1

PHYSICS-PH

Q.1 – Q.25: Carry ONE mark each.

- 1. A satellite is moving in a circular orbit around the Earth. If *T*, *V* and *E* are its average kinetic, average potential and total energies, respectively, then which one of the following options is correct?
 - (a) V = -2T: E = -T

(b) V = -T; E = 0

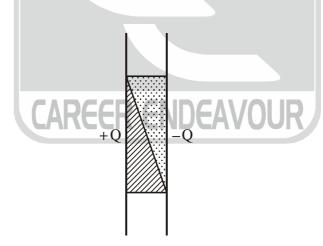
(c) $V = \frac{-T}{2}$; $E = \frac{T}{2}$

- (d) $V = \frac{-3T}{2}$; $E = \frac{-T}{2}$
- 2. The lattice parameters a, b, c of an orthorhombic crystal are related by a = 2b = 3c. In units of a, the interplanar separation between the (110) planes is _____ (upto three decimal places).
- 3. Consider w = f(z) = u(x, y) + iv(x, y) to be an analytic function in a domain *D*. Which one of the following options is NOT correct?
 - (a) u(x, y) satisfies Laplace equation in D
 - (b) v(x, y) satisfies Laplace equation in D
 - (c) $\int_{z_1}^{z_2} f(z) dz$ is dependent on the choice of the contour between z_1 and z_2 in D
 - (d) f(z) can be Taylor expanded in D
- 4. Let \vec{L} and \vec{p} be the angular and linear momentum operators, respectively, for a particle. The commutator $\begin{bmatrix} L_x, p_y \end{bmatrix}$ gives
 - (a) $-i\hbar p_z$
- (b) 0
- (c) $i\hbar p_x$
- (d) $i\hbar p_z$
- 5. The dispersion relation for photons in a one dimensional monatomic Bravais lattice with lattice spacing a and consisting of ions of masses M is given by, $\omega(k) = \sqrt{\frac{2C}{M}} \left[1 \cos{(ka)}\right]$, where ω is the frequency of oscillation, k is the wavevector and C is the spring constant. For the long wavelength modes $(\lambda \gg a)$, the ratio of the phase velocity to the group velocity is
- 6. For a black body radiation in a cavity, photons are created and annihilated freely as a result of emission and absorption by the walls of the cavity. This is because
 - (a) the chemical potential of the photons is zero
- (b) photons obey Pauli exclusion principle

(c) photons are spin-1 particles

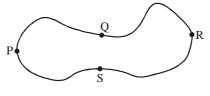
- (d) the entropy of the photons is very large
- 7. Four forces are given below in Cartesian and spherical polar coordinates.
 - (i) $\vec{F}_1 = K \exp\left(\frac{-r^2}{R^2}\right)\hat{r}$

(ii) $\vec{F}_2 = K(x^3\hat{y} - y^3\hat{z})$

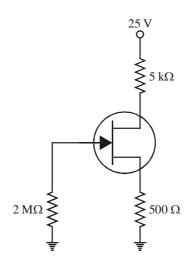

(iii) $\vec{F}_3 = K\left(x^3\hat{x} + y^3\hat{y}\right)$

(iv) $\vec{F}_4 = K \left(\frac{\hat{\phi}}{r} \right)$

where K is a constant. Identify the correct option.


- (a) (iii) and (iv) are conservative but (i) and (ii) are not
- (b) (i) and (ii) are conservative but (iii) and (iv) are not
- (c) (ii) and (iii) are conservative but (i) and (iv) are not
- (d) (i) and (iii) are conservative but (ii) and (iv) are not

