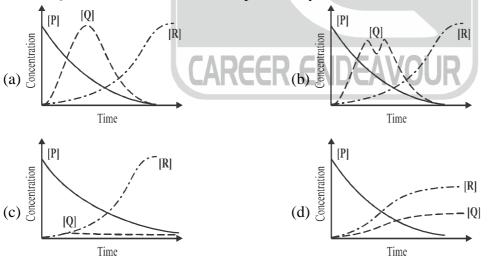
## **CHEMISTRY-CY**

# Q.1 – Q.25 : Carry ONE mark each.

- 1. The point group symmetry of  $CH_2 = C = CH_2$  is: (a)  $D_{2h}$  (b)  $C_{2h}$  (c)  $C_{2v}$  (d)  $D_{2d}$
- 2. Two trial wave function  $\phi = c_1 x (a x)$  and  $\phi_2 = c_1 x (a x) + c_2 x^2 (a x)^2$  give ground state energies  $E_1$ and  $E_2$ , respectively, for the microscopic particle in a 1-D box by using the variation method. If the exact ground state energy is  $E_0$ , the correct relationship between  $E_0$ ,  $E_1$  and  $E_2$  is: (a)  $E_0 = E_1 = E_2$  (b)  $E_0 < E_1 < E_2$  (c)  $E_0 < E_2 < E_1$  (d)  $E_0 > E_2 = E_1$
- 3. The ground state energies of H atom and  $H_2$  molecule are -13.6 eV and -31.7 eV, respectively. The dissociation energy of  $H_2$  is \_\_\_\_\_ eV.
- 4. A 2 L vessel containing 2g of  $H_2$  gas at 27°C is connected to a 2L vessel containing 176 g of  $CO_2$  gas at 27°C. Assuming ideal behaviour of  $H_2$  and  $CO_2$ , the partial pressure of  $H_2$  at equilibrium is \_\_\_\_\_bar.

# 5. Consider the reaction, $2C(s) + O_2(g) \Longrightarrow 2CO(g)$ at equilibrium,


The equilibrium can be shifted towards the forward direction by

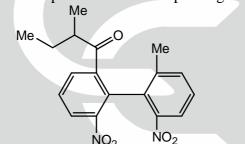
- (a) Increasing the amount of carbon in the system
- (b) Decreasing the volume of the system.
- (c) Decreasing the pressure of the system.
- (d) Increasing the temperature of the system
- 6. A sparingly soluble electrolyte  $M_2 X$  ionizes as  $M_2 X \Longrightarrow 2M^+ + X^{2-}$ .

The solubility product  $(K_{sp})$ , molal solubility (S) and molal activity coefficient  $(\gamma_{\pm})$  are related by

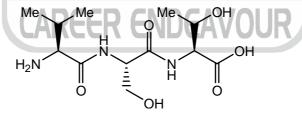
(a) 
$$K_{SP} = S^2 \gamma_{\pm}^2$$
 (b)  $K_{SP} = S^3 \gamma_{\pm}^3$  (c)  $K_{SP} = 4S^3 \gamma_{\pm}^2$  (d)  $K_{SP} = 4S^3 \gamma_{\pm}^3$ 

7. For the first order consecutive reaction,  $P \rightarrow Q \rightarrow R$ , under steady state approximation to [Q], the variation of [P], [Q] and [R] with time are best represented by




- 8. At 273 K and 10 bar, the langmuir adsorption of a gas on a solid surface gave the fraction of surface coverage as 0.01. The Langmuir adsorption isotherm constant is \_\_\_\_\_ bar<sup>-1</sup>.
  - Conversion of boron trifluoride to tetrafluoroborate accompanies
    - (a) Increase in symmetry and bond elongation

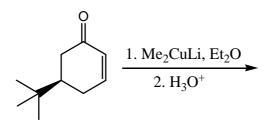
9.

