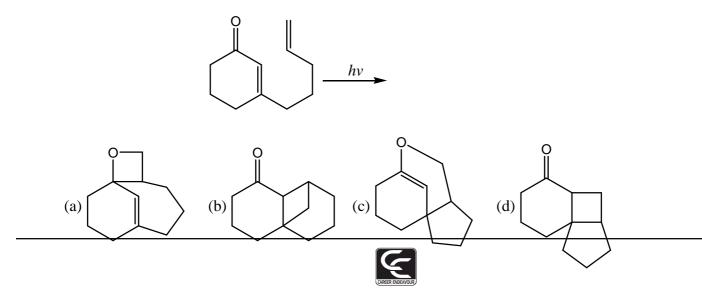
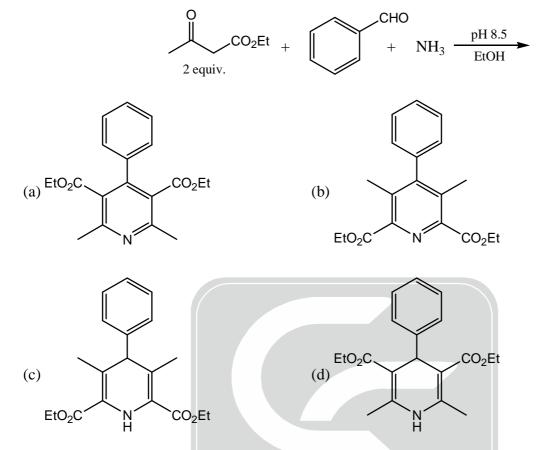

# **CHEMISTRY-CY**

# Q.1 – Q.25 : Carry ONE mark each.


1. For low partial pressure of ozone  $(O_3)$ , the adsorption of ozone on graphite surface is the fully dissociative in nature and follows Langmuir isotherm. Under these conditions, if the dependence of the surface coverage of

graphite  $(\theta)$  on partial pressure of ozone  $(P_{O_3})$  is given by  $\theta \propto (P_{O_3})^x$ , the value of *x* is \_\_\_\_\_(Upto two decimal places)

- 2. According to Eyring state theory for a bimolecular reaction, the activated complex has
  - (a) no vibrational degrees of freedom
  - (b) vibrational degrees of freedom but they never participate in product formation
  - (c) one high frequency vibration that leads to product formation
  - (d) one low frequency vibration that leads to product formation
- 3. The major product formed in the following reaction is




4. The major product of the following intramolecular cycloaddition reaction is



1

- 5. The coordination geometries around the copper ion of plastocyanin (a blue-copper protein) in oxidized and reduced form, respectively are
  - (a) tetrahedral and square-planar(c) distorted tetrahedral for both
- (b) square-planar and tetrahedral
- (d) ideal tetrahedral for both
- 6. The major product formed in the following reaction is



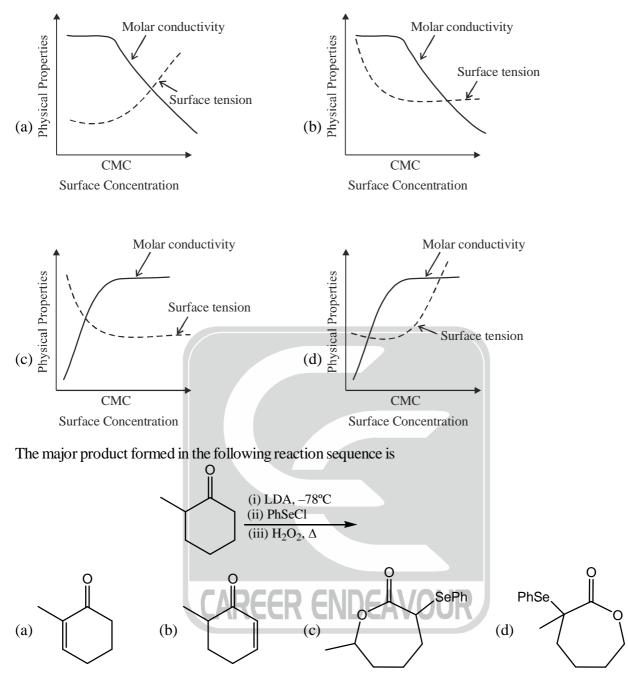
7. The spherical harmonic function  $Y_{\ell,m}(\theta, \phi)$ , with appropriate values of  $\ell$  and m, is an eigenfunction of  $\hat{L}_x^2 + \hat{L}_y^2$  operator. The corresponding eigenvalue is

