CHEMISTRY-CY

Q.1 – Q.25 : Carry ONE mark each.

- 1. In the proton decoupled ¹³C NMR spectrum of 7-norbornanone, the number of signals obtained is (a) 7 (b) 3 (c) 4 (d) 5
- 2. Identify the most probable product in the given reaction

3. In the cyclization reaction given below, the most probable product formed is

4. If Δy and ΔP_y are the uncertainties in the y-coordinate and the y component of the momentum of a particle

respectively, then, according to uncertainty principle $\Delta y \Delta P_y$ is: $\left(\hbar = \frac{h}{2\pi} \text{ and } h \text{ is Planck 's constant}\right)$

(a) $\geq \hbar$ (b) $> \hbar / 2$ (c) $> \hbar$ (d) $\geq \hbar / 2$

- 5. The average length of a typical α helix comprised of 10 amino acids is (a) 10Å (b) 15Å (c) 36Å (d) 54Å
- 6. Number of thymine residues in a 5000 kb DNA containing 23% guanine residues is: (a) 2.70×10^6 (b) 2.70×10^7 (c) 1.35×10^6 (d) 1.35×10^7
- 7. Show below is a Hammett plot obtained for the reaction

QUESTION PAPER

- The change in slope of the plot indicates that
- (a) The reaction does not follow linear free energy relationship
- (b) electrons are being withdrawn from the transition state in the mechanism
- (c) electrons are being donated to the transition state in the mechanism
- $\left(d\right)$ the mechanism of the reaction is changing

8. The ratio of relative intensities of the two molecular ion peaks of methyl bromide (CH_3Br) in the mass spectrum is:

(a) $M^+:(M+2)^+=1:3$	(b) $M^+:(M+2)^+=3:1$
(c) $M^+:(M+2)^+=1:1$	(d) $M^+:(M+2)^+=1:2$

9. A disaccharide that will not given Benedict's test and will not form osazone is (a) maltose (b) lactose (c) cellobiose (d) sucrose

10. Choose the allowed transition

(a)
$${}^{1}\sum_{g}^{+} \rightarrow {}^{3}\sum_{u}^{+}$$
 (b) ${}^{1}\sum_{g}^{+} \rightarrow {}^{3}\sum_{u}^{-}$ (c) ${}^{1}\sum_{g}^{+} \rightarrow {}^{1}\sum_{u}^{+}$ (d) ${}^{1}\sum_{g}^{+} \rightarrow {}^{1}\sum_{u}^{-}$

11. The angular part of the wavefunction for the electron in a hydrogen atom is proportional to $\sin^2 \theta \cos \theta e^{2i\phi}$. The values of the azimuthal quantum number *l* and the magnetic quantum number (m) are respectively. (a) 2 and 2 (b) 2 and -2 (c) 3 and 2 (d) 3 and -2

12. Let ϕ_x^c and ϕ_z^c denote the wavefunctions of the $2p_x$ and $2p_z$ orbitals of carbon, respectively, and ϕ_x^0 and ϕ_z^0 represent the wavefunction of the $2p_x$ and $2p_z$ orbitals of oxygen, respectively. If c_1 and c_2 are constants used in linear combinations and the CO molecule is oriented along the z axis than, according to molecular orbital theory, the π -bonding molecular orbital has a wavefunction given by

(a)
$$c_1\phi_z^C + c_2\phi_x^0$$
 (b) $c_1\phi_z^C + c_2\phi_z^0$ (c) $c_1\phi_x^C + c_2\phi_z^0$ (d) $c_1\phi_x^C + c_2\phi_x^0$

13. The bond that gives the most intense band in the infrared spectrum for its stretching vibrations is (a) C–H (b) N –H (c) O –H (d) S–H

14. If x_A and x_B are the respective mole fractions of A and B in a ideal solution of the two and T_A , T_B , T are the fusion temperatures of pure A, and pure B and the ideal solution respectively, then

(a)
$$1 - x_{\rm B} = \exp\left[\frac{-\Delta H_{\rm fus(B)}^0}{R}\left(\frac{1}{T} - \frac{1}{T_{\rm B}}\right)\right]$$
 (b) $1 - x_{\rm B} = \exp\left[\frac{\Delta H_{\rm fus(A)}^0}{R}\left(\frac{1}{T} - \frac{1}{T_{\rm A}}\right)\right]$
(c) $1 - x_{\rm B} = \exp\left[\frac{\Delta H_{\rm fus(B)}^0}{R}\left(\frac{1}{T} - \frac{1}{T_{\rm B}}\right)\right]$ (d) $1 - x_{\rm B} = \exp\left[\frac{-\Delta H_{\rm fus(A)}^0}{R}\left(\frac{1}{T} - \frac{1}{T_{\rm A}}\right)\right]$

15. For a reaction involving two steps given below

First step : $G \Longrightarrow 2H$

Second step : $G + H \longrightarrow P$ assume that the first step attains equilibrium rapidly. The rate of formation of P is proportional to