- The value of $\int_0^3 t^2 \delta(3t 6) dt$ is_____ (upto one decimal place) 8.
- The mean kinetic energy of a nucleon in a nucleus of atomic weight A varies as A^n , where n is _____ (upto 9. two decimal places)
- 10. In Bose-Einstein condensates, the particles
 - (a) have strong interparticle attraction
- (b) condense in real space
- (c) have overlapping wavefunctions
- (d) have large and positive chemical potential
- A beam of X-ray of intensity I₀ is incident normally on a metal sheet of thickness 2 mm. The intensity of the 11. transmitted beam is 0.025I₀. The linear absorption coefficient of the metal sheet (in m¹) is _____ (upto one decimal place)
- 12. In a Hall effect experiment, the Hall voltage for an intrinsic semiconductor is negative. This is because (symbols carry usual meaning)
 - (a) $n \approx p$
- (b) n > p
- (c) $\mu_{e} > \mu_{h}$ (d) $m_{e}^{*} > m_{h}^{*}$
- The Pauli matrices for three spin- $\frac{1}{2}$ particles are $\vec{\sigma}_1$, $\vec{\sigma}_2$ and $\vec{\sigma}_3$, respectively. The dimension of the Hilbert 13. space required to define an operator $\hat{O} = \vec{\sigma}_1 \cdot \vec{\sigma}_2 \times \vec{\sigma}_3$ is___
- 14. The decay $\mu^+ \rightarrow e^+ + \gamma$ is forbidden, because it violates
 - (a) momentum and lepton number conservations
 - (b) baryon and lepton number conservations
 - (c) angular momentum conservation
 - (d) lepton number conservation
- 15. The space between two plates of a capacitor carrying charges +Q and –Q is filled with two different dielectric materials, as shown in the figure. Across the interface of the two dielectric materials, which one of the following statements is correct?



- (a) \vec{E} and \vec{D} are continuous
- (b) \vec{E} is continuous and \vec{D} is discontinuous
- (c) \vec{D} is continuous and \vec{E} is discontinuous
- (d) \vec{E} and \vec{D} are discontinuous

16. Given that magnetic flux through the closed loop PQRSP is ϕ . If $\int_{P}^{R} \vec{A} \cdot \vec{dl} = \phi_1$ along PQR, the value of $\int_{P}^{R} \vec{A} \cdot \vec{dl}$ along PSR is

- (a) $\phi \phi_1$
- (b) $\phi_1 \phi$
- $(c) \phi_1$
- (d) ϕ_1
- 17. A point charge is placed between two semi-infinite conducting plates which are inclined at an angle of 30° with respect to each other. The number of image charges is_____
- 18. Consider a complex function $f(z) = \frac{1}{z\left(z + \frac{1}{2}\right)\cos(z\pi)}$. Which one of the following statements is correct?
 - (a) f(z) has simple poles at z = 0 and $z = -\frac{1}{2}$
 - (b) f(z) has a second order pole at $z = -\frac{1}{2}$
 - (c) f(z) has infinite number of second order poles
 - (d) f(z) has all simple poles
- 19. The energy dependence of the density of states for a two dimensional non-relativistic electron gas is given by, $g(E) = CE^n$, where *C* is constant. The value of *n* is ______
- 20. In an inertial frame S, two events A and B take place at $(ct_A = 0, \vec{r}_A = 0)$ and $(ct_B = 0, \vec{r}_B = 2\hat{y})$, respectively. The times at which these events take place in a frame S' moving with a velocity $0.6 c \hat{y}$ with respect to S are given by
 - (a) $ct'_A = 0$; $ct'_B = -3/2$
- (b) $ct'_A = 0$; $ct'_B = 0$ (d) $ct'_A = 0$; $ct'_B = 1/2$
- (c) $c t'_A = 0$; $c t'_B = 3/2$
- 21. In the given circuit, the voltage across the source resistor is 1 V. The drain voltage (in V) is ______

- If $f(x) = e^{-x^2}$ and $g(x) = |x|e^{-x^2}$, then 22.
 - (a) f and g are differentiable everywhere
 - (b) f is differentiable everywhere but g is not
 - (c) g is differentiable everywhere but f is not
 - (d) g is discontinuous at x = 0
- Consider a system of N non-interacting spin- $\frac{1}{2}$ particles, each having a magnetic moment μ , is in a magnetic 23.

field $\vec{B} = B \hat{z}$. If E is the total energy of the system, the number of accessible microstates Ω is given by

(a)
$$\Omega = \frac{N!}{\frac{1}{2} \left(N - \frac{E}{\mu B} \right)!}$$
 (b) $\Omega = \frac{\left(N - \frac{E}{\mu B} \right)!}{\left(N + \frac{E}{\mu B} \right)!}$

(b)
$$\Omega = \frac{\left(N - \frac{E}{\mu B}\right)!}{\left(N + \frac{E}{\mu B}\right)!}$$

(c)
$$\Omega = \frac{1}{2} \left(N - \frac{E}{\mu B} \right)! \frac{1}{2} \left(N + \frac{E}{\mu B} \right)!$$

