PHYSICS-PH

Q. 1 - Q. 25 : Carry ONE mark each.

1. The unit vector perpendicular to the surface $x^{2}+y^{2}+z^{2}=3$ at the point $(1,1,1)$ is
(a) $\frac{\hat{x}+\hat{y}-\hat{z}}{\sqrt{3}}$
(b) $\frac{\hat{x}-\hat{y}-\hat{z}}{\sqrt{3}}$
(c) $\frac{\hat{x}-\hat{y}+\hat{z}}{\sqrt{3}}$
(d) $\frac{\hat{x}+\hat{y}+\hat{z}}{\sqrt{3}}$
2. Which one of the following quantities is invariant under Lorentz transformation?
(a) Charge density
(b) Charge
(c) Current
(d) Electric field
3. The number of normal Zeeman splitting components of ${ }^{1} P \rightarrow{ }^{1} D$ transition is
(a) 3
(b) 4
(c) 8
(d) 9
4. If the half-life of an elementary particle moving with speed 0.9 c in the laboratory frame is $5 \times 10^{-8} \mathrm{~s}$, then the proper half-life is \qquad $\times 10^{-8} \mathrm{~s} .\left(\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
5. An unpolarized light wave is incident from air on a glass surface at the Brewster angle. The angle between the reflected and the refracted wave is
(a) 0°
(b) 45°
(c) 90°
(d) 120°
6. Two masses m and 3 m are attached to the two ends of a massless spring with force constant K . If $\mathrm{m}=100 \mathrm{~g}$ and $K=0.3 \mathrm{~N} / \mathrm{m}$, then the natural angular frequency of oscillation is \qquad Hz.
7. The electric field of a uniform plane wave propagating in a dielectric, non-conducting medium is given by,

$$
\vec{E}=\hat{x} 10 \cos \left(6 \pi \times 10^{7} t-0.4 \pi z\right) V / m
$$

The phase velocity of the wave is \qquad $\times 10^{8} \mathrm{~m} / \mathrm{s}$.
8. The matrix $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is
(a) orthogonal
(b) symmetric
(c) anti-symmetric
(d) unitary
9. The recoil momemtum of an atom is p_{A} when it emits an infrared photon of wavelength 1500 nm , and it is p_{B} when it emits a photon of visible wavelength 500 nm . The ratio $\frac{p_{A}}{}$ is
$p_{\bar{B}}$
(d) $3: 2$
(a) $1: 1$
(b) $1: \sqrt{3}$
(c) $1: 3$
10. For a gas under isothermal conditions, its pressure P varies with volume V as $P \propto V^{-5 / 3}$. The bulk modulus B is proportional to
(a) $V^{-1 / 2}$
(b) $V^{-2 / 3}$
(c) $V^{-3 / 5}$
(d) $V^{-5 / 3}$
11. Which one of the following high energy processes is allowed by conservation laws?
(a) $p+\bar{p} \rightarrow \Lambda^{0}+\Lambda^{0}$
(b) $\pi+p \rightarrow \pi^{0}+n$
(c) $n \rightarrow p+e^{-}+v_{e}$
(d) $\mu^{+} \rightarrow e^{-}+\gamma$
12. The length element ds of an arc is given by, $(d s)^{2}=2\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\sqrt{3} d x^{1} d x^{2}$. The metric tensor g_{ij} is
(a) $\left(\begin{array}{cc}2 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}2 & \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}{2}} & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}2 & 1 \\ \sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}}\end{array}\right)$
(d) $\left(\begin{array}{cc}1 & \sqrt{\frac{3}{2}} \\ \sqrt{\frac{3}{2}} & 2\end{array}\right)$
13. The ground state and the first excited state wave functions of a one dimensional infinite potential well are ψ_{1} and ψ_{2}, respectively. When two spin-up electrons are placed in this potential, which one of the following, with x_{1} and x_{2} denoting the position of the two electrons, correctly represents the space part of the ground state wave function of the system?
(a) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{2}\right)\right]$
(b) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$
(c) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{2}\right)\right]$
(d) $\frac{1}{\sqrt{2}}\left[\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)-\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$
14. If the vector potential,

