CHEMISTRY-CY

Q.1 – Q.25 : Carry ONE mark each.

- 1. Jahn-Teller distortion of CuSO₄.5H₂O acts to
 - (a) Raise symmetry
 - (b) Remove an electronic degeneracy
 - (c) Cause loss of H,O ligand
 - (d) Promote a d-electron to an antibonding molecular orbital.
- Among the following, the group of molecules that undergoes rapid hydrolysis is: 2.
 - (a) SF₆, Al₂Cl₆, SiMe₄

(b) BCl₃, SF₆, SiCl₄

(c) BCl₃, SiCl₄, PCl₅

(d) SF₆, Al₂Cl₆, SiCl₄

- The reaction of solid XeF, with AsF, in 1:1 ratio affords 3.
 - (a) XeF_4 and AsF_3

(b) XeF₆ and AsF₃

(c) $[XeF]^{+}[AsF_{6}]^{-}$

- (d) $[Xe_{2}F_{3}]^{+}[AsF_{6}]^{-}$
- A well known naturally occuring organometallic compound is: 4.
 - (a) vitamin B₁₂ coenzyme

(b) chlorophyll

(c) cytochrome P-450

- (d) myoglobin
- 5. The complex that exists as a pair of enantiomers is
 - (a) trans-[Co(H₂NCH₂CH₂NH₂)₂Cl₂]⁺
- (b) cis- $[Co(NH_3)_4Cl_2]^+$
- (c) $[Pt(PPh_3)(Cl)(Br)(CH_3)]^{-1}$
- (d) $[Co(H_2NCH_2CH_2NH_2)_3]^{3+}$
- 6. The region of electromagnetic spectrum employed in the electron spin resonance (ESR) spectroscopy is:
 - (a) radiowave
- (b) microwave
- (c) infrared
- (d) visible
- 7. The red color of oxyhaemoglobin is mainly due to the
 - (a) d-d transition

- (b) metal to ligand charge transfer transition
- (c) ligand to metal charge transfer transition (d) intraligand $\pi \pi^*$ transition.
- 8. The band structure in an n-type semiconductor is

9. In the following reaction

(a) I

The major product [X] is:

10. In the following reaction sequence

the major product [X] is:

11.

- The sequence of an mRNA molecule produced from a DNA template strand with the composition 12. 5'-AGCTACACT-3' is
 - (a) 5'-AGUGUAGCU-3'
- (b) 5'-UCGAUGUGA-3'
- (c) 5'-AGTGTAGCT-3'
- (d) 5'-TCGATGTGA-3'

13. In the following reaction,

the major product [X] is:

Me

Me Ö

The structure of the dipeptide Ala-Pro derived from the natural amino acids is:

(a)
$$H_2N$$

(b) HO_2C

Me

(c) H_2N

(d) H_2N

(e) H_2N

(d) H_2N

(e) H_2N

15. In the following reaction

16.

the major product [X] is:

$$(i) 2 \text{ eq. n-BuLi} \\ -78^{\circ}\text{C to } 0^{\circ}\text{C} \\ (ii) \text{ DMF}$$

$$(a) \qquad (b) \text{ Me} \qquad (c) \qquad (d) \qquad (d)$$

In the following reaction,

$$(A) \qquad (B) \qquad (CHO) \qquad$$

Йe

the major product [X] is:

$$(a) \underset{\mathsf{Me}}{\mathsf{HO}} \qquad \qquad (b) \overset{\mathsf{Me}}{\underset{\mathsf{OH}}{\mathsf{Me}}}$$

- 17. For a given first order reaction, the reactant reduces to 1/4th its initial value in 10 minutes. The rate constant of the reaction is:
 - (a) $0.1386 \, \text{min}^{-1}$

(b) 0.0693 min^{-1}

(c) $0.1386 \text{ mol } L^{-1} \text{ min}^{-1}$

- (d) 0.0693 mol L⁻¹ min⁻¹.
- 18. The freezing point constant for water is 1.86 K (mol kg⁻¹)⁻¹. The change in freezing point when 0.01 mol glucose is added to 1 kg water is:
 - (a) 1.86 K
- (b) -1.86 K
- (c) 0.186 K
- (d) -0.0186 K
- 19. On the pressure-temperature diagram for a one-component system, the point where the solid-liquid and the liquid-gas curves intersect is:
 - (a) triple point
- (b) critical point
- (c) melting point
- (d) boiling point
- 20. The wave function for a harmonic oscillator described by $Nx \exp(-\alpha x^2/2)$ has
 - (a) One maximum only

- (b) One maximum, one minimum only
- (c) Two maxima, one minimum only
- (d) Two maxima, two minima only
- 21. If an arbitrary wave function is used to calculate the energy of a quantum mechanical system, the value calculated is never less than the true energy.

