PHYSICS-PH

Q. 1 - Q. 25 : Carry ONE mark each.

1. Which one of the following is an allowed electric dipole transition?
(a) ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{~S}_{1}$
(b) ${ }^{2} \mathrm{P}_{3 / 2} \rightarrow{ }^{2} \mathrm{D}_{5 / 2}$
(c) ${ }^{2} \mathrm{D}_{5 / 2} \rightarrow{ }^{2} \mathrm{P}_{1 / 2}$
(d) ${ }^{3} \mathrm{P}_{0} \rightarrow{ }^{5} \mathrm{D}_{0}$
2. In spherical polar coordinate (r, θ, ϕ), the unit vector $\hat{\theta}$ at $\left(10, \frac{\pi}{4}, \frac{\pi}{2}\right)$ is
(a) \hat{k}
(b) $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
(c) $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
(d) $\frac{1}{\sqrt{2}}(\hat{j}-\hat{k})$
3. Among electric field (\vec{E}), magnetic field (\vec{B}), angular momentum (\vec{L}), and vector potential (\vec{A}), which is/are odd under parity (space inversion) operation ?
(a) \vec{E} only
(b) \vec{E} and \vec{A} only
(c) \vec{E} and \vec{B} only
(d) \vec{B} and \vec{L} only
4. The scale factors corresponding to the covariant metric tensor $g_{i j}$ in spherical polar coordinates are
(a) $1, r^{2}, r^{2} \sin ^{2} \theta$
(b) $1, r^{2}, \sin ^{2} \theta$
(c) $1,1,1$
(d) $1, r, r \sin \theta$
5. In the context of small oscillations, which one of the following does NOT apply to the normal coordinates?
(a) Each normal coordinate has an eigen-frequency associated with it
(b) The normal coordinates are orthogonal to one another
(c) The normal coordinates are all independent
(d) The potential energy of the system is a sum of squares of the normal coordinates with constant coefficients
6. A light beam of intensity I_{0} is falling normally on a surface. The surface absorbs 20% of the intensity and the rest is reflected. The radiation pressure on the surface is given by $X I_{0} / c$, where X is \qquad (up to one decimal place). Here c is the speed of light.
7. For the given unit cells of a two dimensional square lattice, which option lists all the primitive cells?

(a) 1 and 2
(b) 1, 2 and 3
(c) 1,2, 3 and 4
(d) 1, 2, 3, 4 and 5
8. The high temperature magnetic susceptibility of solids having ions with magnetic moments can be described by

$$
\chi \propto \frac{1}{T+\theta}
$$

where T as absolute temperature and θ as constant. The three behaviors i.e., paramagnetic, ferromagnetic and anti-ferromagnetic are described, respectively, by
(a) $\theta<0, \theta>0, \theta=0$
(b) $\theta>0, \theta<0, \theta=0$
(c) $\theta=0, \theta<0, \theta>0$
(d) $\theta=0, \theta>0, \theta<0$
9. The eigenvalues of a Hermitian matrix are all
(a) real
(b) imaginary
(c) of modulus one
(d) real and positive
10. At low temperature (T), the specific heat of common metals is described by (with α and β as constants) ?
(a) $\alpha T+\beta T^{3}$
(b) βT^{3}
(c) $\exp (-\alpha / T)$
(d) $\alpha T+\beta T^{5}$
11. The number of independent components of a general electromagnetic field tensor is \qquad .
12. Match the physical effects and order of magnitude of their energy scales given below, where $\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}$ is fine structure constant ; m_{e} and m_{p} are electron and proton mass, respectively.

Group-I

P. Lamb shift
Q. Fine structure
R. Bohr energy
S. Hyperfine structure
(a) P-3, Q-1, R-2, S-4
(c) P-4, Q-2, R-1, S-3

Group-II

1. $\sim O\left(\alpha^{2} m_{e} c^{2}\right)$
2. $\sim O\left(\alpha^{4} m_{e} c^{2}\right)$
3. $\sim O\left(\alpha^{4} m_{e}^{2} c^{2} / m_{p}\right)$
4. $\sim O\left(\alpha^{5} m_{e} c^{2}\right)$
(b) P-2, Q-3, R-1, S-4
(d) P-2, Q-4, R-1, S-3
5. Which one of the following represents the $3 p$ radial wave function of hydrogen atom? (a_{0} is the Bohr radius)
(a)

(b)

(c)

(d)