$$
\vec{A}=\alpha x \hat{x}+2 y \hat{y}-3 z \hat{z}
$$

satisfies the Coulomb gauge, the value of the constant α is \qquad
15. At a given temperature, T, the average energy per particle of a non-interacting gas of two-dimensional classical harmonic oscillator is \qquad $k_{B} T$.
16. Which one of the following is a fermion?
(a) α particle
(b) ${ }_{4} B e^{7}$ nucleus
(c) hydrogen atom
(d) deuteron
17. Which one of the following three-quark states (qqq), denoted by X, CANNOT be a possible baryon? The corresponding electric charge is indicated in the superscript
(a) X^{++}
(b) X^{+}
(c) X^{-}
(d) X^{-}
18. The Hamilton's canonical equations of motion in terms of Poisson Brackets are
(a) $\dot{q}=\{q, H\} ; \dot{p}=\{p, H\}$
(b) $\dot{q}=\{H, q\} ; \dot{p}=\{H, q\}$
(c) $\dot{q}=\{H, p\} ; \dot{p}=\{H, q\}$
(d) $\dot{q}=\{p, H\} ; \dot{p}=\{q, H\}$
19. The Miller indices of a plane passing through the three points having coordinates $(0,0,1),(1,0,0),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\right)$ are
(a) (2 12)
(b) (111)
(c) (121)
(d) $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
20. The plot of specific heat versus temperature across the superconducting transition temperature (T_{C}) is most appropriately represented by
(a)

(b)

(c)

(d)

21. If \vec{L} is the orbital angular momentum and \vec{S} is the spin angular momentum, then $\vec{L} \cdot \vec{S}$ does NOT commute with
(a) S_{z}
(b) L^{2}
(c) S^{2}
(d) $(\vec{L}+\vec{S})^{2}$
22. The energy, ε_{k} for band electrons as a function of the wave vector, k in the first Brillouin zone $\left(-\frac{\pi}{\mathrm{a}} \leq \mathrm{k} \leq \frac{\pi}{\mathrm{a}}\right)$ of a one dimensional monatomic lattice is shown as (' a ' is lattice constant)

(a)

(b)

(c)

(d)

23. For a free electron gas in two dimensions, the variation of the density of states, $N(E)$ as a function of energy E, is the best represented by
(a)

(b)

24. The input given to be an ideal OP-AMP integrator circuit is

The correct output of the integrator circuit is
(a)

(b)

(c)

(d)

25. The minimum number of flip-flops required to construct a mod-75 counter is \qquad

Q. 26 - Q. 55 : Carry TWO marks each.

26. A bead of mass ' m ' can slide without friction along a massless rod kept at 45° with the vertical as shown in the figure. The rod is rotating about the vertical axis with a constant angular speed ω. At any instant, r is the distance of the bead from the origin. The momentum conjugate to ' r ' is

(a) $m \dot{r}$
(b) $\frac{1}{\sqrt{2}} m \dot{r}$
(c) $\frac{1}{2} m \dot{r}$
(d) $\sqrt{2} m \dot{r}$
27. An electron in the ground state of the hydrogen atom has the wave function

$$
\Psi(\vec{r})=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-\left(r / a_{0}\right)} \text { ENDEAVOUR }
$$

where a_{0} is constant. The expectation value of the operator $\hat{Q}=z^{2}-r^{2}$, where $z=r \cos \theta$ is:
(Hint: $\int_{0}^{\infty} e^{-\alpha r} r^{n} d r=\frac{\Gamma(n)}{\alpha^{n+1}}=\frac{(n-1)!}{\alpha^{n+1}}$)
(a) $-a_{0}^{2} / 2$
(b) $-a_{0}^{2}$
(c) $-3 a_{0}^{2} / 2$
(d) $-2 a_{0}^{2}$
28. For Nickel, the number density is 8×10^{23} atoms $/ \mathrm{cm}^{3}$ and electronic configuration is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$. The value of the saturation magnetization of Nickel in its ferromagnetic states is
\qquad $\times 10^{9} \mathrm{~A} / \mathrm{m}$.
(Given the value of Bohr magneton $\mu_{B}=9.21 \times 10^{-21} \mathrm{Am}^{2}$)
29. A particle of mass ' m ' is in a potential given by

$$
V(r)=-\frac{a}{r}+\frac{a r_{0}^{2}}{3 r^{3}}
$$

where a and r_{0} are positive constants. When disturbed slightly from its stable equilibrium position, it undergoes a simple harmonic oscillation. The time period of oscillation is
(a) $2 \pi \sqrt{\frac{m r_{0}^{3}}{2 a}}$
(b) $2 \pi \sqrt{\frac{m r_{0}^{3}}{a}}$
(c) $2 \pi \sqrt{\frac{2 m r_{0}^{3}}{a}}$
(d) $4 \pi \sqrt{\frac{m r_{0}^{3}}{a}}$
30. The donor concentration in a sample of n-type silicon is increased by a factor of 100 . The shift in the position of the Fermi level at 300 K , assuming the sample to be non degenerate is \qquad meV . $\left(k_{B} T=25 \mathrm{meV}\right.$ at 300 K$)$
31. A particle of mass m is subjected to a potential

$$
V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right), \quad-\infty \leq x \leq \infty,-\infty \leq y \leq \infty
$$

