-1}$ (c) $4 \times 10^{-4} s^{-1}$ (d) $4 \times 10^{4} s^{-1}$

Q.21 – Q.60 : Carry TWO marks each.

21. The correct order of v_{CO} for the compounds $\left[Mo(CO)_3(NMe_3)_3\right]$, $\left[Mo(CO)_3(P(OPh)_3)_3\right]$, $\left[Mo(CO)_3(PMe_3)_3\right]$, $\left[Mo(CO)_3(PCl_3)_3\right]$ in the IR spectrum is:

$$(a) \left[Mo(CO)_{3}(NMe_{3})_{3} \right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3} \right] > \left[Mo(CO)_{3}(PMe_{3})_{3} \right] > \left[Mo(CO)_{3}(PCl_{3})_{3} \right] \\ (b) \left[Mo(CO)_{3}(PCl_{3})_{3} \right] > \left[Mo(CO)_{3}(NMe_{3})_{3} \right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3} \right] > \left[Mo(CO)_{3}(PMe_{3})_{3} \right] \\ (c) \left[Mo(CO)_{3}(PCl_{3})_{3} \right] > \left[M0(CO)_{3}(P(OPh)_{3})_{3} \right] > \left[Mo(CO)_{3}(PMe_{3})_{3} \right] > \left[Mo(CO)_{3}(NMe_{3})_{3} \right] \\ (d) \left[Mo(CO)_{3}(PMe_{3})_{3} \right] > \left[Mo(CO)_{3}(NMe_{3})_{3} \right] > \left[Mo(CO)_{3}(PCl_{3})_{3} \right] > \left[Mo(CO)_{3}(P(OPh)_{3})_{3} \right]$$

22. 2.5 g of an iron compound upon suitable treatment yielded 0.391 g of iron (III) oxide. The percentage of iron in the compound is
(a) 10.94
(b) 12.15
(c) 11.31
(d) 9.11

- 23. In the reaction, $Ph_3P \xrightarrow{Mel} [X] \xrightarrow{n-BuLi} [Y]$, the compounds X and Y, respectively are
 - (a) $[Ph_3P(Me)I]$; $Ph_3P = CH CH_2 CH_2 CH_3$ DEAVOUR (b) $[Ph_3P(Me)][I]$; $Ph_3P = CH_2$ (c) $[Ph_3P(Me)_2]$; $Ph_3P = CH_2$ (d) $[Ph_3P(Me)][I]$; Ph_3P
- 24. The ¹H NMR spectrum of HD consists of a (a) singlet (b) 1:1 doublet (c) 1:1:1 triplet (d) 1:2:1 triplet.

25. The X-ray powder pattern of NaCl shows an intense cone at $\theta = 15.87^{\circ}$ using X-rays of wavelength 1.54×10^{-8} cm. The spacing between the planes (in Å) of NaCl crystal is (a) 1.41 (b) 2.82 (c) 4.23 (d) 5.63

26. Among the following, the isoelectronic and isostructural pair is (a) CO_2 and SO_2 (b) SO_3 and SeO_3 (c) NO_2^+ and TeO_2 (d) SiO_4^{4-} and PO_4^{3-}

GATE-CY 2009

- Two samples have been given to you : $[NiCl_2(PPh_3)_2]$ and $[PdCl_2(PPh_3)_2]$. A physical method that can be 27. used to identify these compounds unambiguously is (a) HPLC (b) magnetic susceptibility (c) ¹³C NMR spectroscopy (d) Mössbauer spectroscopy
- In the reaction $HSO_4^-(aq) + OH^-(aq) \Longrightarrow SO_4^{2-}(aq) + H_2O(\ell)$, the conjugate acid-base pairs are 28.
 - (a) HSO_4^- and SO_4^{2-} ; H_2O and OH^-
 - (c) HSO_4^- and OH^- ; SO_4^{2-} and H_2O (d) HSO_4^- and OH^- ; SO_4^{2-} and H_3O^+

(b) HSO_4^- and H_3O^+ ; SO_4^{2-} and OH^-

- Designate the following complexes X, Y and Z as inert or labile: 29.
 - $\mathbf{X} = \left[\mathbf{Al} \left(\mathbf{C}_{2} \mathbf{O}_{4} \right)_{3} \right]^{3-}, \quad \mathbf{Y} = \left[\mathbf{V} \left(\mathbf{H}_{2} \mathbf{O} \right)_{6} \right]^{2+}, \qquad \mathbf{Z} = \left[\mathbf{Cr} \left(\mathbf{C}_{2} \mathbf{O}_{4} \right)_{3} \right]^{3-}$ (a) X and Y are inert; Z is labile
 - (c) X is inert; Y and Z are labile
- 30. In the reaction sequence :

(b) X and Z are labile; Y is inert. (d) X is labile; Y and Z are inert.

The major product X (based on the preferred conformation) in the reaction 31.