6. For an operational amplifier (ideal) circuit shown below,

if $V_{1}=1 \mathrm{~V}$ and $V_{2}=2 \mathrm{~V}$, the value of V_{0} is \qquad V (up to one decimal place).
7. The logic expression $\bar{A} B C+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}$ can be simplified to
(a) A XOR C
(b) A AND \bar{C}
(c) 0
(d) 1
8. An infinitely long straight wire is carrying a steady current I. The ratio of magnetic energy density at distance r_{1} to that at $r_{2}\left(=2 r_{1}\right)$ from the wire is \qquad .
9. The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecules in terms of the harmonic frequency ω_{e} and anharmonicity constant x_{e} is
(a) $2 \omega_{e}\left(1-x_{e}\right)$
(b) $2 \omega_{e}\left(1-3 x_{e}\right)$
(c) $3 \omega_{e}\left(1-2 x_{e}\right)$
(d) $3 \omega_{e}\left(1-4 x_{e}\right)$
10. The elementary particle Ξ^{0} is placed in the baryon decuplet, shown below, at

(a) P
(b) Q
(c) R
(d) S
11. For nucleus ${ }^{164} \mathrm{Er}$, a $j^{\pi}=2^{+}$state is at 90 keV . Assuming ${ }^{164} \mathrm{Er}$ to be a rigid rotor, the energy of its 4^{+}state is
\qquad keV . (up to one decimal place).
12. The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is (a_{0} is the Bohr radius).
(a) $-3 e a_{0}$
(b) zero
(c) $e a_{0}$
(d) $3 e a_{0}$
13. A spaceship is travelling with a velocity of 0.7 c away from a station. The spaceship ejects a probe with a velocity $0.59 c$ opposite to its own velocity. A person in the space station would see the probe moving at a speed $X c$, where the value of X is \qquad (up to three decimal places).
14. In a 2-to-1 multiplexer as shown below, the output $X=A_{0}$ if $C=0$, and $X=A_{1}$ if $C=1$.

Which one of the following is the correct implementation of this multiplexer?
(a)

(b)

(c)

(d)

23. If X is the dimensionality of a free electron gas, the energy (E) dependence of density of states is given by $E^{\frac{1}{2} X-Y}$, where Y is \qquad .
24. In the decay, $\mu^{+} \rightarrow e^{+}+v_{e}+X$, what is X ?
(a) γ
(b) \bar{v}_{e}
(c) v_{μ}
(d) \bar{v}_{μ}
25. Given the following table,

Group-I

P. Stem-Gerlach experiment
Q. Zeeman effect
R. Frank-Hertz experiment
S. Davisson-Germer experiment

Group-II

1. Wave nature of particles
2. Quantization of energy of electrons in the atoms
3. Existence of electron spin
4. Space quantization of angular momentum

Which one of the following correctly matches the experiments from Group-I to their inferences in Group-II ?
(a) P-2, Q-3, R-4, S-1
(b) P-1, Q-3, R-2, S-4
(c) P-3, Q-4, R-2, S-1
(d) P-2, Q-1, R-4, S-3

Q. 26 - Q. 55 : Carry TWO marks each.

26. A p-doped semiconductor slab carries a current $I=100 \mathrm{~mA}$ in a magnetic field $B=0.2 \mathrm{~T}$ as shown. One measures $V_{y}=0.25 \mathrm{mV}$ and $V_{x}=2 \mathrm{mV}$. The mobility of holes in the semiconductor is \qquad $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ (up to two decimal places).

27. Three particles are to be distributed in four non-degenerate energy levels. The possible number of ways of distribution: (i) for distinguishable particles, and (ii) for identical Bosons, respectively, is
(a) (i) 24 , (ii) 4
(b) (i) 24 , (ii) 20
(c) (i) 64 , (ii) 20
(d) (i) 64 , (ii) 16
28. An atom in its single state is subjected to a magnetic field. The Zeeman splitting of its 650 nm spectral lines is 0.03 nm . The magnitude of the field is \qquad Tesla (up to two decimal places).

$$
\left[e=1.60 \times 10^{-19} \mathrm{C}, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, c=3.0 \times 10^{8} \mathrm{~ms}^{-1}\right]
$$

29. The partition function of an ensemble at a temperature T is

$$
C A R Z=\left(2 \cosh \frac{\varepsilon}{k_{B} T}\right)^{N}, A / 0 \| R
$$

where k_{B} is the Boltzmann constant. The heat capacity of this ensemble at $T=\frac{\varepsilon}{k_{B}}$ is $X N k_{B}$, where the value of X is \qquad (up to two decimal places).
30. A quarter wave plate introduces a path difference of $\lambda / 4$ between the two components of polarization parallel and perpendicular to the optic axis. An electromagnetic wave with $\vec{E}=(\hat{x}+\hat{y}) E_{0} e^{i(k z-\omega t)}$ is incident normally on a quarter wave plate which has its optic axis making an angle 135° with the x-axis as shown.