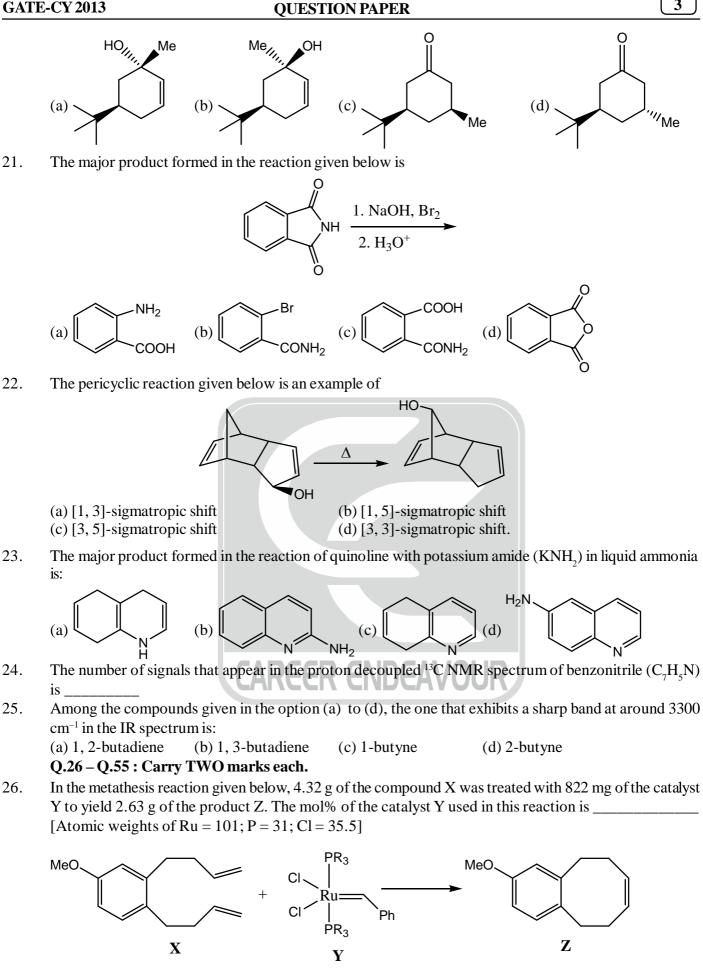

- (b) Increase in symmetry and bond contraction
- (c) Decrease in symmetry and bond contraction
- (d) Decrease in symmetry and bond elongation.



| GATE-CY 2013 QUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STION PAPER    | 2         |                           |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|---------------------------|--|--|--|
| 10.              | The correct statement with respect to the bonding of the ligands, Me <sub>3</sub> N and Me <sub>3</sub> P with the metal ions Be <sup>2+</sup> and Pd <sup>2+</sup> is,<br>(a) The ligands bind equally strong with both the metal ions as they are dicationic.<br>(b) The ligands bind equally strong with both the metal ions as both the ligands are pyramidal.<br>(c) The binding is stronger for Me <sub>3</sub> N with Be <sup>2+</sup> and Me <sub>3</sub> P with Pd <sup>2+</sup> .<br>(d) The binding is stronger for Me <sub>3</sub> N with Pd <sup>2+</sup> and Me <sub>3</sub> P with Be <sup>2+</sup> . |                |           |                           |  |  |  |
| 11.              | A crystal has the lattice parameters $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$ . The crystal system is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |           |                           |  |  |  |
|                  | (a) Tetragonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) Monoclinic | (c) Cubic | (d) Orthorhombic          |  |  |  |
| 12.              | $Cr = C(OMe)(Me)$ with $MeNH_2$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |           |                           |  |  |  |
|                  | (a) CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) MeOH       | (c) MeCHO | (d) MeCONH <sub>2</sub> . |  |  |  |
| 13.              | The catalyst and co-catalyst used in Wacker process, respectively, are(a) $PdCl_2$ and $Cu$ (b) $CuCl_2$ and $[PdCl_4]^{2-}$ (c) Pd and CuCl(d) $[PdCl_4]^{2-}$ and $CuCl_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |           |                           |  |  |  |
| 14.              | Oxymyoglobin $Mb(O_2)$ and oxhyhemoglobin $Hb(O_2)_4$ , respectively, are(a) Paramagnetic and paramagnetic(b) Diamagnetic and diamagnetic(c) Paramagnetic and diamagnetic(d) Diamagnetic and paramagnetic.                                                                                                                                                                                                                                                                                                                                                                                                           |                |           |                           |  |  |  |
| 15.              | Hapticity of cycloheptatriene in $Mo(C_7H_8)(CO_3)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |           |                           |  |  |  |
| 16.              | The number of oxygen molecule(s) that a molecule of hemerythrin can transport is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |           |                           |  |  |  |
| 17.              | The maximum number of stereoisomers possible for the compound given below is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |           |                           |  |  |  |