(d)
$$\Omega = \frac{N!}{\left(N + \frac{E}{\mu B}\right)!}$$

- 24. Which one of the following DOES NOT represent an exclusive OR operation for inputs A and B?
 - (a) $(A+B)\overline{AB}$
- (b) $A\overline{B} + B\overline{A}$
- (c) $(A+B)(\overline{A}+\overline{B})$ (d) (A+B)AB
- An operator for a spin- $\frac{1}{2}$ particle is given by $\hat{A} = \lambda \vec{\sigma} \cdot \vec{B}$, where $\vec{B} = \frac{B}{\sqrt{2}} (\hat{x} + \hat{y})$, $\vec{\sigma}$ denotes Pauli matrices 25.

and λ is a constant. The eigenvalue of \hat{A} are

(a)
$$\frac{\pm \lambda B}{\sqrt{2}}$$

- (b) $\pm \lambda B$
- (c) $0, \lambda B$
- (d) $0, -\lambda B$

Q.26 – Q.55 : Carry TWO marks each.

26. Match the phrases in **Group I** and **Group II** and identify the correct option.

Group I

Group II

- (P) Electron spin resonance (ESR)
- (Q) Nuclear magnetic resonance (NMR)
- (R) Transition between vibrational states of a molecule
- (ii) visible range frequency (iii) microwave frequency

(S) Electronic transition

(iv) far-infrared range

(i) radio frequency

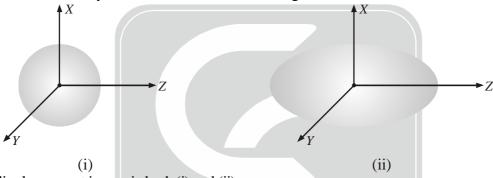
- (a) (P-i), (Q-ii), (R-iii), (S-iv)
- (b) (P-ii), (Q-i), (R-iv), (S-iii)
- (c) (P-iii), (Q-iv), (R-i), (S-ii)
- (d) (P-iii), (Q-i), (R-iv), (S-ii)
- The entropy of a gas containing N particles enclosed in a volume V is given by $S = Nk_B \ln \left(\frac{aVE^{3/2}}{N^{5/2}} \right)$, where 27.

E is the total energy, a is a constant and k_B is the Boltzmann constant. The chemical potential μ of the system at a temperature T is given by

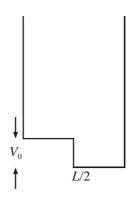
(a)
$$\mu = -k_B T \left[\ell n \left(\frac{aV E^{3/2}}{N^{5/2}} \right) - \frac{5}{2} \right]$$

(b)
$$\mu = -k_B T \left[\ell n \left(\frac{aV E^{3/2}}{N^{5/2}} \right) - \frac{3}{2} \right]$$

(c)
$$\mu = -k_B T \left[\ell n \left(\frac{aV E^{3/2}}{N^{3/2}} \right) - \frac{5}{2} \right]$$


(d)
$$\mu = -k_B T \left[\ell n \left(\frac{aV E^{3/2}}{N^{3/2}} \right) - \frac{3}{2} \right]$$

- The atomic masses of ${}^{152}_{63}Eu$, ${}^{152}_{62}Sm$, ${}^{1}_{1}H$ and neutron are 151.921749, 151.919756, 1.007825 and 1.008665 28. in atomic mass units (amu), respectively. Using the above information, the O-value of the reaction $^{152}_{63}Eu + n \rightarrow ^{152}_{62}Sm + p \text{ is} ___ \times 10^{-3} \text{ amu (upto three decimal places)}$
- A particle with rest mass M is at rest and decays into two particles of equal rest masses $\frac{3}{10}M$ which move 29. along the z-axis. Their velocities are given by
 - (a) $\vec{v}_1 = \vec{v}_2 = (0.8c)\hat{z}$

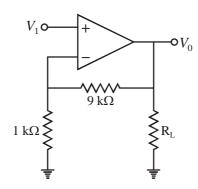

(b) $\vec{v}_1 = -\vec{v}_2 = (0.8c)\hat{z}$

(c) $\vec{v}_1 = -\vec{v}_2 = (0.6c)\hat{z}$

- (d) $\vec{v}_1 = (0.6c)\hat{z}$; $\vec{v}_2 = (-0.8c)\hat{z}$
- The band gap of an intrinsic semiconductor is $E_g = 0.72 \ eV$ and $m_h^* = 6 m_e^*$. At 300K, the Fermi level with 30. respect to the edge of the valence band (in eV) is at _____ (upto three decimal places) $k_R = 1.38 \times 10^{-23} \ JK^{-1}$.
- A charge -q is distributed uniformly over a sphere, with a positive charge q at its center in (i). Also in (ii), a 31. charge -q is distributed uniformly over an ellipsoid with a positive charge q at its center. With respect to the origin of the coordinate system, which one of the following statements is correct?