(a) $[G]^{1/2}$ (b) [G] (c) $[G]^2$ (d) $[G]^{3/2}$

GATE-CY 2012

QUESTION PAPER

28. At 298K, the EMF of the cell

 $pt |H_2(1bar)|H^+(solution)||Cl^-|Hg_2Cl_2Hg$

is 0.7530V. The standard potential of the calomel electrode is 0.2802V. If the liquid junction potential is zero, the pH of the solution is: (a) 4.7 (b) 7.4 (c) 8.0 (d) 12.7

29. The wavefunction of a 1-D harmonic oscillator between $x = +\infty$ and $x = -\infty$ is given by $\psi(x) = N(2x^2 - 1)e^{-x^2/2}$. The value of N that normalizes the function $\psi(x)$ is:

$$\left(\operatorname{Given}_{-\infty}^{+\infty} x^{2n} e^{-x^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot .. (2n-1)}{2^n} \sqrt{\pi}\right)$$
(a) $\left(\frac{1}{8\sqrt{\pi}}\right)^{\frac{1}{2}}$ (b) $\left(\frac{1}{3\sqrt{\pi}}\right)^{\frac{1}{2}}$ (c) $\left(\frac{1}{2\sqrt{\pi}}\right)^{\frac{1}{2}}$ (d) $\left(\frac{1}{4\sqrt{\pi}}\right)^{\frac{1}{2}}$

30. Consider the reaction, $\mathbf{H}_2 + \mathbf{C}_2 \mathbf{H}_4 \rightarrow \mathbf{C}_2 \mathbf{H}_6$ The molecular diameters of \mathbf{H}_2 and $\mathbf{C}_2 \mathbf{H}_4$ are 1.8Å and 3.6Å respectively. The pre-exponential factor in the rate constant calculated using collision theory in m³ (mole)⁻¹ s⁻¹ is approximately. (For this reaction at 300 K,

$$\left(\frac{8k_{B}T}{\pi\mu}\right)^{\frac{1}{2}}$$
 N_A = 1.11×10²⁷ m (mole)⁻¹ s⁻¹, where the symbols have their usual meanings)

(a)
$$2.5 \times 10^8$$
 (b) 2.5×10^{14} (c) 9.4×10^{17} (d) 9.4×10^{23}

31. The molecular partition function of a system is given by $q(T) = \left(\frac{k_B T}{hc}\right)^{\frac{3}{2}} \left(\frac{8\pi^3 m k_B T}{h^2}\right)^{\frac{3}{2}}$, where the symbols

have their usual meanings.

The heat capacity at constant volume for this system is(a) 3R(b) 6R(c) 9R/2(d) 3R/232.Consider the phase diagram given below.Consider the phase diagram given below.Consider the phase diagram given below.

34.

