CHEMISTRY-CY

Q. 1 - Q. 25 : Carry ONE mark each.

1. In the proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of 7-norbornanone, the number of signals obtained is
(a) 7
(b) 3
(c) 4
(d) 5
2. Identify the most probable product in the given reaction

(a)

(b)

(c)

(d)

3. In the cyclization reaction given below, the most probable product formed is
(a)

(c)

(b)

(d)

4. If $\Delta \mathrm{y}$ and $\Delta \mathrm{P}_{\mathrm{y}}$ are the uncertainties in the y -coordinate and the y component of the momentum of a particle respectively, then, according to uncertainty principle $\Delta y \Delta P_{y}$ is: $\left(\hbar=\frac{h}{2 \pi}\right.$ and h is Planck 's constant $)$
(a) $\geq \hbar$
(b) $>\hbar / 2$
(c) $>\hbar$
(d) $\geq \hbar / 2$
5. The average length of a typical α-helix comprised of 10 amino acids is
(a) $10 \AA$
(b) $15 \AA$
(c) $36 \AA$
(d) $54 \AA$
6. Number of thymine residues in a 5000 kb DNA containing 23% guanine residues is:
(a) 2.70×10^{6}
(b) 2.70×10^{7}
(c) 1.35×10^{6}
(d) 1.35×10^{7}
7. Show below is a Hammett plot obtained for the reaction

The change in slope of the plot indicates that
(a) The reaction does not follow linear free energy relationship
(b) electrons are being withdrawn from the transition state in the mechanism
(c) electrons are being donated to the transition state in the mechanism
(d) the mechanism of the reaction is changing
8. The ratio of relative intensities of the two molecular ion peaks of methyl bromide $\left(\mathrm{CH}_{3} \mathrm{Br}\right)$ in the mass spectrum is:
(a) $\mathrm{M}^{+}:(\mathrm{M}+2)^{+}=1: 3$
(b) $\mathrm{M}^{+}:(\mathrm{M}+2)^{+}=3: 1$
(c) $\mathrm{M}^{+}:(\mathrm{M}+2)^{+}=1: 1$
(d) $\mathrm{M}^{+}:(\mathrm{M}+2)^{+}=1: 2$
9. A disaccharide that will not given Benedict's test and will not form osazone is
(a) maltose
(b) lactose
(c) cellobiose
(d) sucrose
10. Choose the allowed transition
(a) ${ }^{1} \sum_{\mathrm{g}}^{+} \rightarrow{ }^{3} \sum_{\mathrm{u}}^{+}$
(b) ${ }^{1} \sum_{g}^{+} \rightarrow \sum_{u}^{-}$
(c) ${ }^{1} \sum_{\mathrm{g}}^{+} \rightarrow \sum_{\mathrm{u}}^{+}$
(d) ${ }^{1} \sum_{\mathrm{g}}^{+} \rightarrow{ }^{1} \sum_{\mathrm{u}}^{-}$
11. The angular part of the wavefunction for the electron in a hydrogen atom is proportional to $\sin ^{2} \theta \cos \theta \mathrm{e}^{2 i \phi}$. The values of the azimuthal quantum number l and the magnetic quantum number (m) are respectively.
(a) 2 and 2
(b) 2 and -2
(c) 3 and 2
(d) 3 and -2
12. Let ϕ_{x}^{C} and ϕ_{z}^{C} denote the wavefunctions of the $2 p_{x}$ and $2 p_{z}$ orbitals of carbon, respectively, and ϕ_{x}^{0} and ϕ_{z}^{0} represent the wavefunction of the $2 p_{x}$ and $2 p_{z}$ orbitals of oxygen, respectively. If c_{1} and c_{2} are constants used in linear combinations and the CO molecule is oriented along the z axis than, according to molecular orbital theory, the π-bonding molecular orbital has a wavefunction given by
(a) $\mathrm{c}_{1} \phi_{z}^{\mathrm{C}}+\mathrm{c}_{2} \phi_{\mathrm{x}}^{0}$
(b) $\mathrm{c}_{1} \phi_{\mathrm{z}}^{\mathrm{C}}+\mathrm{c}_{2} \phi_{\mathrm{z}}^{0}$
(c) $c_{1} \phi_{x}^{c}+c_{2} \phi_{z}^{0}$
(d) $\mathrm{c}_{1} \phi_{\mathrm{x}}^{\mathrm{C}}+\mathrm{c}_{2} \phi_{\mathrm{x}}^{0}$
13. The bond that gives the most intense band in the infrared spectrum for its stretching vibrations is
(a) $\mathrm{C}-\mathrm{H}$
(b) $\mathrm{N}-\mathrm{H}$
(c) $\mathrm{O}-\mathrm{H}$
(d) $\mathrm{S}-\mathrm{H}$
14. If x_{A} and x_{B} are the respective mole fractions of A and B in a ideal solution of the two and T_{A}, T_{B}, T are the fusion temperatures of pure A , and pure B and the ideal solution respectively, then
(a) $1-\mathrm{x}_{\mathrm{B}}=\exp \left[\frac{-\Delta \mathrm{H}_{\mathrm{fus}(\mathrm{B})}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{B}}}\right)\right]$
(b) $1-\mathrm{x}_{\mathrm{B}}=\exp \left[\frac{\Delta \mathrm{H}_{\text {fus(A) }}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{A}}}\right)\right]$
(c) $1-\mathrm{x}_{\mathrm{B}}=\exp \left[\frac{\Delta \mathrm{H}_{\mathrm{fus}(\mathrm{B})}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{B}}}\right)\right]$
(d) $1-\mathrm{x}_{\mathrm{B}}=\exp \left[\frac{-\Delta \mathrm{H}_{\mathrm{fus}(\mathrm{A})}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{A}}}\right)\right]$
15. For a reaction involving two steps given below