(a) 
$$(\ell(\ell+1)-m^2)\hbar^2$$
  
(b)  $(\ell(\ell+1)+m^2)\hbar^2$   
(c)  $\ell(\ell+1)\hbar^2$   
(b)  $(\ell(\ell+1)+m^2)\hbar^2$   
CAREER (d)  $m^2\hbar^2$  EAVOUR

8. The temperature derivative of electrochemical potential E at constant pressure,  $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ 

 $\left(\frac{\partial E}{\partial T}\right)_P$  is given by

(a) 
$$-\frac{\Delta S}{nF}$$
 (b)  $\frac{\Delta S}{nF}$  (c)  $\frac{\Delta S}{nFT}$  (d)  $-\frac{\Delta S}{nFT}$ 


9. The water exchange rates for the complex ions follow the order

(a) 
$$\left[ V(H_2O)_6 \right]^{2+} > \left[ Co(H_2O)_6 \right]^{2+} > \left[ Cr(H_2O)_6 \right]^{3+}$$
  
(b)  $\left[ Cr(H_2O)_6 \right]^{3+} > \left[ Co(H_2O)_6 \right]^{2+} > \left[ V(H_2O)_6 \right]^{2+}$   
(c)  $\left[ Co(H_2O)_6 \right]^{2+} > \left[ Cr(H_2O)_6 \right]^{3+} > \left[ V(H_2O)_6 \right]^{3+}$   
(d)  $\left[ Co(H_2O)_6 \right]^{2+} > \left[ V(H_2O)_6 \right]^{2+} > \left[ Cr(H_2O)_6 \right]^{3+}$ 

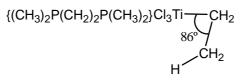


11.

10. For an ionic micelle-forming surfactant near its critical micelle concentration (CMC), the dependence of molar conductivity and surface tension on surfactant concentration is best represented by

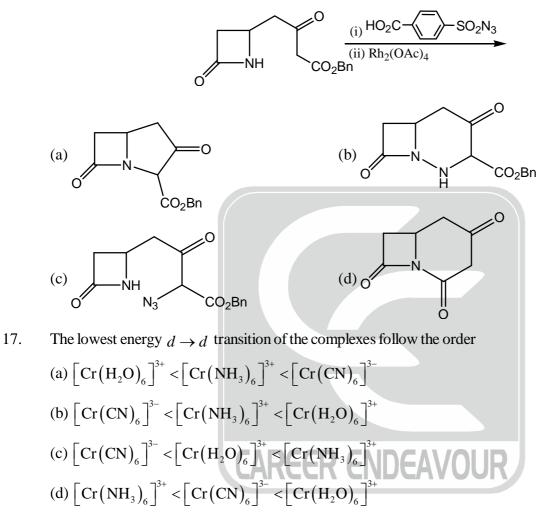


- 12. Two moles of an ideal gas X and two moles of an ideal gas Y, initially at the same temperature and pressure, are mixed under isothermal-isobaric condition. The entropy change on mixing is \_\_\_\_\_\_JK<sup>-1</sup>. (Upto one decimal place, Use  $R = 8.31 JK^{-1} mol^{-1}$ )
- 13. Consider the operators,  $\hat{a}_{+} = \frac{1}{\sqrt{2}} (\hat{x} + \hat{i}p_x)$  and  $\hat{a}_{-} = \frac{1}{\sqrt{2}} (\hat{x} \hat{i}p_x)$ , where  $\hat{x}$  and  $\hat{p}_x$  are the position and

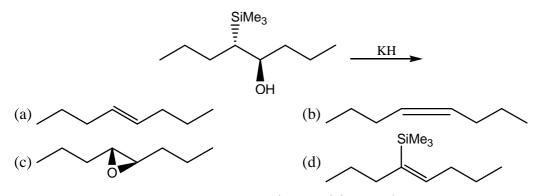

linear momentum operators, respectively. The commutator,  $[\hat{a}_{_+}, \hat{a}_{_-}]$  is equal to

