PHYSICS-PH

Q.1 – Q.25 : Carry ONE mark each.

- 1. Which one of the following is an allowed electric dipole transition ?
 - (a) ${}^{1}S_{0} \rightarrow {}^{3}S_{1}$ (b) ${}^{2}P_{3/2} \rightarrow {}^{2}D_{5/2}$ (c) ${}^{2}D_{5/2} \rightarrow {}^{2}P_{1/2}$ (d) ${}^{3}P_{0} \rightarrow {}^{5}D_{0}$

2. In spherical polar coordinate (r, θ, ϕ) , the unit vector $\hat{\theta}$ at $\left(10, \frac{\pi}{4}, \frac{\pi}{2}\right)$ is

(a)
$$\hat{k}$$
 (b) $\frac{1}{\sqrt{2}} \left(\hat{j} + \hat{k} \right)$ (c) $\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$ (d) $\frac{1}{\sqrt{2}} \left(\hat{j} - \hat{k} \right)$

- 3. Among electric field (\vec{E}) , magnetic field (\vec{B}) , angular momentum (\vec{L}) , and vector potential (\vec{A}) , which is/are odd under parity (space inversion) operation ?
 - (a) \vec{E} only (b) \vec{E} and \vec{A} only (c) \vec{E} and \vec{B} only (d) \vec{B} and \vec{L} only
- 4. The scale factors corresponding to the covariant metric tensor g_{ij} in spherical polar coordinates are

(a) $1, r^2, r^2 \sin^2 \theta$ (b) $1, r^2, \sin^2 \theta$ (c) 1, 1, 1 (d) $1, r, r \sin \theta$

- 5. In the context of small oscillations, which one of the following does NOT apply to the normal coordinates ?(a) Each normal coordinate has an eigen-frequency associated with it
 - (b) The normal coordinates are orthogonal to one another
 - (c) The normal coordinates are all independent
 - (d) The potential energy of the system is a sum of squares of the normal coordinates with constant coefficients
- 6. A light beam of intensity I_0 is falling normally on a surface. The surface absorbs 20% of the intensity and the rest is reflected. The radiation pressure on the surface is given by $X I_0/c$, where X is _____ (up to one decimal place). Here *c* is the speed of light.
- 7. For the given unit cells of a two dimensional square lattice, which option lists all the primitive cells ?

8. The high temperature magnetic susceptibility of solids having ions with magnetic moments can be described by

$$\chi \propto \frac{1}{T+\theta}$$

where T as absolute temperature and θ as constant. The three behaviors i.e., paramagnetic, ferromagnetic and anti-ferromagnetic are described, respectively, by

- (a) $\theta < 0, \ \theta > 0, \ \theta = 0$ (b) $\theta > 0, \ \theta < 0, \ \theta = 0$
- (c) $\theta = 0, \ \theta < 0, \ \theta > 0$ (d) $\theta = 0, \ \theta > 0, \ \theta < 0$
- 9. The eigenvalues of a Hermitian matrix are all (a) real (b) imaginary (c) of modulus one (d) real and positive
- 10. At low temperature (T), the specific heat of common metals is described by (with α and β as constants)?
 - (a) $\alpha T + \beta T^3$ (b) βT^3 (c) $\exp(-\alpha/T)$ (d) $\alpha T + \beta T^5$

1

QUESTION PAPER

- 11. The number of independent components of a general electromagnetic field tensor is ______.
- 12. Match the physical effects and order of magnitude of their energy scales given below, where $\alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c}$ is

fine structure constant; m_e and m_p are electron and proton mass, respectively.

	Group-I		Group-II
P.	Lamb shift	1.	$\sim O(\alpha^2 m_e c^2)$
Q.			$\sim O(\alpha^4 m_e c^2)$
R.	Bohr energy	3.	$\sim O(\alpha^4 m_e^2 c^2 / m_p)$
S.	Hyperfine structure	4.	$\sim O(\alpha^5 m_e c^2)$
(a)	P-3, Q-1, R-2, S-4	(b)	P-2, Q-3, R-1, S-4
(c)	P-4, Q-2, R-1, S-3	(d)	P-2, Q-4, R-1, S-3

13. Which one of the following represents the 3p radial wave function of hydrogen atom ? (a_0 is the Bohr radius)

14. For an operational amplifier (ideal) circuit shown below,

if $V_1 = 1$ V and $V_2 = 2$ V, the value of V_0 is _____ V (up to one decimal place).