First step : $\quad G \rightleftharpoons 2 \mathrm{H}$
Second step : $\quad \mathrm{G}+\mathrm{H} \longrightarrow \mathrm{P}$
assume that the first step attains equilibrium rapidly. The rate of formation of P is proportionalto
(a) $[\mathrm{G}]^{1 / 2}$
(b) $[G]$
(c) $[\mathrm{G}]^{2}$
(d) $[G]^{3 / 2}$
16. A metal chelate that can be used for separation and quantitative analysis of aluminium ions by gaschromatography is
(a) EDTA
(b) ethylene glycol
(c) dinonyl phthalate
(d) trifluoroacetylacetone
17. The enthalpies of hydration of $\mathrm{Ca}^{2+}, \mathrm{Mn}^{2+}$ and Zn^{2+} follow the order
(a) $\mathrm{Mn}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Zn}^{2+}$
(b) $\mathrm{Zn}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Mn}^{2+}$
(c) $\mathrm{Mn}^{2+}>\mathrm{Zn}^{2+}>\mathrm{Ca}^{2+}$
(d) $\mathrm{Zn}^{2+}>\mathrm{Mn}^{2+}>\mathrm{Ca}^{2+}$
18. The number of terminal carbonyl groups present in $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ is
(a) 2
(b) 5
(c) 6
(d) 3
19. Among the following substituted silanes, the one that gives cross-linked silicone polymer upon hydrolysis is
(a) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$
(b) $\mathrm{CH}_{3} \mathrm{SiCI}_{3}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCI}_{2}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCI}$
20. The plot of $\chi \mathrm{T}$ versus T (where χ is molar magnetic susceptibility and T is the temperature) for a paramagnetic complex which strictly follows Curie equation is:
(a)

(b)

(c)
${ }^{2 \mathrm{~T}} \chi^{\square}$
(d)

21. Among the following donors, the one that forms most stable adduct with the Lewis acid $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$ is:
(a) 4-methylpyridine
(b) 2,6- dimethylpyridine
(c) 4-nitropyridine
(d) 2,6-di-tert-butylpyridine
22. The complex with inverse-spinel structure is
(a) $\mathrm{Co}_{3} \mathrm{O}_{4}$
(b) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(c) MgAlO_{4}
(d) $\mathrm{Mn}_{3} \mathrm{O}_{4}$
23. The IUPAC nomenclature of $\mathrm{Na}\left[\mathrm{PCl}_{6}\right]$ is
(a) sodium hexachlorophosphine (V)
(b) sodium hexachlorophosphate (V)
(c) sodium hexachlorophosphine
(d) sodium hexachlorophosphite (V)
24. An intermediate formed during the hydroformylation of olefins using $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ as catalyst is
(a) $\mathrm{HCo}(\mathrm{CO})_{6}$
(b) $\mathrm{H}_{4} \mathrm{Co}(\mathrm{CO})_{3}$
(c) $\mathrm{H}_{2} \mathrm{Co}(\mathrm{CO})_{4}$
(d) $\mathrm{HCo}(\mathrm{CO})_{4}$
25. The order of polarity of $\mathrm{NH}_{3}, \mathrm{NF}_{3}$ and BF_{3} is:
(a) $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{BF}_{3}$
(b) $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{NH}_{3}$
(c) $\mathrm{BF}_{3}<\mathrm{NH}_{3}<\mathrm{NF}_{3}$
(d) $\mathrm{NF}_{3}<\mathrm{BF}_{3}<\mathrm{NH}_{3}$