- (a)  $i\hbar$  (b)  $-i\hbar$  (c)  $\hbar$  (d)  $-\hbar$
- 14. In the <sup>1</sup>H NMR spectrum of an organic compound recorded on a 300 MHz instrument, a proton resonates as a quartet at 4.20 ppm. The individual signals of quartet appear at  $\delta$  4.17, 4.19, 4.21 and 4.23 ppm. The coupling constant J in Hz is \_\_\_\_\_



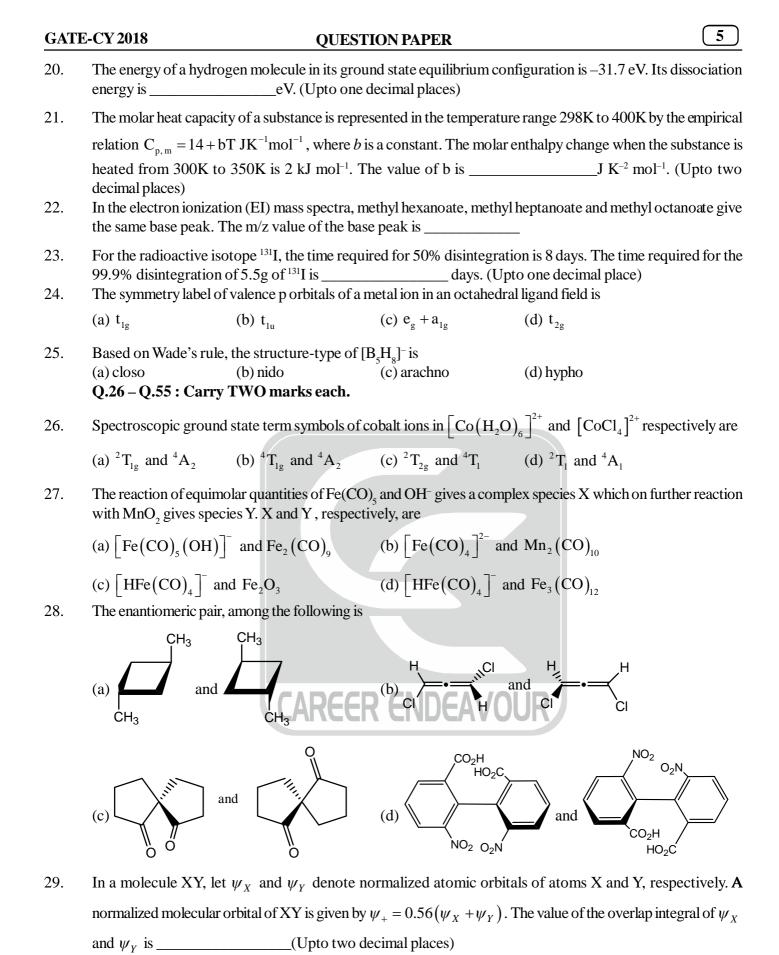

#### **GATE-CY 2018**

15. The bond angle (Ti–C–C) in the crystal structure of




is severely distorted due to

- (a) hydrogen-bonding interaction
- (c) steric bulk of the phosphine ligand
- (b) agostic interaction
- (d) higher formal charge on metal.
- The major product formed in the following reaction sequence is 16.




18. The major product of the following reaction is

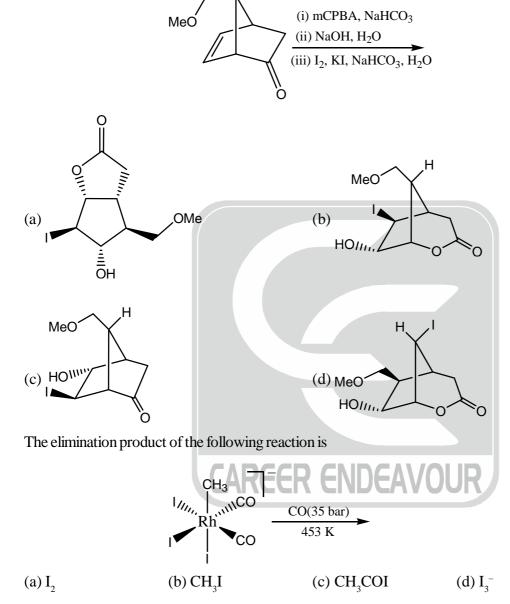


The total number of valence electrons in  $W(\eta^3 - Cp)(\eta^5 - Cp)(CO)_2$  is \_\_\_\_\_ \_\_\_\_\_(Atomic number of 19. W = 74)





30. The absorption maxima of two dyes X and Y are 520 and 460 nm, respectively. The absorbance data of these measured in a 1cm path length cell are given in the table below.