The emergent electromagnetic wave would be
(a) elliptically polarized
(b) circularly polarized
(c) linearly polarized with polarization as that of incident wave
(d) linearly polarized but with polarization at 90° to that of the incident wave
31. Two solid spheres A and B have same emissivity. The radius of A is four times the radius of B, and temperature of A is twice the temperature of B. The ratio of the rate of heat radiated fromA to that fromB is \qquad -.
32. The absolute value of the integral $\int \frac{5 z^{3}+3 z^{2}}{z^{2}-4} d z$, over the circle $|z-1.5|=1$ in complex plane, is \qquad (up to two decimal places).
33. A long straight wire, having radius a and resistance per unit length r, carries a current I. The magnitude and direction of the Poynting vector on the surface of the wire is
(a) $\frac{I^{2} r}{2 \pi a}$, perpendicular to axis of the wire and pointing inwards.
(b) $\frac{I^{2} r}{2 \pi a}$, perpendicular to axis of the wire and pointing outwards.
(c) $\frac{I^{2} r}{\pi a}$, perpendicular to axis of the wire and pointing inwards.
(d) $\frac{I^{2} r}{\pi a}$, perpendicular to axis of the wire and pointing outwards.
34. An interstellar object has speed v at the point of its shortest distance R from a star of much larger mass M. Given $v^{2}=2 G M / R$, the trajectory of the object is
(a) circle
(b) ellipse
(c) parabola
(d) hyperbola
35. The ground state energy of a particle of mass m in an infinite potential well is E_{0}. It changes to $E_{0}\left(1+\alpha \times 10^{-3}\right)$, when there is a small potential bump of height $V_{0}=\frac{\pi^{2} \hbar^{2}}{50 m L^{2}}$ and width $a=L / 100$, as shown in the figure. The value of α is \qquad (up to two decimal places).

36. Consider an infinitely long solenoid with N turns per unit length, radius R and carrying a current $I(t)=\alpha \cos \omega t$, where α is a constant and ω is the angular frequency. The magnitude of electric field at the surface of the solenoid is
(a) $\frac{1}{2} \mu_{0} N R \omega \alpha \sin \omega t$
(b) $\frac{1}{2} \mu_{0} \omega N R \cos \omega t$
(c) $\mu_{0} N R \omega \alpha \sin \omega t$
(d) $\mu_{0} \omega N R \cos \omega t$
37. Inside a large nucleus, a nucleon with mass $939 \mathrm{MeVc}^{-2}$ has Fermi momentum $1.40 \mathrm{fm}^{-1}$ at absolute zero temperature. Its velocity is $X c$, where the value of X is \qquad (up to two decimal places).
38. An α particle is emitted by a ${ }_{90}^{230} \mathrm{Th}$ nucleus. Assuming the potential to be purely Coulombic beyond the point of separation, the height of the Coulomb barrier is \qquad MeV (up to two decimal places). $\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}=1.44 \mathrm{MeV}-\mathrm{fm}, r_{0}=1.30 \mathrm{fm}\right)$
39. Aparticle moves in one dimension under a potential $V(x)=\alpha|x|$ with some non-zero total energy. Which one of the following best describes the particle trajectory in the phase space?
(a)

(b)

(c)

(d)

40. If H is the Hamiltonian for a free particle with mass m, the commutator $[x,[x, H]]$ is
(a) $\frac{\hbar^{2}}{m}$
(b) $-\frac{\hbar^{2}}{m}$
(c) $-\frac{\hbar^{2}}{(2 m)}$
(d) $\frac{\hbar^{2}}{(2 m)}$
41. Given: $\vec{V}_{1}=\hat{i}-\hat{j}$ and $\vec{V}_{2}=-2 \hat{i}+3 \hat{j}+2 \hat{k}$, which one of the following \vec{V}_{3} makes $\left(\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right)$ a complete set for a three dimensional real linear vector space?
(a) $\vec{V}_{3}=\hat{i}+\hat{j}+4 \hat{k}$
(b) $\vec{V}_{3}=2 \hat{i}-\hat{j}+2 \hat{k}$
(c) $\vec{V}_{3}=\hat{i}+2 \hat{j}+6 \hat{k}$
(d) $\vec{V}_{3}=2 \hat{i}+\hat{j}+4 \hat{k}$
42. An electromagnetic plane wave is propagating with an intensity $I=1.0 \times 10^{5} \mathrm{Wm}^{-2}$ in a medium with $\varepsilon=3 \varepsilon_{0}$ and $\mu=\mu_{0}$. The amplitude of the electric field inside the medium is \qquad $\times 10^{3} \mathrm{Vm}^{-1}$ (up to one decimal place).
$\left[\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}, c=3 \times 10^{8} \mathrm{~ms}^{-1}\right]$
43. An n-channel FET having Gate-Source switch-off voltage $V_{\text {GS(OFF) }}=-2 \mathrm{~V}$ is used to invert a $0-5 \mathrm{~V}$ squarewave signal as shown. The maximum allowed value of R would be \qquad $\mathrm{k} \Omega$ (up to two decimal places).