32. In the reactions,

The major products X and Y, respectively are

34. Reaction of m-methylanisole with lithium in liquid ammonia and t-butyl alcohol at -33°C generates compound X as the major product. Treatment of the compound X with dilute sulphuric acid produces compound Y as the major product. The compounds X and Y, respectively, are

- 35. The number of signals that appear in the broad-band decoupled ¹³C NMR spectrum of ortho-, meta- and para-dichlorobenzenes, respectively, are
 - (a) 3, 4 and 2 (b) 3, 3 and 2
- 36. In the reaction sequence,

(c) 4, 4 and 2

the structure of the major product Z and the overall yield for its formation from the ketone X, are

the major product respectively, are:

7

[GATE 2009]

(d) 3, 4 and 4

$$\delta 9.7 (1H,s), 7.8 (1H, d, J = 8.0 Hz), 7.1 - 6.8 (2H, m), 3.9 (3H, s), 2.5 (3H, s) ppm]$$

(a) $\delta 9.7 ppm$ (b) $\delta 7.8 ppm$ (c) $\delta 3.9 ppm$ (d) $\delta 2.5 ppm$

41. The half-life $(t_{1/2})$ for the hydrolysis of an ester varies with the initial concentration of the reactant $([E]_0)$ as follows:

$\left[E\right]_{0}/10^{-2} \text{ mol } L^{-1}$	5.0	4.0	3.0			
t _{1/2} / s	240	300	400			
The order of the reaction is:						
(a) 0	(b) 1			(c) 2	(d) 3	

GAT	E-CY 2009	QUES	TION PAPER	9			
42.	The fluorescene lifetime of a molecule in solution is 10 ns. If the fluorescence quantum yield is 0.1, the rate constant of fluorescence decay is:						
	(a) $1 \times 10^9 \text{ s}^{-1}$	(b) $1 \times 10^8 \text{ s}^{-1}$	(c) $1 \times 10^7 \text{s}^{-1}$	(d) $9 \times 10^7 s^{-1}$			
43.	The fundamental vib relative population o ground states at 300	rational wavenumbers f the first excited vibrat K are respectively:	for H_2 and I_2 are 4403.2 distance of these two matrix I_2 and I_2 are 4403.2 distance of these two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 and I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 are 4403.2 distance of the set two matrix I_2 distance of two matrix I_2	cm ⁻¹ and 214.5 cm ⁻¹ , respectively. The molecules compared to their respective			
	(a) 6.75×10^{-1} and 3	$.57 \times 10^{-1}$	(b) 6.75×10^{-10} and (3.57×10^{-1}			
	(c) 3.57×10^{-6} and 6	0.75×10^{-1}	(d) 3.57×10^{-1} and 6	(d) 3.57×10^{-1} and 6.75×10^{-1}			
44.	The degeneracy of a (a) 3	quantum particle in a cu (b) 6	ubic box having energy fo (c) 1	ur times that of the lowest energy is (d) 4			
45.	The rotational Rama and 19223.707 cm ⁻¹ . (a) 26.484	n spectrum of ¹⁹ F ₂ show The rotational constar (bv) 52.968	ws a series of Stokes lines at for ${}^{19}F_2$ in GHz is: (c) 105.936	s at 19230.769 cm ⁻¹ , 19227.238 cm ⁻¹ (d) 3.531			
46.	The de-Broglie wave	elength for a He atom tr	avelling at 1000 ms ⁻¹ (typ	bical speed at room temperature) is			
	(a) 99.7×10 ⁻¹² m	(b) $199.4 \times 10^{-12} m$	(c) $199.4 \times 10^{-18} m$	(d) $99 \times 10^{-6} m$			
47.	Given that the standa and 33.2 kJ mol ⁻¹ , the (a) 16.6 kJ	urd molar enthalpies of e enthalpy change for th (b) –57.1 kJ	formation of NO(g) and I he reaction $2NO(g) + O_2$ (c) -114.2 kJ	NO ₂ (g) are, respectively, 90.3 kJ mol ⁻¹ $_{2}(g) \rightarrow 2NO_{2}(g)$ is (d) 57.1 kJ			
48.	Among the following, the equilibrium which is NOT affected by an increase in pressure is						
	(a) $2SO_3(g) \rightleftharpoons 2SO_3(g)$	$O_2(g) + O_2(g)$	(b) $H_2(g) + I_2(s) \rightleftharpoons$	= 2HI(g)			
	(c) $C(s) + H_2O(g) =$	\Rightarrow CO(g) + H ₂ (g)	(d) $3Fe(s) + 4H_2O(g)$	$g \Rightarrow Fe_3O_4(s) + 4H_2(g)$			
49.	The free energy chan (a) RTln2	ge (ΔG) of 1 mole of a (b) -2RT	n ideal gas that is compres (c) –RTln2	ussed isothermally from 1 atm to 2 atm is: (d) 2RT			
50.	Two liquids B and C as a function of the m	form an ideal solution. In tole fraction, X_{B} , of complete fraction, x_{B} , x_{B	n the figure below, the var apponent B. DEAVO E E C E C T T T T T T T T	our pressure P of this solution is shown			
	Given a state of this v	apour-liquid mixture w	hose overall composition	corresponds to point E in the figure, the			