32.

| Dye solution       | Absorbance at 460 nm | Absorbance at 520 nm |
|--------------------|----------------------|----------------------|
| X(9 mM)            | 0.144                | 0.765                |
| Y(12 mM)           | 0.912                | 0.168                |
| Mixture of X and Y | 0.700                | 0.680                |

The concentration of Y in the mixture is \_\_\_\_\_\_mM. (Upto two decimal places)

31. The major product in the following reaction sequence is

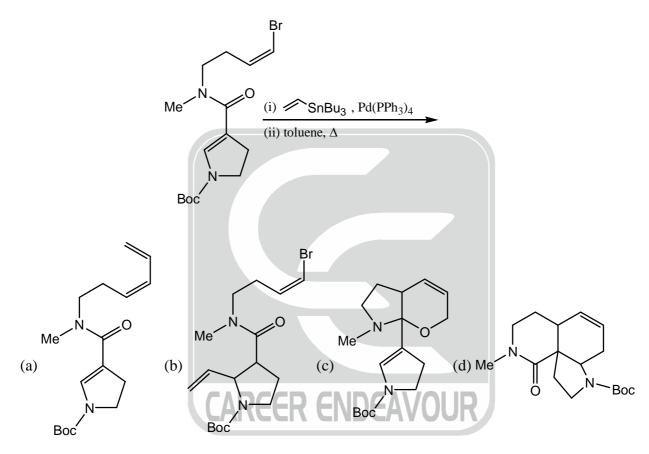


Number of carbonyl groups present in the final product of the following reaction sequence is 33.





6


### GATE-CY 2018

34. For the following reaction sequence,

$$3NH_4Cl + 3BCl_3 \xrightarrow{(i) \Delta, C_6H_5Cl} (X) \xrightarrow{3H_2O} (Y)$$

X and Y, respectively, are

- (a)  $\{HB(NH)\}_3$  and  $\{H(OH)B(NH_2)\}_3$
- (b)  $\{HB(NH)\}_3$  and  $\{HB(NH_2OH)\}_3$
- (c)  $(NH_4)\{(H)_2(BH_2)_3\}$  and  $\{H(OH)(NH_2OH)\}_3$
- (d)  $(NH_4)\{(H)_2(BH_2)_3\}$  and  $\{HB(NH_2OH)\}_3$
- 35. The major product of the following reaction sequence is



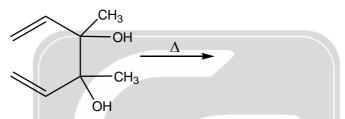
- 36. For a diatomic vibrating rotor, in vibrational level v = 3 and rotational level J, the sum of the rotational and vibrational energies is 11493.6 cm<sup>-1</sup>. Its equilibrium oscillation frequency is 2998.3 cm<sup>-1</sup>, anharmonicity constant is 0.0124 and rotational constant under rigid rotor approximation is 9.716 cm<sup>-1</sup>. The value of J is \_\_\_\_\_\_(Upto nearest integer)
- 37. At temperature T, the canonical partition function of a harmonic oscillator with fundamental frequency (v) is given by

$$q_{vib}(T) = \frac{e^{-hv/2k_BT}}{1 - e^{-hv/k_BT}}$$

For  $\frac{hv}{k_BT} = 3$ , the probability of finding the harmonic oscillation in its ground vibrational state is \_\_\_\_\_(Upto two decimal places)



### **QUESTION PAPER**


38. A one-dimensional anharmonic oscillator is treated by perturbation theory. The harmonic oscillator is used as the unperturbed system and the perturbation is  $\frac{1}{6}\gamma x^3(\gamma \text{ is a constant})$ . Using only the first order correction,

the total ground state energy of the anharmonic oscillator is

(Note: For a one-dimensional harmonic oscillator 
$$\Psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2}; \ \alpha = \left(\frac{k\mu}{h^2}\right)^{1/2}$$