44. For the transformation $Q=\sqrt{2 q} e^{-1+2 \alpha} \cos p, P=\sqrt{2 q} e^{-\alpha-1} \sin p$, (where α is a constant) to be canonical, the value of α is \qquad .
45. Amongest electrical resistivity (ρ), thermal conductivity (κ), specific heat (C), Young's modulus (Y), and magnetic susceptibility (χ), which quantities show a sharp change at the superconducting transition temperature?
(a) ρ, κ, C, Y
(b) ρ, C, χ
(c) ρ, κ, C, χ
(d) κ, Y, χ
46. Given: $\frac{d^{2} f(x)}{d x^{2}}-2 \frac{d f(x)}{d x}+f(x)=0$, and boundary conditions $f(0)=1$ and $f(1)=0$, the value of $f(0.5)$ is \qquad (up to two decimal places).
47. Atwo-state quantum system has energy eigenvalues $+\varepsilon$ corresponding to the normalized states $\left|\psi_{ \pm}\right\rangle$.At time $t=0$, the system is in quantum state $\frac{1}{\sqrt{2}}\left[\left|\psi_{+}\right\rangle+\left|\psi_{-}\right\rangle\right]$. The probability that the system will be in the same state at $t=\frac{h}{(6 \varepsilon)}$ is \qquad (up to two decimal places).
48. The energy dispersion for electron in one dimensional lattice with lattice parameter a is given by

$$
E(k)=E_{0}-\frac{1}{2} W \cos k a,
$$

where W and E_{0} are constants. The effective mass of the electron near the bottom of the band is
(a) $\frac{2 \hbar^{2}}{W a^{2}}$
(b) $\frac{\hbar^{2}}{W a^{2}}$
(c) $\frac{\hbar^{2}}{2 W a^{2}}$
(d) $\frac{\hbar^{2}}{4 W a^{2}}$
49. The term symbol for the electronic ground state of oxygen atom is
(a) ${ }^{1} \mathrm{~S}_{0}$
(b) ${ }^{1} \mathrm{D}_{2}$
(c) ${ }^{3} \mathrm{P}_{0}$
(d) ${ }^{3} \mathrm{P}_{2}$
50. An air-conditioner maintains the room temperature at $27^{\circ} \mathrm{C}$ while the outside temperature is $47^{\circ} \mathrm{C}$. The heat conducted through the walls of the roomfrom outside to inside due to temperature difference is 7000 W . The minimum work done by the compressor of the air-conditioner per unit time is \qquad W.
51. A uniform circular disc of mass m and radius R is rotating with angular speed ω about an axis passing through its center and making an angle $\theta=30^{\circ}$ with the axis of the disc. If the kinetic energy of the disc is $\alpha m \omega^{2} R^{2}$, the value of α is \qquad (up to two decimal places).

52. $\quad 4 \mathrm{MeV} \gamma$-rays emitted by the de-excitation of ${ }^{10} \mathrm{~F}$ are attributed, assuming spherical symmetry, to the transition of protons from $1 \mathrm{~d}_{3 / 2}$ state. If the contribution of spin-orbit term to the total energy is written as $C(\vec{l} \cdot \vec{s})$, the magnitude of C is \qquad MeV (up to one decimal place).
53. The quantum effects in an ideal gas become important below a certain temperature T_{Q} when de-Broglie wavelength corresponding to the root mean square thermal speed becomes equal to the inter-atomic separation. For such a gas of atoms of mass $2 \times 10^{-26} \mathrm{~kg}$ and number density $6.4 \times 10^{25} \mathrm{~m}^{-3}, T_{Q}=$ \qquad $\times 10^{-3} \mathrm{~K}$ (up to one decimal place).
54. A microcanonical ensemble consists of 12 atoms with each taking either energy 0 state, or energy ε state. Both states are non-degenerate. If the total energy of this ensemble is 4ε, its entropy will be \qquad k_{B} (up to one decimal place), where k_{B} is the Boltzmann constant.
55. A constant and uniform magnetic field $\vec{B}=B_{0} \hat{k}$ prevades all space. Which one of the following is the correct choice for the vector potential in Coulomb gauge?
(a) $-B_{0}(x+y) \hat{i}$
(b) $B_{0}(x+y) \hat{j}$
(c) $B_{0} x \hat{j}$
(d) $-\frac{1}{2} B_{0}(x \hat{i}-y \hat{j})$