The above statement relates to

(a) Perturbation theory

- (b) Variation principle
- (c) Heisenberg's uncertainty principle
- (d) quantization of energy
- 22. The point group symmetry of the given planar shape is:

- (a) D_{3h}
- (b) $C_3 \cap C \cap C_{3h} \cap C_$

23. $\left(\frac{\partial G}{\partial P}\right)_T =$

- (a) V
- (b) S
- (c) -S
- (d) V

According to Ehrenfest classification of phase transitions, the above diagram refers to

- (a) Zeroth order phase transition
- (b) First order phase transition
- (c) Second order phase transition
- (d) λ transition.

- 25. According to conventional transition state theory, for elementary bimolecular reactions, the molar entropy of activation $\Delta S^{0\frac{1}{7}}$ is:
 - (a) Positive
- (b) Zero
- (c) Negative
- (d) Positive for endothermic and negative for exothermic reactions.

Q.26 - Q.55: Carry TWO marks each.

- The crystal field stabilization energy (CFSE) value for [Ti(H₂O)₆]³⁺ that has an absorption maximum at 26. 492 nm is:
 - (a) 20, 325 cm⁻¹
- (b) 12, 195 cm⁻¹
- (c) 10, 162 cm^{-1} (d) $8, 130 \text{ cm}^{-1}$
- For Et_2AlX ($X = PPh_2^-$, Ph^- , Cl^- and H^-), the tendency towards dimeric structure follows the order 27.
 - (a) $PPh_{2}^{-} > Cl^{-} > H^{-} > Ph^{-}$

(b) $Cl^- > PPh_2^- > H^- > Ph^-$

- (c) $Ph^{-} > H^{-} > Cl^{-} > PPh_{2}^{-}$
- (d) $H^- > Ph^- > PPh_2^- > Cl^-$
- In the isoelectronic series, VO_4^{3-} , CrO_4^{2-} and MnO_4^- , all members have intense charge transfer (CT) transfer (CT) 28. sitions. The INCORRECT statement is
 - (a) CT transitions are attributed to excitations of electrons from ligand (σ) to metal (e)
 - (b) MnO₄ exhibits charge transfer at shortest wavelength among the three
 - (c) The wavelength of transitions increase in the order $VO_4^{3-} < CrO_4^{2-} < MnO_4^{-}$
 - (d) The charge on metal nucleus increases in the order $VO_4^{3-} < CrO_4^{2-} < MnO_4^{-}$
- 29. The increasing order of wavelength of absorption for the complex ions

- $\begin{array}{lll} \text{(i)} \left[\text{Cr} \left(\text{NH}_3 \right)_6 \right]^{3+} & \text{(ii)} \left[\text{Cr} \text{Cl}_6 \right]^{3-} & \text{(iii)} \left[\text{Cr} \left(\text{OH}_2 \right)_6 \right]^{3+} & \text{(iv)} \left[\text{Cr} \left(\text{CN} \right)_6 \right]^{3-}, \text{ is } \\ \text{(a)} \text{ iv} < \text{ii} < \text{i} < \text{iii} & \text{(b)} \text{ iv} < \text{iii} < \text{ii} < \text{i} \\ \text{(c)} \text{ iv} < \text{i} < \text{iii} < \text{ii} & \text{(d)} \text{ ii} < \text{iii} < \text{i} \\ \end{array}$

- The total number of metal-metal bonds in $Ru_3(CO)_{12}$ and $Co_4(CO)_{12}$, respectively, is (a) 3 and 6 (b) 4 and 5 (c) zero and 4 (d) 3 and 4 30.