- 15. The logic expression $\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$ can be simplified to (a) A XOR C (b) $A \text{ AND } \overline{C}$ (c) 0 (d) 1
- 16. An infinitely long straight wire is carrying a steady current *I*. The ratio of magnetic energy density at distance r_1 to that at $r_2 (= 2r_1)$ from the wire is _____.
- 17. The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecules in terms of the harmonic frequency ω_e and anharmonicity constant x_e is

(a) $2\omega_e(1-x_e)$ (b) $2\omega_e(1-3x_e)$ (c) $3\omega_e(1-2x_e)$ (d) $3\omega_e(1-4x_e)$

18. The elementary particle Ξ^0 is placed in the baryon decuplet, shown below, at

- 19. For nucleus ¹⁶⁴Er, a $j^{\pi} = 2^+$ state is at 90 keV. Assuming ¹⁶⁴Er to be a rigid rotor, the energy of its 4⁺ state is ______ keV. (up to one decimal place).
- 20. The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is (a_0 is the Bohr radius).

(a)
$$-3ea_0$$
 (b) zero (c) ea_0 (d) $3ea_0$

- 21. A spaceship is travelling with a velocity of 0.7c away from a station. The spaceship ejects a probe with a velocity 0.59c opposite to its own velocity. A person in the space station would see the probe moving at a speed Xc, where the value of X is _____ (up to three decimal places).
- 22. In a 2-to-1 multiplexer as shown below, the output $X = A_0$ if C = 0, and $X = A_1$ if C = 1.

Which one of the following is the correct implementation of this multiplexer?

- 23. If *X* is the dimensionality of a free electron gas, the energy (*E*) dependence of density of states is given by $E^{\frac{1}{2}X-Y}$, where *Y* is _____.
- 24. In the decay, $\mu^+ \rightarrow e^+ + v_e + X$, what is X?

(a) γ (b) \overline{v}_e (c) v_{μ} (d) \overline{v}_{μ}

25. Given the following table,

Group-I

- P. Stem-Gerlach experiment
- Q. Zeeman effect
- **R.** Frank-Hertz experiment
- S. Davisson-Germer experiment

- Group-II
- 1. Wave nature of particles
- 2. Quantization of energy of electrons in the atoms
- 3. Existence of electron spin
- 4. Space quantization of angular momentum

Which one of the following correctly matches the experiments from Group-I to their inferences in Group-II?

- (a) P-2, Q-3, R-4, S-1
- (c) P-3, Q-4, R-2, S-1

(b) P-1, Q-3, R-2, S-4 (d) P-2, Q-1, R-4, S-3

Q.26 – Q.55 : Carry TWO marks each.

26. A *p*-doped semiconductor slab carries a current I = 100 mA in a magnetic field B = 0.2 T as shown. One measures $V_y = 0.25$ mV and $V_x = 2$ mV. The mobility of holes in the semiconductor is _____ m²V⁻¹s⁻¹ (up to two decimal places).

- 27. Three particles are to be distributed in four non-degenerate energy levels. The possible number of ways of distribution: (i) for distinguishable particles, and (ii) for identical Bosons, respectively, is
 (a) (i) 24, (ii) 4 (b) (i) 24, (ii) 20 (c) (i) 64, (ii) 20 (d) (i) 64, (ii) 16
- 28. An atom in its single state is subjected to a magnetic field. The Zeeman splitting of its 650 nm spectral lines is 0.03 nm. The magnitude of the field is _____ Tesla (up to two decimal places).

$$\left[e = 1.60 \times 10^{-19} \text{ C}, m_e = 9.11 \times 10^{-31} \text{ kg}, c = 3.0 \times 10^8 \text{ ms}^{-1}\right]$$

29. The partition function of an ensemble at a temperature T is

$$\mathsf{CARZ} = \left(2\cosh \frac{\varepsilon}{k_B T} \right)^{N} \mathsf{CAVOUR}$$

where k_B is the Boltzmann constant. The heat capacity of this ensemble at $T = \frac{\varepsilon}{k_B}$ is $X N k_B$, where the value

of *X* is _____ (up to two decimal places).

30. A quarter wave plate introduces a path difference of $\lambda/4$ between the two components of polarization parallel and perpendicular to the optic axis. An electromagnetic wave with $\vec{E} = (\hat{x} + \hat{y}) E_0 e^{i(kz - \omega t)}$ is incident normally on a quarter wave plate which has its optic axis making an angle 135° with the *x*-axis as shown.

4

QUESTION PAPER

- The emergent electromagnetic wave would be
- (a) elliptically polarized
- (b) circularly polarized
- (c) linearly polarized with polarization as that of incident wave
- (d) linearly polarized but with polarization at 90° to that of the incident wave
- 31. Two solid spheres A and B have same emissivity. The radius of A is four times the radius of B, and temperature of A is twice the temperature of B. The ratio of the rate of heat radiated from A to that from B is ______.