18. The correct sequence of the amino acids present in the tripeptide given below is



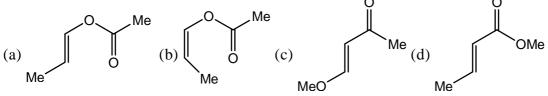

(b) Val-Thr-Ser (c) Leu-Ser-Thr (d) Leu-Thr-Ser

- 19. Among the compounds given in the options (a)–(d), the one that can be used as a formyl anion equivalent (in the presence of a strong base) is:
  (a) ethylene
  (b) nitroethane
  (c) 1, 3-dithiane
  (d) 1, 4-dithiane
- 20. The major product formed in the reaction given below is:

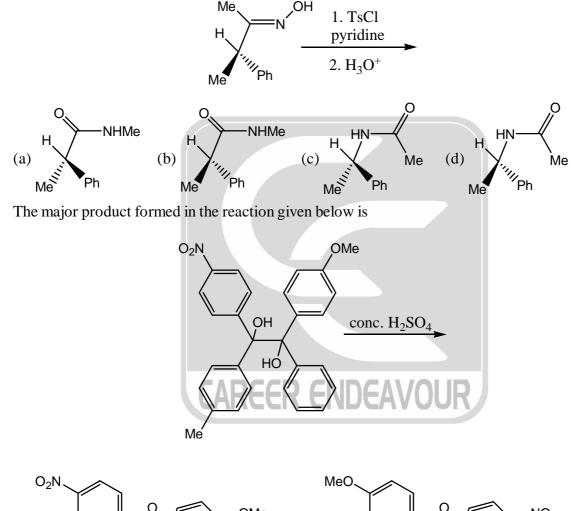
(a) Val-Ser-Thr

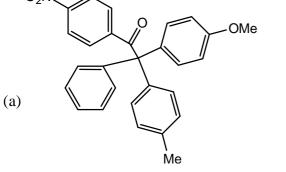


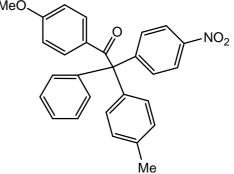



(R=cyclohexyl)




29.


#### **QUESTION PAPER**

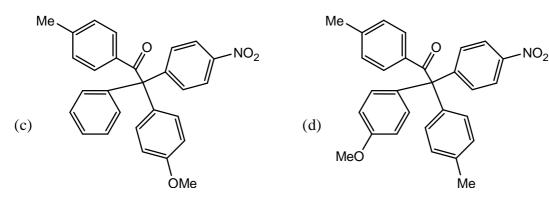

27. An organic compound  $\mathbf{Q}$  exhibited the following spectral data: IR: 1760 cm<sup>-1</sup> <sup>1</sup>H NMR :  $\delta$  (ppm) : 7.2 (1H, d, J = 16.0 Hz), 5.1 (1H, m), 2.1 (3H, s), 1.8(3H, d, J = 7.0 Hz) <sup>13</sup>C NMR :  $\delta$  (ppm); 170 (carbonyl carbon), Compound  $\mathbf{Q}$  is