- According to VSEPR theory the shapes of [SF,Cl]+ and [S,O4]2- should be 31.
 - (a) trigonal planar for $[S_2O_4]^{2-}$ and trigonal pyramidal for $[SF_2C1]^+$
 - (b) both trigonal planar
 - (c) trigonal pyramidal for $[S_2O_4]^{2-}$ and trigonal planar for $[SF_2Cl]^{+}$
 - (d) both trigonal pyramidal
- The product of the reaction between CH₂Mn(CO)₅ and ¹³CO is: 32.
 - (a) (CH₃ ¹³CO)Mn(CO)₅

(b) $(CH_2CO)Mn(CO)_4(^{13}CO)$

(c) $(^{13}CH_3CO)Mn(CO)_5$

- $(d) CH_2Mn(CO)_4$
- 33. The correct pair of ${}^{1}H$ and ${}^{31}P$ NMR spectral patterns for $C(H)(F)(PCl_{2})_{2}$ is:

34. In the following reaction

the major product [X] is:

$$(a) \begin{picture}(60,0){\line(1,0){100}} \put(10,0){\line(1,0){100}} \put(10,0){\line(1,0){100}}$$

35. In the following reaction,

$$\begin{array}{c}
O \\
\text{Me} \\
\hline
(i) \text{ SeO}_2/\text{HOAc} \\
\hline
(ii) \text{ NaOH} \\
(iii) \text{ H}_3\text{O}^+
\end{array}$$
[X]

the major product [X] is:

$$(d) \begin{picture}(60){0.95\textwidth} \put(0.5){0.95\textwidth} \put(0.5){$$

36. In the following reaction,

$$\begin{array}{c|c}
& & Bu_3SnH, AlBN \\
\hline
& & Toluene, heat
\end{array}$$
[X]

the major product [X] is:

37. The most appropriate sequence of reactions for carrying out the following conversion

is

(a) (i) Peracid; (ii) H+; (iii) Zn/dil. HCl

(b) (i) Alkaline $\text{KMnO}_4;$ (ii) $\text{NaIO}_4;$ (iii) $\text{N}_2\text{H}_4/\text{KOH}$

(c) (i) Alkaline KMnO₄; (ii) H⁺; (iii) Zn/dil. HCl

(d) (i) O₃/Me₂S; (ii) NaOEt; (iii) N₂H₄/KOH

38. In the following reaction sequence

+
$$(i)$$
 PTSA, C_6H_6 , heat
$$(ii)$$
 CHCl₃, NaOH
$$(iii)$$
 H₃O⁺

the major product [X] is:

39. In the following conversion

the major product [X] is:

41. In the reaction,

Optically pure (+)-trans-2-acetoxycyclohexyl tosylate $\xrightarrow{\text{HOAc.KOAc}} [X]$ the major product [X] is:

- (a) racemic trans-1, 2-cyclohexanediol diacetate
- (b) optically active trans-1, 2-cyclohexanediol diacetate
- (c) racemic cis-1, 2-cyclohexanediol diacetate
- (d) optically active cis-1, 2-cyclohexanediol diacetate.
- 42. The activity of water at 11 bar and 298K is:
 - (a) 1.101
- (b) 1.007
- (c) 0.998
- (d) 0.898

43. For the process

$$1 \operatorname{Ar}(300 \mathrm{K}, 1 \operatorname{bar}) \longrightarrow 1 \operatorname{Ar}(200 \mathrm{K}, 10 \operatorname{bar})$$

assuming ideal gas behavior, the change in molar entropy is:

(a) $-27.57 \text{ J K}^{-1} \text{ mol}^{-1}$

(b) $+27.57 \text{ J K}^{-1} \text{ mol}^{-1}$

(c) -24.20 J K⁻¹ mol⁻¹

- (d) $+24.20 \text{ J K}^{-1} \text{ mol}^{-1}$
- 44. The wave function for a quantum mechanical particle in a 1-dimensional box of length 'a' is given by