At the intersection point Q the phases that are in equilibrium are

(a) Solid **A**, solid **B** and Solid AB_2

(b) Solid A, solid AB₂ and liquid

(c) solid B, solid AB_2 and liquid

(d) solid A, solid B, solid AB_2 and liquid

33. Identify the product from the following reaction

6

35. The acid catalyzed cyclization of 5-ketodecan-1,9-diol is given below

GATE-CY 2012

QUESTION PAPER

40. Consider the following pairs of complexes $\left[\operatorname{CoF}(\operatorname{NH}_3)_5\right]^{2+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$; $\left[\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{OH}_2)\right]^{3+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$ $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$; $\left[\operatorname{CoI}(\operatorname{NH}_3)_5\right]^{2+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$ The electron transfer rate will be fastest in the pair. (a) $\left[\operatorname{CoF}(\operatorname{NH}_3)_5\right]^{2+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$ (b) $\left[\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{OH}_2)\right]^{3+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6\right]^{2+}$ (c) $\left[\operatorname{Co}(\operatorname{NH}_3)_6 \right]^{3+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6 \right]^{2+}$ (d) $\left[\operatorname{CoI}(\operatorname{NH}_3)_5 \right]^{2+}$ and $\left[\operatorname{Cr}(\operatorname{OH}_2)_6 \right]^{2+}$ The extent of Mossbauer quadrupole splitting of iron follows the order 41. (a) $\operatorname{FeCl}_{2} \cdot 4H_{2}O > K_{2} \left[\operatorname{Fe}(CN)_{5}(NO)\right] > \operatorname{FeCl}_{3} \cdot 6H_{2}O$ (b) $K_2 \left[Fe(CN)_5(NO) \right] > FeCl_2 \cdot 4H_2O > FeCl_3 \cdot 6H_2O$ (c) $\operatorname{FeCl}_{3} \cdot 6H_{2}O > K_{2} \left[\operatorname{Fe}(CN)_{5}(NO)\right] > \operatorname{FeCl}_{2} \cdot 4H_{2}O$ (d) $\operatorname{FeCl}_2 \cdot 4H_2O > \operatorname{FeCl}_3 \cdot 6H_2O > K_2 \left[\operatorname{Fe}(CN)_5(NO)\right]$ 42. Hemoglobin is an oxygen carrying protein. The correct statement about oxy-hemoglobin is that (a) the metal is low-spin in +3 oxidation state while dioxygen is in O_2^- form (b) the metal is high-spin in +3 oxidation state while dioxygen is in O_2^- form (c) The metal is low-spin in +3 oxidation state while dioxygen is in neutral form (d) the metal is high-spin in +3 oxidation state while dioxygen is in neutral form If a mixture of NaCl, conc. H_2SO_4 and $K_2Cr_2O_7$ is heated in a dry test tube, a red vapour (P) is formed. This 43. vapour (P) dissolves in aqueous NaOH to form a yellow solution, which upon treatment with AgNO₃ forms a red solid (Q). P and Q are, respectively (b) Na₂ $[CrOCl_5]$ and Ag₂CrO₄ (a) CrO_2Cl_2 and $Ag_2Cr_2O_7$ (c) $Na_2[CrOCl_5]$ and $Ag_2Cr_2O_7$ (d) CrO_2Cl_2 and Ag_2CrO_4 For the following reaction 44. $2\mathrm{MnO_4^-} + 5\mathrm{H_2C_2O_4} + 6\mathrm{H^+} \rightarrow 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 10\mathrm{CO_2}$ $E^{0}(MnO_{4}^{-}/Mn^{2+}) = +1.51V$ and $E^{0}(CO_{2}/H_{2}C_{2}O_{4}) = -0.49V$. At 298 K, the equilibrium constant is: (d) 10^{833} (a) 10^{500} (b) 10^{338} (c) 10^{38} The ground states of high-spin octahedral and tetrahedral Co(II) complexes are respectively 45. (a) ${}^{4}T_{2g}$ and ${}^{4}A_{2}$ (b) ${}^{4}T_{1g}$ and ${}^{4}A_{2}$ (c) ${}^{3}T_{1g}$ and ${}^{4}A_{2}$ (d) ${}^{4}T_{1g}$ and ${}^{3}T_{1}$ The INCORRECT statement about Zeise's salt is: 46. (a) Zeise salt is diamagnetic (b) The oxidation state of Pt in Zeise's slat is +2(c) All the Pt–Cl bond lengths in Zeise's salt are equal (d) C–C bond length of ethylene moiety in Zeise's salt is longer than that of free ethylene molecule

- 47. The number of possible isomers for the square planar mononuclear complex $\left[\left(NH_3\right)_2 M\left(CN\right)_2\right]$ of a metal M is:
 - (a) 2 (b) 4 (c) 6 (d) 3

Common Data for Q. 48 and Q. 49 :

Consider the reaction sequence shown below :

TsCl = p-toluenesulfonyl chloride

48. The oxidant X used in step 1 is

(a) CrO_3 (b) OsO_4

(c) NaIO₄

(d) m-CPBA followed by NaOH

49. The product is

Common Data for Q. 50 and Q. 51

Consider the E1 reaction of tert-amyl halides from the energy profile give below.

- 50. In the above reaction, X = Cl, Br or I. Based on the graph, identify the alkyl halides (R-X) as S1 S2 and S3 (a) S1 = R-Cl, S2 = R-Br and S3 = R-1 (b) S1=R-I, S2 = R-Br and S3 = R-Cl (c) S1 = R-Cl, S2 = R-I and S3 = R-Br (d) SI=R-I, S2 = R-Cl and S3 = R-Br
- 51. Identify product P_1 and its yield relative to P_2
 - (a) P_1 is M and is the major product
 - (c) P_1 is N and is the major product
- (b) P_1 is N and is the minor product
- (c) P_1 is M and is the minor product.

Linked Answer Questions.

Statement for Linked Answer for Q.52 and Q.53

A 20491 cm⁻¹ laser line was used to excite oxygen molecules (made of ¹⁶O only) to obtain the rotational Raman spectrum. The resulting rotational Raman spectrum of oxygen molecule has the first Stokes line at 20479 cm⁻¹.

52. The rotational constant (usually denoted as B) for the oxygen molecule is

(a) 1.2 cm^{-1} (b) 2.0 cm^{-1} (c) 3.0 cm^{-1} (d) 6.0 cm^{-1}

53. The next rotational Stokes line is expected at

(a) 20467 cm^{-1} (b) 20469 cm^{-1} (c) 20471 cm^{-1} (d) 20475 cm^{-1}

Statement for Linked Answer for Q.54 and Q.54

Huckel molecular orbital theory can be applied to the allene radical

$$CH_2 = CH - \dot{C}H_2$$

54. The secular determinant (where α , β and E have their usual meanings) is given by

AREER ENDEAVO