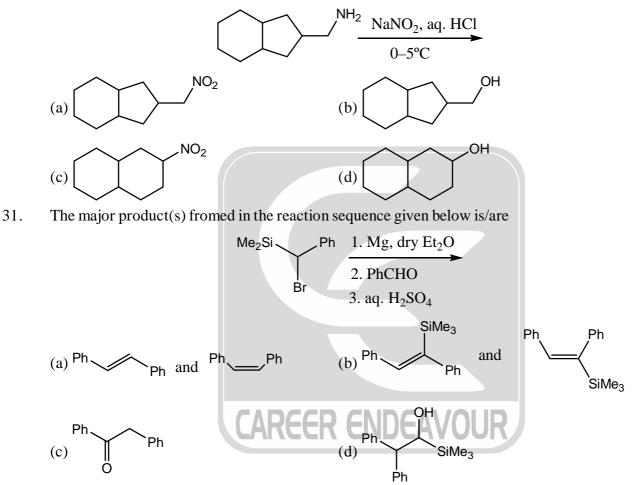
28. The major product formed in the Beckmann rearrangement of the compound given below is:





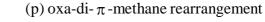






(b)

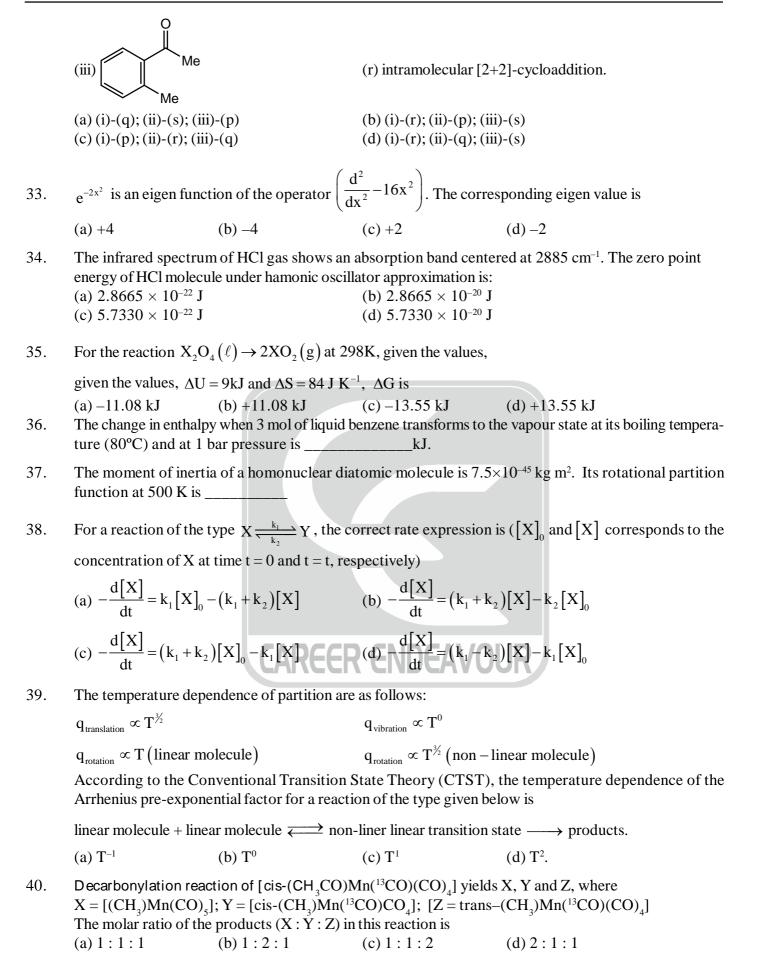
(i)

(ii)




30. The major product formed in the reaction given below is




Match the compounds in the Column-I with photochemical reactions that they can undergo given in 32. the Column-II: Column-I