$$\psi = A \sin \frac{\pi x}{a}$$

The value of 'A' for a box of length 200 nm is

- (a) $4 \times 10^4 \, (nm)^2$
- (b) $10\sqrt{2} \left(\text{nm}\right)^{\frac{1}{2}}$ (c) $\sqrt{2}/10 \left(\text{nm}\right)^{-\frac{1}{2}}$
 - (d) $0.1 \text{ (nm)}^{-1/2}$
- For 1 mole of a monoatomic ideal gas, the relation between pressure (p), volume (V) and average 45. molecular kinetic energy $(\bar{\epsilon})$ is
 - (a) $p = \frac{N_A \overline{\epsilon}}{V}$
- (b) $p = \frac{N_A \overline{\epsilon}}{3V}$ (c) $p = \frac{2N_A \overline{\epsilon}}{3V}$ (d) $p = \frac{2N_A}{3V\overline{\epsilon}}$
- For a 1 molal aqueous NaCl solution, the mean ionic activity coefficient $\left(\gamma_{\scriptscriptstyle\pm}\right)$ and the Deby-Huckel 46. Limiting Law constant (A) are related as
 - (a) $\log \gamma_{\perp} = \sqrt{2} A$
- (b) $\log \gamma_{\perp} = -\sqrt{2} \text{ A}$ (c) $\gamma_{\perp} = 10^{\text{A}}$
- (d) $\gamma_{\perp} = 10^{-A}$

47. For the concentration cell

 $M \mid M^{+}(aq, 0.01 \text{ mol dm}^{-3}) \mid M^{+}(aq, 0.1 \text{ mol dm}^{-3}) \mid M$ the EMF (E) of the cell at a temperature (T) equals

(a) $2.303 \frac{RT}{E}$

(b) $-2.303 \frac{RT}{E}$

(c) $E_{M^+/M}^0 + 2.303 \frac{RT}{F}$

(d) $E_{M^+/M}^0 - 2.303 \frac{RT}{F}$

Commond Data Questions:

Commond data for Q.48 and Q.49:

A hypothetical molecule XY has the following properties

Reduced mass: 2×10⁻²⁶ kg X-Y bond length: 100 pm

Force constant of the bond: 8×10² N.m⁻¹

- The frequency of radiation (in cm $^{-1}$ units) required to vibrationally excite the molecule from v = 0 to v = 048. 1 state is
 - (a) 3184.8
- (b) 2123.2
- (c) 061.6
- (d) 840.0
- 49. The frequency of radiation (in cm⁻¹ units) required to rotationally excite the molecule from J = 0 to J = 1state is
 - (a) 1.4
- (b) 2.8
- (c) 3.2
- (d) 3.6

Common data for Q.50 and Q.51:

Na₂HPO₄ and NaH₂PO₄ on heating at high temperature produce a chain sodium pentaphosphate quan-

- 50. The ideal molar ratio of Na_2HPO_4 to NaH_2PO_4 is:
 - (a) 4:1
- (b) 1:4
- (c) 3 : 2
- (d) 2:3

- 51. The total charge on pentaphosphate anion is:
 - (a) -5
- (b) -3
- (c) -7
- (d) -9

Linked Answer Q.52 and Q.53:

The decomposition of ozone to oxygen $2O_3(g) \rightarrow 3O_2(g)$ occurs by mechanism

(i)
$$M(g) + O_3(g) \xrightarrow{k_1} O_2(g) + O(g) + M(g)$$
,

(ii)
$$O_2(g) + O(g) + M(g) \xrightarrow{k_2} M(g) + O_3(g)$$
, $E_{a,2}$

(iii)
$$O(g) + O_3(g) \xrightarrow{k_3} 2O_2(g)$$
, $E_{a,3}$

where, M is the catalyst molecule.

 k_{i} ' are rate constants and $k_{a,i}$'s the activation energies for the elementary steps,

52. Under the steady state approximation for the intermediates, the rate of decomposition of ozone, $-\frac{d[O_3]}{dt}$, is

(c)
$$\frac{2k_2k_3[O_3][M]}{k_2[O_2][M]+k_3[O_3]}$$
 (d) $\frac{2k_1k_2[O_3]^2[M]}{k_2[O_2][M]-k_3[O_3]}$

53. Assuming $k_3[O_3] \gg k_2[O_2][M]$, the activation of the overall reaction is

(a)
$$\frac{E_{a,1}E_{a,3}}{E_{a,2}}$$
 (b) $E_{a,3} + E_{a,1} - E_{a,2}$ (c) $E_{a,2}$

Statement for Linked Answer Q.54 and Q.55:

A ketone on treatment with bromine in methanol gives the corresponding monobromo compound[X] having molecular formula C_5H_9 BrO. The compound [X] when treated with NaOMe in MeOH produces [Y] as the major product. The spectral data for compound [X] are: 1H NMR: δ 1.17(d, 6H), 3.02 (m, 1H), 4.10(s, 2H); ^{13}C NMR: δ 17, 37, 39, 210.

54. The compound [X] is:

55. The major product [Y] is:

***** END OF THE QUESTION PAPER *****