- (a) The dipole moment is zero in both (i) and (ii)
- (b) The dipole moment is non-zero in (i) but zero in (ii)
- (c) The dipole moment is zero in (i) but non-zero in (ii)
- (d) The dipole moment is non-zero in both (i) and (ii)
- The number of permitted transitions from ${}^2P_{3/2} \rightarrow {}^2S_{1/2}$ in the presence of a weak magnetic field is 32.
- A particle is confined in a box of length L as shown below 33.

If the potential V_0 is treated as a perturbation, including the first order correction, the ground state energy is


(a)
$$E = \frac{\hbar^2 \pi^2}{2mI^2} + V_0$$

(b)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} - \frac{V_0}{2}$$

(c)
$$E = \frac{\hbar^2 \pi^2}{2mI^2} + \frac{V_0}{4}$$

(a)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + V_0$$
 (b) $E = \frac{\hbar^2 \pi^2}{2mL^2} - \frac{V_0}{2}$ (c) $E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{4}$ (d) $E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{2}$

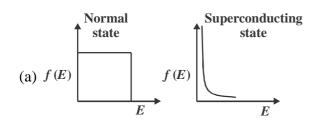
34. In the given circuit, if the open loop gain $A = 10^5$, the feedback configuration and the closed loop gain A_f are

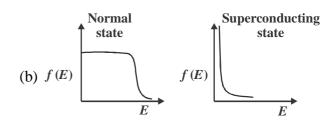
(a) series-shunt, $A_f = 9$ (c) series-shunt, $A_f = 10$

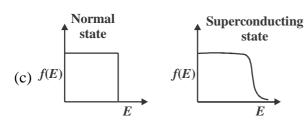
- (b) series-series, $A_f = 10$ (d) shunt-shunt, $A_f = 10$
- A plane wave $(\hat{x} + i\hat{y})E_0 \exp[i(kz \omega t)]$ after passing through an optical element emerges as 35. $(\hat{x} - i\hat{y})E_0 \exp[i(kz - \omega t)]$, where k and ω are the wavevector and the angular frequency, respectively. The optical element is
 - (a) quarter wave plate

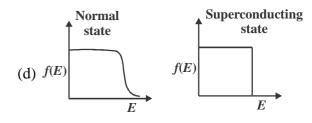
(b) half wave plate

(c) polarizer


- (d) Faraday rotator
- A particle of mass 0.01 kg falls freely in the earth's gravitational field with an initial velocity $v(0) = 10 \, ms^{-1}$. If 36. the air exerts a functional force of the form, f = -kv, then for $k = 0.05 \, Nm^{-1}s$, the velocity (in ms^{-1}) at time t = 0.2 s is_____ (upto two decimal places) (use $g = 10 ms^{-2}$ and e = 2.72)
- The Lagrangian for a particle of mass m at a position \vec{r} moving with a velocity \vec{v} is given by 37. $L = \frac{m}{2}\vec{v}^2 + C\vec{r}\cdot\vec{v} - V(r)$, where V(r) is a potential and C is a constant. If \vec{p}_c is the canonical momentum, then its Hamiltonian is given by


 - (a) $\frac{1}{2m} (\vec{p}_c + C\vec{r})^2 + V(r)$ (b) $\frac{1}{2m} (\vec{p}_c C\vec{r})^2 + V(r)$ (c) $\frac{1}{2m} (\vec{p}_c C\vec{r})^2 + V(r)$ (d) $\frac{1}{2m} p_c^2 + C^2 r^2 + V(r)$
 - (c) $\frac{p_c^2}{2m} + V(r)$


- 38. A long solenoid is embedded in a conducting medium and is insulated from the medium. If the current through the solenoid is increased at a constant rate, the induced current in the medium as a function of the radial distance r from the axis of the solenoid is proportional to