Column-II



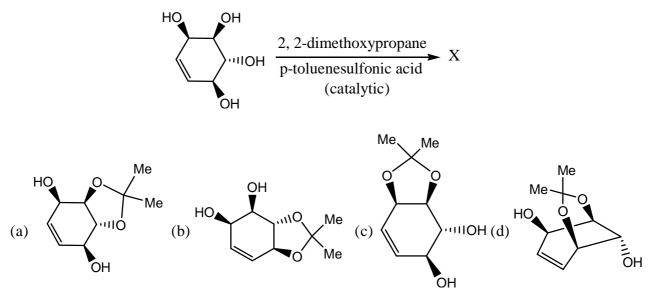
(q) Paterno-Buchi reaction



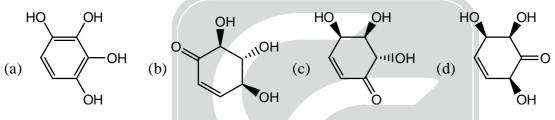




| GATI       | E-CY 2013                                                                                                                                                                                                                                                                                                                                                          | QUES                                           | TION PAPER                                                                                                                                    | 7                                                          |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| 41.        | According to polyhe<br>(a) closo                                                                                                                                                                                                                                                                                                                                   | dral electron count rul<br>(b) nido            | le, the structure of $Rh_6(0)$ (c) arachno                                                                                                    | CO) <sub>16</sub> is:<br>(d) hypho                         |  |  |
| 42.        | The increasing order<br>(a) CuCl < NaCl < I<br>(c) NaF < CuCl < N                                                                                                                                                                                                                                                                                                  | NaF                                            | he halides NaCl, CuCl a<br>(b) NaF < NaCl < C<br>(d) CuCl < NaF < N                                                                           | CuCl                                                       |  |  |
| 43.        | The correct electron<br>(a) $[Xe]4f^7$ and 7.9 I<br>(c) $[Xe]4f^65d^1$ and 7                                                                                                                                                                                                                                                                                       | BM                                             | n only magnetic moment of Gd <sup>3+</sup> (atomic number 64) are<br>(b) [Xe]4f <sup>7</sup> and 8.9 BM<br>(d) [Rn]5f <sup>7</sup> and 7.9 BM |                                                            |  |  |
| 44.        |                                                                                                                                                                                                                                                                                                                                                                    |                                                | s, the one that has the hi<br>(c) $[V(H_2O)_6]^{2+}$                                                                                          | ighest enthalpy of hydration is<br>(d) $[Cr(H_2O)_6]^{2+}$ |  |  |
| 45.        | A metal crystallizes<br>contact distance in th<br>(a) 4.20 Å                                                                                                                                                                                                                                                                                                       |                                                | ubic lattice parameter (<br>(c) 2.42Å                                                                                                         | of 4.20Å. The shortest atom to atom<br>(d) 2.10Å           |  |  |
| 46.        | Polarographic method of analysis to obtain individual amounts of Cu2+ and Cd2+ in a given mixture of thetwo ions (Cu2+ and Cd2+) is achieved by measuring their(a) half-wave potentials(b) migration currents(c) decomposition potentials(d) diffusion currents                                                                                                    |                                                |                                                                                                                                               |                                                            |  |  |
| 47.        | The ground state ter (a) ${}^{3}T_{1g}$                                                                                                                                                                                                                                                                                                                            | m $[N_1(H_2O)_6]^{2+}$ 1S:<br>(b) ${}^3T_{2g}$ | (c) ${}^{3}A_{2g}$                                                                                                                            | $(d) {}^{4}T_{1g}$                                         |  |  |
| 48.        | Commond Data Questions:<br>Commond data for Q.48 and Q.49:<br>N, N-Dimethylformamide (DMF) gives different patterns of signals for the methyl protons whenits <sup>1</sup> H<br>NMR spectrum is recorded at different temperatures.<br>Match the patterns of the NMR signals given in the Column-I with temperatures given in the Column-II.<br>Column-I Column-II |                                                |                                                                                                                                               |                                                            |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                    | three protons each, at                         | δ 2.87 and 2.97 ppm                                                                                                                           | (x) 25°C                                                   |  |  |
|            | (ii) One sharp singlet<br>(iii) One broad signa                                                                                                                                                                                                                                                                                                                    | t for six protons at δ2<br>I for six protons   | .92 ppm                                                                                                                                       | (y) 120°C<br>(z) 150°C                                     |  |  |
|            | (a) (i)-(x); (ii)-(y); (ii<br>(c) (i)-(z); (ii)-(x); (ii                                                                                                                                                                                                                                                                                                           | i)-(z)                                         | (b) (i)-(x); (ii)-(z); (i<br>(d) (i)-(z); (ii)-(y); (ii                                                                                       | ii)-(y)                                                    |  |  |
| 49.        | Based on the above spectrum is recorded                                                                                                                                                                                                                                                                                                                            | cies of the two methyl singlets, if theHz.     |                                                                                                                                               |                                                            |  |  |
| 50.        | Common data for Q.50 and Q.51:         Heating a mixture of ammonium chloride and sodium tetrahydridoborate gives one liquid product (X), along with other products under ambient conditions.         Compound X is:         (a) NH <sub>4</sub> [BH <sub>4</sub> ]         (b) [(NH <sub>3</sub> ) <sub>2</sub> BH <sub>2</sub> ][BH <sub>4</sub> ]               |                                                |                                                                                                                                               |                                                            |  |  |
| <b>F</b> 1 | (c) $N_3 B_3 H_6$                                                                                                                                                                                                                                                                                                                                                  | 1 6                                            | (d) $N_3 B_3 H_{12}$                                                                                                                          |                                                            |  |  |
| 51.        | Compound X is an e                                                                                                                                                                                                                                                                                                                                                 | xample of                                      | (b) saturated heteroo                                                                                                                         | cvcle                                                      |  |  |