Q. 26 - Q. 55 : Carry TWO marks each.

26. From a carboxymethyl-cellulose column at pH 6.0 , arginine, valine and glutamic acid will elute in the order
(a) arginine, valine, glutamic acid
(b) arginine, glutamic acid, valine
(c) glutamic acid, arginine, valine
(d) glutamic acid, valine, arginine
27. Symmetry operations of the four C_{2} axes perpendicular to the principal axis belong to the same class in the point group (s)
(a) D_{4}
(b) $\mathrm{D}_{4 \mathrm{~d}}$
(c) $\mathrm{D}_{4 \mathrm{~h}}$
(d) $\mathrm{D}_{4 \mathrm{~h}}$ and $\mathrm{D}_{4 \mathrm{~d}}$
28. At 298 K , the EMF of the cell

$$
\text { pt } \mid \mathrm{H}_{2}(\text { lbar }) \mid \mathrm{H}^{+} \text {(solution) } \| \mathrm{Cl}^{-} \mid \mathrm{Hg}_{2} \mathrm{Cl}_{2} \mathrm{Hg}
$$

is 0.7530 V . The standard potential of the calomel electrode is 0.2802 V . If the liquid junction potential is zero, the pH of the solution is:
(a) 4.7
(b) 7.4
(c) 8.0
(d) 12.7
29. The wavefunction of a 1-D harmonic oscillator between $x=+\infty$ and $x=-\infty$ is given by $\psi(x)=N\left(2 x^{2}-1\right) \mathrm{e}^{-\mathrm{x}^{2} / 2}$. The value of N that normalizes the function $\psi(\mathrm{x})$ is:
$\left(\right.$ Given $\left.\int_{-\infty}^{+\infty} x^{2 n} e^{-x^{2}} d x=\frac{1.3 .5 \ldots(2 n-1)}{2^{n}} \sqrt{\pi}\right)$
(a) $\left(\frac{1}{8 \sqrt{\pi}}\right)^{\frac{1}{2}}$
(b) $\left(\frac{1}{3 \sqrt{\pi}}\right)^{\frac{1}{2}}$
(c) $\left(\frac{1}{2 \sqrt{\pi}}\right)^{\frac{1}{2}}$
(d) $\left(\frac{1}{4 \sqrt{\pi}}\right)^{\frac{1}{2}}$
30. Consider the reaction, $\mathbf{H}_{\mathbf{2}}+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{4} \rightarrow \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$

The molecular diameters of \mathbf{H}_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$ are 1.8 \AA and $3.6 \AA$ respectively. The pre-exponential factor in the rate constant calculated using collision theory in $\mathrm{m}^{3}(\mathrm{~mole})^{-1} \mathrm{~s}^{-1}$ is approximately. (For this reaction at 300 K , $\left(\frac{8 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{\pi \mu}\right)^{\frac{1}{2}} \mathrm{~N}_{\mathrm{A}}=1.11 \times 10^{27} \mathrm{~m}(\text { mole })^{-1} \mathrm{~s}^{-1}$, where the symbols have their usual meanings)
(a) 2.5×10^{8}
(b) 2.5×10^{14}
(c) 9.4×10^{17}
(d) 9.4×10^{23}
31. The molecular partition function of a system is given by $\mathrm{q}(\mathrm{T})=\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\mathrm{hc}}\right)^{\frac{3}{2}}\left(\frac{8 \pi^{3} \mathrm{mk}_{\mathrm{B}} \mathrm{T}}{\mathrm{h}^{2}}\right)^{\frac{3}{2}}$, where the symbols have their usual meanings.
The heat capacity at constant volume for this system is
(a) 3 R
(b) 6R
(c) $9 R / 2$
(d) $3 \mathrm{R} / 2$
32. Consider the phase diagram given below. ER ENDEAVOUP

At the intersection point Q the phases that are in equilibrium are
(a) Solid \mathbf{A}, solid \mathbf{B} and Solid AB_{2}
(b) Solid A , solid AB_{2} and liquid
(c) solid B, solid AB_{2} and liquid
(d) solid A , solid B , solid AB_{2} and liquid
33. Identify the product from the following reaction