The state with energy $4 \hbar \omega$ is g-fold degenerate. The value of ' g ' is \qquad
32. A hydrogen atom is in the state

$$
\Psi=\sqrt{\frac{8}{21}} \psi_{200}-\sqrt{\frac{3}{7}} \psi_{310}+\sqrt{\frac{4}{21}} \psi_{321}
$$

where n, ℓ, m in $\psi_{n \ell m}$ denote the principal, orbital and magnetic quantum numbers, respectively. If \vec{L} is the angular momentum operator, the average value of L^{2} is \qquad
33. A planet of mass m moves in a circular orbit of radius r_{0} in the gravitational potential $V(r)=-\frac{k}{r}$ where k is a positive constant. The orbital angular momentum of the planet is
(a) $2 r_{0} \mathrm{~km}$
(b) $\sqrt{2 r_{0} k m}$
(c) $r_{0} \mathrm{~km}$
(d) $\sqrt{r_{0} k m}$
34. The moment of inertia of a rigid diatomic molecule A is 6 times that of another rigid diatomic molecule B. If the rotational energies of the two molecules are equal, then the corresponding values of the rotational quantum numbers J_{A} and J_{B} are
(a) $J_{A}=2, J_{B}=1$
(b) $J_{A}=3, J_{B}=1$
(c) $J_{A}=5, J_{B}=0$
(d) $J_{A}=6, J_{B}=1$
35. The value of the integral
where C is the circle $|z|=4$, is
(a) $2 \pi i$
(b) $2 \pi^{2} i$
(c) $4 \pi^{3} i$
(d) $4 \pi^{2} i$
36. A ray of light insid Region 1 in the xy-plane is incident at the semicircle boundary that carries no free charges. The electric field at the point $P\left(r_{0}, \pi / 4\right)$ in plane polar coordinates is $\vec{E}_{1}=7 \hat{e}_{r}-3 \hat{e}_{\varphi}$, where \hat{e}_{r} and \hat{e}_{φ} are the unit vectors. The emerging ray in Region 2 has the electric field \vec{E}_{2} parallel to x-axis. If ε_{1} and ε_{2} are the dielectric constants of Region 1 and Region 2 respectively, then $\frac{\varepsilon_{2}}{\varepsilon_{1}}$ is \qquad

37. The solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}-y=0
$$

subject to the boundary conditions $y(0)=1$ and $y(\infty)=0$, is
(a) $\cos t+\sin t$
(b) $\cosh t+\sinh t$
(c) $\cos t-\sin t$
(d) $\cosh t-\sinh t$
38. Given that the linear transformation of a generalized coordinate ' q ' and the corresponding momentump,

$$
\begin{aligned}
& Q=q+4 a p \\
& p=q+2 p
\end{aligned}
$$

is canonical, the value of the constant ' a ' is \qquad
39. The value of the magnetic field required to maintain non-relativistic protons of energy 1 MeV in a circular orbit of radius 100 mm is \qquad Tesla.
(Given: $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}$)
40. For a system of two bosons, each of which can occupy any of the two energy levels 0 and ε, the mean energy of the system at a temperature T with $\beta=\frac{1}{k_{B} T}$ is given by
(a) $\frac{\varepsilon e^{-\beta \varepsilon}+2 \varepsilon e^{-2 \beta \varepsilon}}{1+2 e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
(b) $\frac{1}{2 e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
(c) $\frac{2 \varepsilon e^{-\beta \varepsilon}+\varepsilon e^{-2 \beta \varepsilon}}{2+e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
CAREER
(d) $\frac{\varepsilon e^{-\beta \varepsilon}+2 \varepsilon e^{-2 \beta \varepsilon}}{2+e^{-\beta \varepsilon}+e^{-2 \beta \varepsilon}}$
41. In an interference pattern formed by two coherent sources, the maximum and the minimum of the intensities are $9 \mathrm{I}_{0}$ and I_{0}, respectively. The intensities of the individual waves are
(a) $3 \mathrm{I}_{0}$ and I_{0}
(b) $4 \mathrm{I}_{0}$ and I_{0}
(c) $5 \mathrm{I}_{0}$ and $4 \mathrm{I}_{0}$
(d) $9 \mathrm{I}_{0}$ and I_{0}
42. ψ_{1} and ψ_{2} are two orthogonal states of a spin $\frac{1}{2}$ system. It is given that