9

mole fraction of B in the vapour phase is approximately (a) 0.25 (c) 0.65 (d) 0.80 (b) 0.53

Common data for Q. 51 and Q. 52:

Treatment of $W(CO)_6$ with 1 equivalent of $Na(C_5H_5)$ in THF solution gives the ionic compound M. Reaction of M with glacial acetic acid results in product N. The ¹H NMR spectrum of N displays two singlets of relative intensity 5:1. When N is heated, hydrogen gas is evolved and O is produced; O may also be prepared by refluxing $W(CO)_6$ with cyclopentadiene and H_2 is also produced. Treatment of O with an equivalent of Br_2 produces P. (Use the 18 electron rule as your guide).

51. The compounds M and N, respectively, are

(a)
$$\left[(C_5H_5)W(CO)_3 \right]$$
Na and $\left[(C_5H_5)W(CO)_3 H \right]$
(b) $\left[(C_5H_5)W(CO)_4 \right]$ Na and $\left[(C_5H_5)W(CO)_4 H \right]$
(c) $\left[(C_5H_5)W(CO)_3 \right]$ Na and $\left[(C_5H_5)W(CO)_4 H \right]$
(d) $\left[(C_5H_5)W(CO)_4 \right]$ Na and $\left[(C_5H_5)W(CO)_3 H \right]$

52. The compounds O and P, respectively, are

(a)
$$\left[\left(C_5 H_5 \right) W \left(CO \right)_3 \right]_2$$
 and $\left[\left(C_5 H_5 \right) W \left(CO \right)_3 Br \right]$

- (b) $\left[(C_5H_5)W(CO)_4 \right]$ and $\left[(C_5H_5)W(CO)_2Br(THF) \right]$
- (c) $\left[(C_5H_5)W(CO)_2(THF)_2 \right]$ and $\left[(C_5H_5)W(CO)_3Br \right]$
- (d) $\left[\left(C_5 H_5 \right) W \left(CO \right)_3 \right]_2$ and $\left[\left(C_5 H_5 \right) W \left(CO \right)_2 Br \left(THF \right) \right]$

Common data for Q. 53 and Q. 54:

An organic compound $X(C_9H_{10}O)$ exhibited the following spectral data. IR : 1680 cm⁻¹.

1
H NMR : $\delta 7.8(2H, d, J 7.5 Hz)$, $7.2(2H, d, J = 75 Hz)$, $2.7(3H, s)$ and $2.4(3H, s)$

Compound X on treatment with m-chloroperbenzoic acid produced two isomeric compounds Y (major) and Z (minor).

- 54. Compounds Y and Z can be differentiated by carrying out basic hydrolysis, because [GATE 2009] (a) Y produces 4-methylphenol and Z is unaffected.
 - (b) Y produces 4-methylphenol and Z produces 4-methylbenzoic acid.
 - (c) Y is unaffected and Z produces 4-methylbenzoic acid.
 - (d) Y is unaffected and Z produces 4-methylphenol.

Common data for Q. 55 and Q. 56.

Character table for the point group C_{2v} is given below:

C _{2v}	É	C ₂	$\sigma_y(xz)$	$\sigma_y(yz)$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y,R _x	yz

55. The reducible representation corresponding to the three translational degrees of freedom, $\Gamma_{u'}$ is:

(a) 3, 1, 1, 1 (b) 3, -1, 1, 1 (c) 3, -1, -1, -1 (d) 3, 1, -1, -1.

56. The asymmetric stretching mode of the H_2O is shown below. The molecular plane is yz and the symmetry axis of H_2O is z.

Linked Answer type Q.57 and Q.58.

Triphosphazene is prepared by reacting X and Y in equimolar ratio at 120–150°C using appropriate solvents [GATE 2009]

57. The reaction X and Y, respectively, are

(a) PCl_3 ; NH_3 (b) PCl_5 ; NH_3

- (c) PCl_5 ; NH_4Cl (d) PCl_3 ; NH_4Cl
- 58. The structure of triphosphazene is

Statement for Linked Q.59 and Q.60:

In the reaction mechanism given, $X + Y \xrightarrow{k_1.E_{A,1}} Z \xrightarrow{k_3.E_{A,3}} P$ 'k's represent rate constants, 'E_A's represent activation energies, and $k_2 >> k_3$

59. The overall rate constant $(k_{overall})$ for the formation of P can be expressed as

(a)
$$k_1 k_3 / k_2$$
 (b) k_1 (c) $k_1 / (k_2 + k_3)$ (d) $k_1 / (k_2 - k_3)$

60. The overall activation energy $(E_{A, overall})$ for the formation of P can expressed as