$9-\mathrm{BBN}=9$ - Borabicyclo [3.3.1] nonane)
(a)

(b)

(c)

(d)

34. The product from the following reaction is

(a)

(d)
NOH

35. The acid catalyzed cyclization of 5-ketodecan-1,9-diol is given below

The most predominant spiroketal is
(a)

(b)

(c)

(d)

36. For a face centered cubic lattice, the Miller indices for the first Bragg's peak (smallest Bragg angle) are
(a) 002
(b) 111
(c) 001
(d) 110
37. For the titration of a $10 \mathrm{~mL}(\mathrm{aq})$ solution of $\mathrm{CaCO}_{3}, 2 \mathrm{~mL}$ of $0.001 \mathrm{M} \mathrm{Na}_{2}$ EDTA is required to reach the end point. The concentration of CaCO_{3} (assume molecular weight of $\mathrm{CaCO}_{3}=100$) is
(a) $5 \times 10^{-4} \mathrm{~g} / \mathrm{mL}$
(b) $2 \times 10^{-4} \mathrm{~g} / \mathrm{mL}$
(c) $5 \times 10^{-5} \mathrm{~g} / \mathrm{mL}$
(d) $2 \times 10^{-5} \mathrm{~g} / \mathrm{mL}$
38. In the reaction
the product formed is
(a)

(b)

(c)

(d)

39. In the reaction given below, identify the product

($\mathrm{p}-\mathrm{TSA}=\mathrm{p}$-toluenesulfonic acid; $\mathrm{THF}=$ tetrahydrofuran)
(a)

(b)

(c)

(d)

40. Consider the following pairs of complexes

$$
\begin{aligned}
& {\left[\mathrm{CoF}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+} \text { and }\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} ;\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+} \text { and }\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}} \\
& {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \text { and }\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} ;\left[\mathrm{CoI}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+} \text { and }\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}}
\end{aligned}
$$

The electron transfer rate will be fastest in the pair .
(a) $\left[\mathrm{CoF}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}$ and $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$
(d) $\left[\mathrm{CoI}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$
41. The extent of Mossbauer quadrupole splitting of iron follows the order
(a) $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}>\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]>\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]>\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}>\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}>\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]>\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}>\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}>\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]$
42. Hemoglobin is an oxygen carrying protein. The correct statement about oxy-hemoglobin is that
(a) the metal is low-spin in +3 oxidation state while dioxygen is in O_{2}^{-}form
(b) the metal is high-spin in +3 oxidation state while dioxygen is in O_{2}^{-}form
(c) The metal is low-spin in +3 oxidation state while dioxygen is in neutral form
(d) the metal is high-spin in +3 oxidation state while dioxygen is in neutral form
43. If a mixture of NaCl , conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated in a dry test tube, a red vapour (P) is formed. This vapour (P) dissolves in aqueous NaOH to form a yellow solution, which upon treatment with AgNO_{3} forms a red solid (Q). P and Q are, respectively
(a) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(b) $\mathrm{Na}_{2}\left[\mathrm{CrOCl}_{5}\right]$ and $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
(c) $\mathrm{Na}_{2}\left[\mathrm{CrOCl}_{5}\right]$ and $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(d) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
44. For the following reaction
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
$\mathrm{E}^{0}\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)=+1.51 \mathrm{~V}$ and $\mathrm{E}^{0}\left(\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=-0.49 \mathrm{~V}$.
At 298 K , the equilibrium constant is:
(a) 10^{500}
(b) 10^{338}
(c) 10^{38}
(d) 10^{833}
45. The ground states of high-spin octahedral and tetrahedral $\mathrm{Co}(\mathrm{II})$ complexes are respectively
(a) ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ and ${ }^{4} \mathrm{~A}_{2}$
(b) ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ and ${ }^{4} \mathrm{~A}_{2}$
(c) ${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ and ${ }^{4} \mathrm{~A}_{2}$
(d) ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ and ${ }^{3} \mathrm{~T}_{1}$
46. The INCORRECT statement about Zeise's salt is:
(a) Zeise salt is diamagnetic
(b) The oxidation state of Pt in Zeise's slat is +2
(c) All the Pt-Cl bond lengths in Zeise's salt are equal
(d) $\mathrm{C}-\mathrm{C}$ bond length of ethylene moiety in Zeise's salt is longer than that of free ethylene molecule
47. The number of possible isomers for the square planar mononuclear complex $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}(\mathrm{CN})_{2}\right]$ of a metal Mis:
(a) 2
(b) 4
(c) 6
(d) 3

Common Data for Q. 48 and Q. 49 :

Consider the reaction sequence shown below :

$\mathrm{TsCl}=$ p-toluenesulfonyl chloride
48. The oxidant X used in step 1 is
(a) CrO_{3}
(b) OsO_{4}
(c) NaIO_{4}
(d) m-CPBA followed by NaOH
49. The product is
(a)

(b)

(c)

(d)

Common Data for Q. 50 and Q. 51

Consider the E1 reaction of tert-amyl halides from the energy profile give below.