$$
\psi_{1}=\frac{1}{\sqrt{3}}\binom{1}{0}+\sqrt{\frac{2}{3}}\binom{0}{1}
$$

where $\binom{1}{0}$ and $\binom{0}{1}$ represent the spin-up and spin-down states, respectively. When the system is in the state ψ_{2}, its probability to be in spin-up state is \qquad
43. Neutrons moving with speed $10^{3} \mathrm{~m} / \mathrm{s}$ are used for the determination of crystal structure. If the Bragg angle for the first order diffraction is 30°, the interplanar spacing of the crystal is \qquad Å.
(Given: $m_{n}=1.675 \times 10^{-27} \mathrm{~kg}, h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$)
44. The Hamiltonian of a particle of mass ' m ' is given by $H=\frac{p^{2}}{2 m}-\frac{\alpha q^{2}}{2}$. Which of the following figures describes the motion of the particle in phase space?
(a)

(b)

(c)

(d)

45. The intensity of a laser in free space is $150 \mathrm{~mW} / \mathrm{m}^{2}$. The corresponding amplitude of the electric field of the laser is \qquad V/m.

$$
\left(\varepsilon_{0}=8.854 \times 10^{-12} C^{2} / N . m^{2}\right)
$$

46. The emission wavelength for the transition ${ }^{1} D_{2} \rightarrow{ }^{1} F_{3}$ is $3122 \AA$. The ratio of populations of the final to the initial states at a temperature 5000 K is $\left(h=6.626 \times 10^{-34} \mathrm{~J} . S, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
(a) 2.03×10^{-5}
(b) $4.02 \times 10^{-}$
(c) 7.02×10^{-5}
(d) 9.83×10^{-5}
47. Consider a system of 3 fermions, which can occupy any of the 4 available energy states with equal probability. The entropy of the system is
(a) $k_{B} \ln 2$
(b) $2 k_{B} \ln 2$
(c) $2 k_{B} \ln 2$
(d) $3 k_{B} \ln 4$
48. A particle is confined to a one dimensional potential box with potential

$$
\begin{aligned}
V(x) & =0, & & 0<x<a \\
& =\infty, & & \text { otherwise }
\end{aligned}
$$

If the particle is subjected to a perturbation, within the box, $W=\beta x$, where β is a small constant, the first order correction to the ground state energy is
(a) 0
(b) $a \beta / 4$
(c) $a \beta / 2$
(d) $a \beta$
49. Consider the process $\mu^{+}+\mu^{-} \rightarrow \pi^{+}+\pi^{-}$. The minimum kinetic energy of the muons (μ) in the centre of mass frame required to produce the pion (π) pairs at rest is \qquad MeV. (Given : $m_{\mu}=105 \mathrm{MeV} / \mathrm{c}^{2}, m_{\pi}=140 \mathrm{MeV} / \mathrm{c}^{2}$)
50. A one dimensional harmonic oscillator is in the superposition of number states, $|n\rangle$, given by

$$
|\psi\rangle=\frac{1}{2}|2\rangle+\frac{\sqrt{3}}{2}|3\rangle
$$

The average energy of the oscillator in the given state is \qquad $\hbar \omega$.
51. A nucleus X undergoes a first forbidden β-decay to a nucleus Y . If the angular momentum (I) and parity (P), denoted by I^{P} as $\frac{7^{-}}{2}$ for X , which of the following is a possible I^{P} value for Y ?
(a) $\frac{1}{2}^{+}$
(b) $\frac{1}{2}^{-}$
(c) $\frac{3}{2}$
(d) $\frac{3^{-}}{2}$
52. The current gain of the transistor in the following circuit is $\beta_{d c}=100$. The value of collector current I_{C} is
\qquad mA .

53. In order to measure a maximum of 1 V with a resolution of 1 mV using a $\mathrm{n}-$ bit A / D converter, working under the principle of ladder network, the minimum value of n is
54. If L_{+}and L_{-}are the angular momentum ladder operators, then, the expectation value of $\left(L_{+} L_{-}+L_{-} L_{+}\right)$, in the state $|\ell=1, m=1\rangle$ of an atom is \qquad \hbar^{2}
55. A low pass filter is formed by a resistance R and a capacitance C . At the cut-off angular frequency $\omega_{c}=\frac{1}{R C}$, the voltage gain and the phase of the output voltage relative to the input voltage respectively, are
(a) 0.71 and 45°
(b) 0.71 and -45°
(c) 0.5 and -90°
(d) 0.5 and 90°