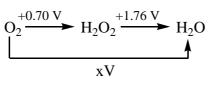
(a) 
$$\frac{1}{2}\hbar\left(\frac{k}{\mu}\right)^{1/2}$$
 (b)  $\left(\frac{1}{2}+\frac{\gamma}{6}\right)\hbar\left(\frac{k}{\mu}\right)^{1/2}$  (c)  $\left(\frac{1}{2}+\frac{\gamma}{3}\right)\hbar\left(\frac{k}{\mu}\right)^{1/2}$  (d)  $\left(\frac{1}{2}+\frac{\gamma}{12}\right)\hbar\left(\frac{k}{\mu}\right)^{1/2}$ 

- 39. The rate constant of a first order reaction,  $X \rightarrow Y$ , is  $1.6 \times 10^{-1}$  s–1 at 300K. Given that the activation energy of the reaction is 28 kJ mol<sup>-1</sup> and assuming Arrhenium behaviour for the temperature dependence, the total time required to obtain 90% of Y at 350 K is \_\_\_\_\_\_s. (Upto to one decimal place, use R = 8.31 JK<sup>-1</sup> mol<sup>-1</sup>).
- 40. The strongest band observed in the IR spectrum of the final product of the following reaction appears, approximately at  $\_\_\_\times100 \text{ cm}^{-1}$  (Upto one decimal place)



- 41. The reaction of PCl<sub>3</sub> with PhLi in 1 : 3 molar ratio yields X as one of the products, which on further treatment with CH<sub>3</sub>I gives Y. The reaction of Y with n-BuLi gives product Z. The product X, Y and Z respectively, are
  - (a)  $[PPh_4]Cl, [Ph_2P = CH_2]$  and  $Ph_2P(n-Bu)$
  - (b)  $PPh_3$ ,  $[Ph_3PI](CH_3)$  and  $Ph_2P(n-Bu)_3$

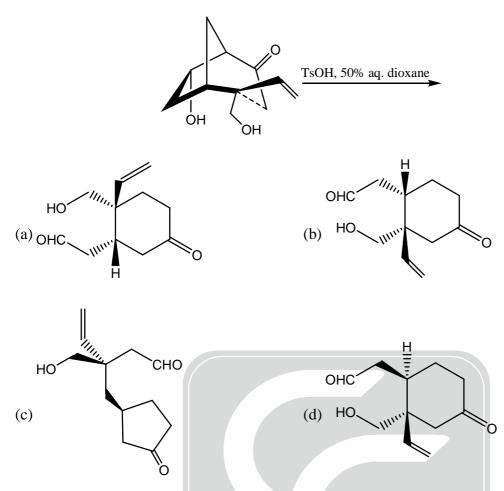
(c) 
$$PPh_3$$
,  $\left[Ph_3P(CH_3)\right]I$  and  $Ph_3P = CH_3$ 


- (d)  $[PPh_4]Cl, [Ph_3P = CH_2]$  and  $[Ph_3P(n-Bu)]Li$
- 42. The  $\pi$  electrons in benzene can be modelled as particles in a ring that follow Pauli's exclusion principle. Given that the radius of benzene is 1.4Å, the longest wavelength of light that is absorbed during an electronic transition in benzene is \_\_\_\_\_\_nm. (Upto one decimal place. Use

$$m_e = 9.1 \times 10^{-31} \text{ kg}, h = 6.6 \times 10^{-34} \text{ Js}, c = 3.0 \times 10^8 \text{ ms}^{-1})$$

43. Second-order are constant for the reaction between  $\left[ \operatorname{Co}(\operatorname{NH}_3)_5 X \right]^{n+}$  (n = 3 for X = NH<sub>3</sub> and H<sub>2</sub>O; n = 2

for X = C<sup>$$\vdash$$</sup>) and  $\left[Cr(H_2O)_6\right]^{2+}$  at room temperature varies with the X as  
(a) NH<sub>3</sub> > H<sub>2</sub>O > C <sup>$\vdash$</sup>   
(b) C <sup>$\vdash$</sup>  > H<sub>2</sub>O > NH<sub>3</sub>  
(c) NH<sub>3</sub> > C <sup>$\vdash$</sup>  > H<sub>2</sub>O  
(d) H<sub>2</sub>O > NH<sub>3</sub> > C <sup>$\vdash$</sup> 