50. In the above reaction, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I . Based on the graph, identify the alkyl halides $(\mathrm{R}-\mathrm{X})$ as S 1 S 2 and S 3
(a) $\mathrm{S} 1=\mathrm{R}-\mathrm{Cl}, \mathrm{S} 2=\mathrm{R}-\mathrm{Br}$ and $\mathrm{S} 3=\mathrm{R}-1$
(b) S1 $=\mathrm{R}-\mathrm{I}, \mathrm{S} 2=\mathrm{R}-\mathrm{Br}$ and $\mathrm{S} 3=\mathrm{R}-\mathrm{Cl}$
(c) $\mathrm{S} 1=\mathrm{R}-\mathrm{Cl}, \mathrm{S} 2=\mathrm{R}-\mathrm{I}$ and $\mathrm{S} 3=\mathrm{R}-\mathrm{Br}$
(d) $\mathrm{SI}=\mathrm{R}-\mathrm{I}, \mathrm{S} 2=\mathrm{R}-\mathrm{Cl}$ and $\mathrm{S} 3=\mathrm{R}-\mathrm{Br}$
51. Identify product P_{1} and its yield relative to P_{2}
(a) P_{1} is M and is the major product
(b) P_{1} is N and is the minor product
(c) P_{1} is N and is the major product
(c) P_{1} is M and is the minor product.

Linked Answer Questions.
Statement for Linked Answer for Q. 52 and Q. 53
A $20491 \mathrm{~cm}^{-1}$ laser line was used to excite oxygen molecules (made of ${ }^{16} \mathrm{O}$ only) to obtain the rotational Raman spectrum. The resulting rotational Raman spectrum of oxygen molecule has the first Stokes line at $20479 \mathrm{~cm}^{-1}$.
52. The rotational constant (usually denoted as B) for the oxygen molecule is
(a) $1.2 \mathrm{~cm}^{-1}$
(b) $2.0 \mathrm{~cm}^{-1}$
(c) $3.0 \mathrm{~cm}^{-1}$
(d) $6.0 \mathrm{~cm}^{-1}$
53. The next rotational Stokes line is expected at
(a) $20467 \mathrm{~cm}^{-1}$
(b) $20469 \mathrm{~cm}^{-1}$
(c) $20471 \mathrm{~cm}^{-1}$
(d) $20475 \mathrm{~cm}^{-1}$

Statement for Linked Answer for Q. 54 and Q. 54

Huckel molecular orbital theory can be applied to the allene radical

$$
\mathrm{CH}_{2}=\mathrm{CH}-\dot{\mathrm{C}} \mathrm{H}_{2}
$$

54. The secular determinant (where α, β and E have their usual meanings) is given by
(a) $\left|\begin{array}{ccc}\alpha-\mathrm{E} & \beta & 0 \\ \beta & \alpha-\mathrm{E} & \beta \\ 0 & \beta & \alpha-\mathrm{E}\end{array}\right|$
(b) $\left|\begin{array}{ccc}\alpha-\mathrm{E} & 0 & 0 \\ 0 & \alpha-\mathrm{E} & \beta \\ 0 & \beta & \alpha-\mathrm{E}\end{array}\right|$
(c) $\left|\begin{array}{ccc}\alpha-\mathrm{E} & 0 & 0 \\ \beta & \alpha-\mathrm{E} & 0 \\ 0 & 0 & \alpha-\mathrm{E}\end{array}\right|$
(d)
$\left|\begin{array}{ccc}\alpha-E & -\beta & 0 \\ -\beta & \alpha-E & -\beta \\ 0 & -\beta & \alpha-E\end{array}\right|$
55. The possible values of E are
(a) $\alpha+\sqrt{2} \beta, \alpha, \alpha-\sqrt{2} \beta$
(b) $\alpha+2 \sqrt{2} \beta, \alpha, \alpha-2 \sqrt{2} \beta$
(c) $\alpha+\beta, \alpha, \alpha-\beta$
(d) $\alpha+2 \beta, \alpha, \alpha-2 \beta$
