QUESTION PAPER

CHEMISTRY-CY

X = F, Cl, Br, I)

MeO

- $(a) \ p-chloronitrobenzene > p-fluoronitrobenzene > p-fluoronitrobenzene > p-bromonitrobenzene > p-fluoronitrobenzene > p-fluoronitrobe$
- $(b) \ p-fluoron itrobenzene > p-chloron itrobenzene > p-iodon it$
- $(c) \ p-iodonitrobenzene > p-bromonitrobenzene > p-chloronitrobenzene > p-fluoronitrobenzene > p-fluoronitrobenz$
- $(d) \ p-bromonitrobenzene > p-fluoronitrobenzene > p-iodonitrobenzene > p-chloronitrobenzene > p-chloronitrobenz$
- 19. The absolute configuration of C2 and C3 in the following compound is

25. The mass spectrum of a dihalo compound shows peaks with relative intensities of 1:2:1 corresponding to M, M + 2 and M + 4 (M is the mass of the molecular ion), respectively. The compound is

GATE-CY 2015

QUESTION PAPER

Q.26 – Q.55 : Carry TWO marks each.

- 26. The value of 'g' and the number of signals observed for the reference standard, diphenylpicrylhydrazyl (DPPH), in the solid state ESR spectrum are, respectively
 (a) 2.0036 and 1
 (b) 2.0036 and 3
 (c) 2.2416 and 1
 (d) 2.2416 and 3
- 27. Solvolysis of the optically active compound X gives, mainly

30. For a gas phase unimolecular reaction at temperature 298K, with a pre-exponential factor of $2.17 \times 10^{13} \text{ s}^{-1}$, the entropy of activation (JK⁻¹ mol⁻¹) is _____

31. The process given below follows the Langmuir adsorption isotherm

$$A_2(g) \xrightarrow{k_1} 2A_{ads}$$

If θ denotes the surface coverage and P denotes the pressure, the slope of the plot of $1/\theta$ versus $1/\sqrt{P}$ is

5

(a)
$$1/(K_{eq})^2$$
 (b) $1/K_{eq}$ (c) $-1/K_{eq}$ (d) $1/(K_{eq})^{1/2}$

32. The major product formed in the following reaction is

- 33. A liquid has vapor pressure of 2.02×10^3 N m⁻² at 293 K and heat of vaporization of 41 kJ mol⁻¹. The boiling point of the liquid (in Kelvin) is ______
- 34. The difference in the ground state energies (kJ/mol) of an electron in one-dimensional boxes of lengths 0.2 nm and 2 nm is ______
- 35. The major product formed in the following reaction is

GATE-CY 2015

QUESTION PAPER

6

The internal energy of an ideal gas follows the equation U = 3.5 PV + k, where k is a constant. The gas 36. expands from an initial volume of 0.25 m^3 to a final volume of 0.86 m^3 . If the initial pressure is 5 N m^{-2} , the change in internal energy (in joules) is (given $PV^{1.3}$ = constant)_ One mole of a substance is heated from 300K to 400K at contant pressure. The C_p of the substance is given 37. by, $C_{P}(JK^{-1}mol^{-1}) = 5 + 0.1T$. The change in entropy, in $JK^{-1}mol^{-1}$, of the sustance is _____ The solubility product of AgBr(s) is 5×10^{-13} at 298K. If the standard reduction potential of the half-cell, 38. $E^{0}_{Ag|AgBr(s)|Br^{-}}$ is 0.07V, the standard reduction potential, $E^{0}_{Ag^{+}|Ag}$ (in volts) is _____ 39. The most suitable reagent (s) to effect the following transformed is Me ЮH Me (a) $N_{2}H_{4}$, KOH heat (b) TsNHNH₂, CF₂COOH (c) LiAlH₄ (d) Na, liq. NH₃ 40. Ammonolysis of S₂Cl₂ in an inert solvent gives (a) $S_{2}N_{2}$ (c) $S_2 N_2 H_4$ $(d) S_{A}N_{A}$ (b) S_2N_2Cl The mean ionic activity coefficient of 0.001 molal ZnSO₄ (aq) at 298K according to the Debye-Huckel limiting 41. law is (Debye-Huckel constant is $0.509 \text{ molal}^{-1/2}$) Identify the function of hemocyanin and the metal responsible for it 42. (a) O₂ transport and Fe (b) O₂ transport and Cu (c) electron transport and Fe (d) electron transport and Cu The point group of IF_7 is 43. (b) D_{5h} (c) C_{6v} (d) C_ (a) D_{6h} The limiting current (in μ A) from the reduction of 3×10^{-4} M Pb²⁺, using a dropping mercury electrode (DMF) 44. with characteristics, $m = 3.0 \text{ mg s}^{-1}$ and t = 3s, is (diffusion coefficient of Pb²⁺ = $1.2 \times 10^{-5} \text{ cm}^2 \text{s}^{-1}$) Identify X in the reaction, $\left[Pt(NH_3)_{4} \right]^{2+} + 2HCl \rightarrow X$ 45. (a) $\operatorname{cis} - \left[\operatorname{PtCl}_2(\operatorname{NH}_3)_2 \right]$ (b) trans $-\left[PtCl_2 (NH_3)_2 \right]$ (c) $\left[PtCl(NH_3)_2 \right]^+$ $(d) \left[PtCl_3(NH_3) \right]^{-}$ 46. The major products, K and L formed in the following reactions are $\xrightarrow{\text{NaH}} K \xrightarrow{(1) \Delta} L$

47.

(a)
$$(b)$$
 (c) (c) (d) (d) (d)

48. The percent transmittance of 8×10^{-5} M solution of KMnO₄ is 39.8 when measured at 510 nm in a cell of path length of 1 cm. The absorbance and the molar extinction coefficient (in M⁻¹ cm⁻¹) of this solution are, respectively and 5200

The rotational partition function of a diatomic molecule with energy levels corresponding to J = 0, 1, is 49. (where, ε is a constant)

(a)
$$1 + e^{-2\varepsilon}$$
 (b) $1 + 3e^{-2\varepsilon}$ (c) $1 + e^{-3\varepsilon}$ (d) $1 + 3e^{-3\varepsilon}$

- 50. When one CO group is replaced by PPh₂ in $[Cr(CO)_{c}]$, which one of the following statement is TRUE? (a) The Cr-C bond length increases and CO bond length decreases
 - (b) The Cr-C bond length decreases and CO bond length decreases
 - (c) The Cr-C bond length decreases and CO bond length increases
 - (d) The Cr-C bond length increases and CO bond length increases
- 51. The number of possible stereoisomers obtained in the following reaction is _____

52. The major product formed in the following reaction is

53. The Beckmann rearrangement of a bromoacetophenone oxime (C_8H_8BrNO) gives a major product having the following ¹H NMR (δ , ppm): 9.89 (s, 1H), 7.88(s, 1H), 7.45 (d, 1H, J = 7.2 Hz), 7.17 (m, 1H), 7.12 (d, 1H, J = 7.0 Hz), 2.06 (s, 3H). The structure of the product is

54. The distance between two successive (110) planes in a simple cubic lattice with lattice parameter 'a' is

(a)
$$\sqrt{2}$$
 a (b) $\sqrt{3}$ a (c) $2\sqrt{2}$ a (d) $\frac{a}{\sqrt{2}}$

55. The potential energy (PE) versus reaction coordinate diagrams for electron transfer reactions with rate constants k_1 , k_2 and k_3 , are given below. The inreasing order of the rate constants is

***** END OF THE QUESTION PAPER *****