 - (a) r^2 inside the solenoid and $\frac{1}{r}$ outside (b) r inside the solenoid and $\frac{1}{r^2}$ outside
 - (c) r^2 inside the solenoid and $\frac{1}{r^2}$ outside (d) r inside the solenoid and $\frac{1}{r}$ outside
- In the nuclear shell model, the potential is modeled as $V(r) = \frac{1}{2}m\omega^2r^2 \lambda\vec{L}\cdot\vec{S}$, $\lambda > 0$. The correct spin-39. parity and isospin assignments for the ground state of ${}^{13}C$ is
 - (a) $\frac{1}{2}$; $\frac{-1}{2}$
- (b) $\frac{1^{+}}{2}$; $\frac{-1}{2}$
- (c) $\frac{3^+}{2}$; $\frac{1}{2}$ (d) $\frac{3^-}{2}$; $\frac{-1}{2}$

40. Which one of the following represents the electron occupancy for a superconductor in its normal and superconducting states?

- 41. In a rigid-rotator of mass M, if the energy of the first excited state is 1 meV, then the fourth excited state energy (in meV) is_____
- 42. The binding energy per molecule of NaCl (lattice parameter is 0.563 nm) is 7.95 eV. The repulsive term of the potential is of the form $\frac{K}{r^9}$, where K is a constant. The value of the Madelung constant is ______(upto three decimal places)

(Electron charge $e = 1.6 \times 10^{-19} C$; $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$)

- 43. The Hamiltonian for a system of two particles of masses m_1 and m_2 at $\vec{r_1}$ and $\vec{r_2}$ having velocities $\vec{v_1}$ and $\vec{v_2}$ is given by $H = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{C}{\left(\vec{r_1} \vec{r_2}\right)^2}\hat{z} \cdot \left(\vec{r_1} \times \vec{r_2}\right)$, where C is a constant. Which one of the following statements is correct?
 - (a) The total energy and total momentum are conserved
 - (b) Only the total energy is conserved
 - (c) The total energy and the z-component of the total angular momentum are conserved
 - (d) The total energy and total angular momentum are conserved
- 44. Given that the Fermi energy of gold is 5.54 eV, the number density of electrons is ______× 10^{28} m⁻³ (upto one decimal place). (Mass of electron = 9.11×10^{-21} kg; h = 6.626×10^{-24} J.s; 1 eV = 1.6×10^{-19} J)
- 45. Suppose a linear harmonic oscillator of frequency ω and mass m is in the state $|\psi\rangle = \frac{1}{\sqrt{2}} \left[|\psi_0\rangle + e^{i\frac{\pi}{2}} |\psi_1\rangle \right]$ at t = 0 where $|\psi_0\rangle$ and $|\psi_1\rangle$ are the ground and the first excited states, respectively. The value of $\langle \psi | x | \psi \rangle$ in the units of $\sqrt{\frac{\hbar}{m\omega}}$ at t = 0 is ______

- Consider the motion of the Sun with respect to the rotation of the Earth about its axis. If \vec{F}_c and \vec{F}_{Co} denote the 46. centrifugal and the Coriolis forces, respectively, acting on the Sun, then

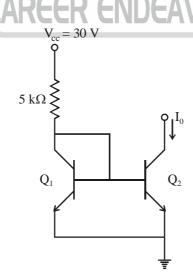
 - (a) \vec{F}_c is radially outward and $\vec{F}_{Co} = \vec{F}_c$ (b) \vec{F}_c is radially inward and $\vec{F}_{Co} = -2\vec{F}_c$
 - (c) \vec{F}_c is radially outward and $\vec{F}_{Co} = -2\vec{F}_c$ (d) \vec{F}_c is radially outward and $\vec{F}_{Co} = 2\vec{F}_c$
- A function y(z) satisfies the ordinary differential equation $y'' + \frac{1}{z}y' \frac{m^2}{z^2}y = 0$, where m = 0, 1, 2, 3, ...47.

Consider the four statements P, Q, R, S as given below.