- (a) Ionic liquid(c) molecular cage

(b) saturated heterocycle(d) unsaturated heterocycle.




### Linked Answer Q.52 and Q.53:

52. The major product X formed in the reaction given below is



53. Oxidation of the product X, obtained in the above reaction, with active manganse dioxide, followed by acidic hydrolysis gives



#### Statement for Linked Answer Q.54 and Q.55:

The standard half-cell reduction potential of  $Fe^{3+}$  (aq)|Fe is -0.036 V and that of  $OH^-$  (aq) |Fe(OH)<sub>3</sub>(s)|Fe is -0.786 V

- 54. For the determination of solubility product  $(K_{SP})$  of  $Fe(OH)_3$ , the appropriate cell representation and its emfare, respectively.
  - (a)  $\langle Fe | Fe (OH)_3(s) | OH^-(aq) Fe^{3+}(aq) | Fe \rangle$ , -0.750V
  - (b)  $\langle Fe | Fe^{3+}(aq)OH^{-}(aq) | Fe(OH)_{3}(s) | Fe \rangle$ , -0.750V
  - (c)  $\langle \text{Fe} | \text{Fe}(\text{OH})_3(s) | \text{OH}^-(aq) \text{Fe}^{3+}(aq) | \text{Fe} \rangle$ , +0.750V
  - (d)  $\langle Fe | Fe^{3+}(aq)OH^{-}(aq) | Fe(OH)_{3}(s) | Fe \rangle$ , -0.822V
- 55. The value of  $\log_{e}(K_{SP})$  for Fe(OH)<sub>3</sub> at 298 K is (a) -38.2 (b) +87.6 (c) -96.0 (d) -87.6

#### \*\*\*\*\* END OF THE QUESTION PAPER \*\*\*\*\*



8