The absolute value of the integral $\int \frac{5z^3 + 3z^2}{z^2 - 4} dz$, over the circle |z - 1.5| = 1 in complex plane, is _____ 32. (up to two decimal places).

33. A long straight wire, having radius a and resistance per unit length r, carries a current I. The magnitude and direction of the Poynting vector on the surface of the wire is

(a)
$$\frac{I^2 r}{2\pi a}$$
, perpendicular to axis of the wire and pointing inwards.

- (b) $\frac{I^2 r}{2\pi a}$, perpendicular to axis of the wire and pointing outwards.
- (c) $\frac{I^2 r}{\pi a}$, perpendicular to axis of the wire and pointing inwards. (d) $\frac{I^2 r}{\pi a}$, perpendicular to axis of the wire and pointing outwards.
- An interstellar object has speed v at the point of its shortest distance R from a star of much larger mass M. 34. Given $v^2 = 2GM/R$, the trajectory of the object is (a) circle (b) ellipse (c) parabola (d) hyperbola
- The ground state energy of a particle of mass m in an infinite potential well is E_0 . It changes to $E_0(1 + \alpha \times 10^{-3})$, 35.

when there is a small potential bump of height $V_0 = \frac{\pi^2 \hbar^2}{50 m L^2}$ and width a = L/100, as shown in the figure. The

value of α is _____ (up to two decimal places).

36. Consider an infinitely long solenoid with N turns per unit length, radius R and carrying a current $I(t) = \alpha \cos \omega t$, where α is a constant and ω is the angular frequency. The magnitude of electric field at the surface of the solenoid is

(a)
$$\frac{1}{2}\mu_0 NR\omega\alpha\sin\omega t$$
 (b) $\frac{1}{2}\mu_0\omega NR\cos\omega t$ (c) $\mu_0 NR\omega\alpha\sin\omega t$ (d) $\mu_0\omega NR\cos\omega t$

Inside a large nucleus, a nucleon with mass 939 MeVc⁻² has Fermi momentum 1.40 fm⁻¹ at absolute zero 37. temperature. Its velocity is *Xc*, where the value of *X* is _____ (up to two decimal places).

GATE-PH 2018

QUESTION PAPER

38. An α particle is emitted by a $^{230}_{90}$ Th nucleus. Assuming the potential to be purely Coulombic beyond the point of separation, the height of the Coulomb barrier is _____ MeV (up to two decimal places).

$$\left(\frac{e^2}{4\pi\,\varepsilon_0} = 1.44 \text{ MeV-fm}, r_0 = 1.30 \text{ fm}\right)$$

39. A particle moves in one dimension under a potential $V(x) = \alpha |x|$ with some non-zero total energy. Which one of the following best describes the particle trajectory in the phase space ?

40. If *H* is the Hamiltonian for a free particle with mass *m*, the commutator [x, [x, H]] is

(a)
$$\frac{\hbar^2}{m}$$
 (b) $-\frac{\hbar^2}{m}$ (c) $-\frac{\hbar^2}{(2m)}$ (d) $\frac{\hbar^2}{(2m)}$

- 41. Given : $\vec{V_1} = \hat{i} \hat{j}$ and $\vec{V_2} = -2\hat{i} + 3\hat{j} + 2\hat{k}$, which one of the following $\vec{V_3}$ makes $(\vec{V_1}, \vec{V_2}, \vec{V_3})$ a complete set for a three dimensional real linear vector space ? (a) $\vec{V_1} = \hat{i} + \hat{j} + 4\hat{k}$ (b) $\vec{V_2} = 2\hat{i} - \hat{i} + 2\hat{k}$ (c) $\vec{V_2} = \hat{i} + 2\hat{i} + 6\hat{k}$ (d) $\vec{V_2} = 2\hat{i} + \hat{i} + 4\hat{k}$
 - (a) $\vec{V}_3 = \hat{i} + \hat{j} + 4\hat{k}$ (b) $\vec{V}_3 = 2\hat{i} \hat{j} + 2\hat{k}$ (c) $\vec{V}_3 = \hat{i} + 2\hat{j} + 6\hat{k}$ (d) $\vec{V}_3 = 2\hat{i} + \hat{j} + 4\hat{k}$
- 42. An electromagnetic plane wave is propagating with an intensity $I = 1.0 \times 10^5 \text{ Wm}^{-2}$ in a medium with $\varepsilon = 3\varepsilon_0$ and $\mu = \mu_0$. The amplitude of the electric field inside the medium is ______ $\times 10^3 \text{ Vm}^{-1}$ (up to one decimal place).

$$\left[\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{ m}^{-2}, \ \mu_0 = 4\pi \times 10^{-7} \text{ NA}^{-2}, \ c = 3 \times 10^8 \text{ ms}^{-1}\right]$$

43. An n-channel FET having Gate-Source switch-off voltage $V_{GS(OFF)} = -2$ V is used to invert a 0-5 V squarewave signal as shown. The maximum allowed value of *R* would be _____k Ω (up to two decimal places).