44. The Latimer diagram of oxygen is given below. The value of *x* is \_\_\_\_\_\_V. (Upto two decimal places)



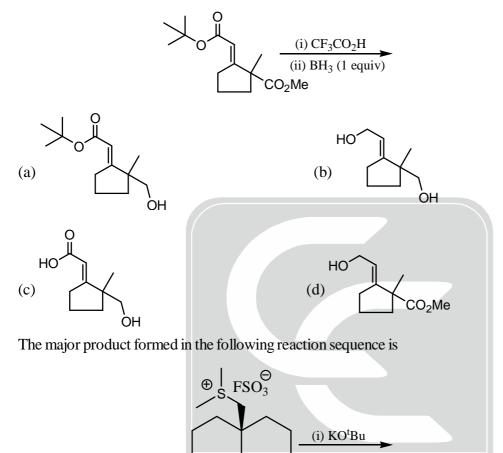


8

## 45. The major product formed in the following retro-aldol reaction is



- 46. The enthalpy of vaporization of a liquid at its boiling point  $(T_b = 200 \text{ K})$  is 15.3 kJ mol<sup>-1</sup>. If the molar volumes of the liquid and the vapour at 200 K are 110 and 12000 cm<sup>3</sup> mol<sup>-1</sup>, respectively, then the slope  $\frac{dP}{dT}$  of the liquid-boundary is \_\_\_\_\_\_ kPa K<sup>-1</sup> (Upto two decimal places. Note : 1 Pa = 1 J m<sup>-1</sup>)
- 47. The O<sub>2</sub> coordinated to metal ion centres in oxy-myoglobin and oxy-hemocyanin exists, respectively, as (a) superoxide and peroxide (c) peroxide and peroxide (d) superoxide and oxygen
- 48. For an inverse spinel, AB<sub>2</sub>O<sub>4</sub>, the A and B, respectively, can be (a) Ni(II) and Ga(III) (b) Zn(II) and Fe(III) (c) Fe(II) and Cr(III) (d) Mn(II) and Mn(III)
- 49. The molar conductivity of a 0.01 M weak acid (HX) at 298K, measured in a conductivity cell with cell constant of 0.4 cm<sup>-1</sup>, is 64.4 Scm<sup>2</sup> mol<sup>-1</sup>. The limiting molar conductivities at infinite dilution of H<sup>+</sup> and X<sup>-</sup> at 298K are 350 and 410 S cm<sup>2</sup> mol<sup>-1</sup>. Ignoring activity coefficients, the pK<sub>a</sub> of HX at 298K is \_\_\_\_\_(Upto two decimal places)
- 50. The spacing between the two adjacent lines of the microwave spectrum of  $H^{35}Cl$ , is  $6.35 \times 1011$  Hz, given that bond length  $D^{35}Cl$  is 5% greater than that of  $H^{35}Cl$  the corresponding spacing for  $D^{35}Cl$  is  $\pm 10^{11}$  Hz. (Upto two decimal places)

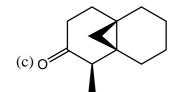


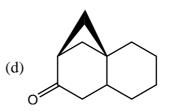

54.

(a)

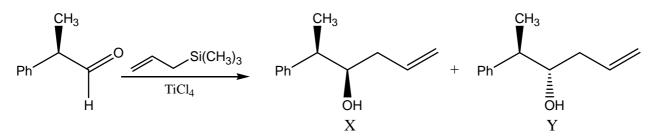
- 51. Generally, the coordination number and the nature of the electronic absorption band  $(f \rightarrow f \text{ transition})$  of lanthanide (III) ion in their complexes are, respectively
  - (a) greater than 6 and sharp (b) 6 and broad
  - (c) less than 6 and sharp (d) greater than 6 and broad
- 52. A tetrapeptide, made up of natural amino acids, has alanine as the N-terminal residue which is coupled to a chiral amino acid. Upon complete hydrolysis, the tetrapeptide gives glycine, alanine, phenylalanine and leucine. The number of possible sequences of the tetrapeptide is \_\_\_\_\_\_
- 53. The major product formed in the following reaction sequence is

0




(ii) Raney-Ni, A


(b)







55. In the following reaction,



- (a) X is the major product and Y is the minor product
- (b) X is the only product
- (c) Y is the only product
- (d) X is the minor product and Y is the major product