 $P: z^m$ and z^{-m} are linearly independent solutions for all values of m

 $Q: z^m$ and z^{-m} are linearly independent solutions for all values of m > 0

 $R: \ell n \ z$ and 1 are linearly independent solutions for m=0

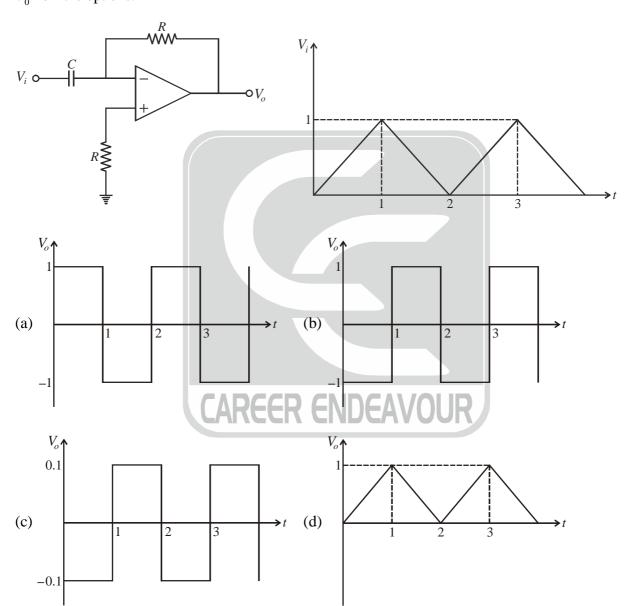

 $S: z^m$ and $\ell n z$ are linearly independent solutions for all values of m

The correct option for the combination of valid statement is

- (a) P, R and S only
- (b) P and R only
- (c) Q and R only
- (d) R and S only
- 48. The average energy U of a one dimensional quantum oscillator of frequency ω and in contact with a heat bath at temperature T is given by
 - (a) $U = \frac{1}{2}\hbar\omega \coth\left(\frac{1}{2}\beta\hbar\omega\right)$
- (b) $U = \frac{1}{2}\hbar\omega \sinh\left(\frac{1}{2}\beta\hbar\omega\right)$
- (c) $U = \frac{1}{2}\hbar\omega \tanh\left(\frac{1}{2}\beta\hbar\omega\right)$
- (d) $U = \frac{1}{2}\hbar\omega \cosh\left(\frac{1}{2}\beta\hbar\omega\right)$
- Consider a system of eight non-interacting, identical quantum particles of spin- $\frac{3}{2}$ in a one dimensional box of 49.

length L. The minimum excitation energy of the system, in units of $\frac{\pi^2 \hbar^2}{2mL^2}$ is______

In the simple current source shown in the figure, Q_1 and Q_2 are identical transistors with current gain 50. $\beta = 100 \text{ and } V_{BE} = 0.7 V$


The current I₀ (in mA) is _____(upto two decimal places)

The Heaviside function is defined as $H(t) = \begin{cases} +1 & \text{for } t > 0 \\ -1 & \text{for } t < 0 \end{cases}$ and its Fourier transform is given by $-2i/\omega$. The 51.

Fourier transform of $\frac{1}{2} \left[H\left(t + \frac{1}{2}\right) - H\left(t - \frac{1}{2}\right) \right]$ is

- (a) $\frac{\sin\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$ (b) $\frac{\cos\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$ (c) $\sin\left(\frac{\omega}{2}\right)$
- (d) 0
- Consider the circuit shown in the figure, where RC = 1. For an input signal V_i shown below, choose the correct 52. V_0 from the options:

- 53. Let the Hamiltonian for two spin- $\frac{1}{2}$ particles of equal masses m, momenta \vec{p}_1 and \vec{p}_2 and positions \vec{r}_1 and \vec{r}_2 be $H = \frac{1}{2m} p_1^2 + \frac{1}{2m} p_2^2 + \frac{1}{2} m \omega^2 \left(r_1^2 + r_2^2 \right) + k \vec{\sigma}_1 \cdot \vec{\sigma}_2$, where $\vec{\sigma}_1$ and $\vec{\sigma}_2$ denote the corresponding Pauli matrices, $\hbar \omega = 0.1 \, eV$ and $k = 0.2 \, eV$. If the ground state has net spin zero, then the energy (in eV) is
- 54. The excitation wavelength of laser in a Raman effect experiment is $546 \, nm$. If the Stokes line is observed at $552 \, nm$, then the wave number of the anti-Stokes line (in cm^{-1}) is_____
- 55. A monochromatic plane wave (wavelength = 600 nm) $E_0 \exp \left[i(kz \omega t)\right]$ is incident normally on a diffraction grating giving rise to a plane wave $E_1 \exp \left[i(\vec{k_1} \cdot \vec{r} \omega t)\right]$ in the first order of diffraction. Here $E_1 < E_0$ and $\vec{k_1} = \left|\vec{k_1}\right| \left[\frac{1}{2}\hat{x} + \frac{\sqrt{3}}{2}\hat{z}\right]$. The period (in μm) of the diffraction grating is _____ (upto one decimal place)