- 44. For the transformation $Q = \sqrt{2q} e^{-1+2\alpha} \cos p$, $P = \sqrt{2q} e^{-\alpha-1} \sin p$, (where α is a constant) to be canonical, the value of α is ______.
- 45. Amongest electrical resistivity (ρ), thermal conductivity (κ), specific heat (*C*), Young's modulus (*Y*), and magnetic susceptibility (χ), which quantities show a sharp change at the superconducting transition temperature ?

(a)
$$\rho, \kappa, C, Y$$
 (b) ρ, C, χ (c) ρ, κ, C, χ (d) κ, Y, χ

46. Given: $\frac{d^2 f(x)}{dx^2} - 2\frac{df(x)}{dx} + f(x) = 0$, and boundary conditions f(0) = 1 and f(1) = 0, the value of f(0.5)

is _____ (up to two decimal places).

6

47. A two-state quantum system has energy eigenvalues + ε corresponding to the normalized states $|\psi_{\pm}\rangle$. At time

t = 0, the system is in quantum state $\frac{1}{\sqrt{2}} \left[|\psi_+\rangle + |\psi_-\rangle \right]$. The probability that the system will be in the same

state at $t = \frac{h}{(6\varepsilon)}$ is _____ (up to two decimal places).

48. The energy dispersion for electron in one dimensional lattice with lattice parameter *a* is given by

$$E(k) = E_0 - \frac{1}{2}W\cos ka,$$

where W and E_0 are constants. The effective mass of the electron near the bottom of the band is

(a)
$$\frac{2\hbar^2}{Wa^2}$$
 (b) $\frac{\hbar^2}{Wa^2}$ (c) $\frac{\hbar^2}{2Wa^2}$ (d) $\frac{\hbar^2}{4Wa^2}$

- 49. The term symbol for the electronic ground state of oxygen atom is
 - (a) ${}^{1}S_{0}$ (b) ${}^{1}D_{2}$ (c) ${}^{3}P_{0}$ (d) ${}^{3}P_{2}$
- 50. An air-conditioner maintains the room temperature at 27 °C while the outside temperature is 47 °C. The heat conducted through the walls of the room from outside to inside due to temperature difference is 7000 W. The minimum work done by the compressor of the air-conditioner per unit time is _____ W.
- 51. A uniform circular disc of mass *m* and radius *R* is rotating with angular speed ω about an axis passing through its center and making an angle $\theta = 30^{\circ}$ with the axis of the disc. If the kinetic energy of the disc is $\alpha m \omega^2 R^2$, the value of α is _____ (up to two decimal places).

- 52. 4 MeV γ -rays emitted by the de-excitation of ¹⁰F are attributed, assuming spherical symmetry, to the transition of protons from 1 d_{3/2} state. If the contribution of spin-orbit term to the total energy is written as $C(\vec{l} \cdot \vec{s})$, the magnitude of *C* is ______ MeV (up to one decimal place).
- 53. The quantum effects in an ideal gas become important below a certain temperature T_Q when de-Broglie wavelength corresponding to the root mean square thermal speed becomes equal to the inter-atomic separation. For such a gas of atoms of mass 2×10^{-26} kg and number density 6.4×10^{25} m⁻³, $T_Q =$ _____× 10^{-3} K (up to one decimal place).
- 54. A microcanonical ensemble consists of 12 atoms with each taking either energy 0 state, or energy ε state. Both states are non-degenerate. If the total energy of this ensemble is 4ε , its entropy will be ______ k_B (up to one decimal place), where k_B is the Boltzmann constant.
- 55. A constant and uniform magnetic field $\vec{B} = B_0 \hat{k}$ prevades all space. Which one of the following is the correct choice for the vector potential in Coulomb gauge ?

(a)
$$-B_0(x+y)\hat{i}$$
 (b) $B_0(x+y)\hat{j}$ (c) $B_0x\hat{j}$ (d) $-\frac{1}{2}B_0(x\hat{i}-y\hat{j})$

