TEST SERIES CSIR-NET/JRF DEC. 2018

BOOKLET SERIES C

Test Type: Test Series

LIFE SCIENCES

Duration: 2:00 Hours

Date: 02-12-2018 Maximum Marks: 150

Read the following instructions carefully:

* Single Paper Test is divided into **THREE** Parts.

Part - A: This part shall carry 10 questions. Each question shall be of 2 marks.

Part - B: This part shall carry 35 questions. Each question shall be of 2 marks.

Part - C: This part shall contain 15 questions. Each question shall be of 4 marks.

* Darken the appropriate bubbles with HB pencil/Ball Pen to write your answer.

* There will be negative marking @25% for each wrong answer.

* The candidates shall be allowed to carry the Question Paper Booklet after completion of the exam.

* For rough work, blank sheet is attached at the end of test booklet.

CORPORATE OFFICE : 33-35, Mall Road, G.T.B. Nagar, Opp. G.T.B. Nagar Metro Station Gate No. 3, Delhi-110 009 T : 011-27653355, 27654455

www.careerendeavour.com

REGISTERED OFFICE : 28-A/11, Jia Sarai, Near IIT Metro Station, Gate No. 3, New Delhi-110 016 T : 011-26851008, 26861009

E : info@careerendeavour.com

			PART-A	
1.	On a cloth a shopkee 30% respectively. The (a) Ram	per gives 52% discour e customer geting bette (b) Hari	nt to Ram and to Hari he er discount is (c) both equal	e gives Successive discount of 30% and
2.	Income Ratio of A, H A : B = 1 : 2 B : C = 2 : 3 C : D = 3 : 4 and difference of inco (a) 3,000 Rs	3,C, D are ome of A and D is 3,00 (b) 24,00 Rs	0 Rs. What is the incom (c) 36,00 Rs	e of C. (d) 2,000 Rs
3.	Rohan keeps 12,000 interset. After one yea (a) 6,000 Rs.	Rs in two banks in a cer ar Rohan gets 2400 Rs (b) 4,000 Rs.	rtain Ratio. bank I gives as interest. What was th (c) 8,000 Rs.	10 % interst where as bank II gives 30% ne amount in bank I. (d) 9,000 Rs.
4.	A right circular cone of	of height 'h' is divided in	two parts of equal heigh	t. What is the ratio of weight of lower part
	to the upper part ? (a) 8:1	(b) 7:1	(c) 9:2	(d) 4:1
5.	If $x + \frac{1}{x} = 2$, then wh	hat is the value of x^{13} +	$\frac{1}{r^{13}}$	
	(a) 0	(b) 1	(c) 2	(d) 13
6.	What is the probabilit	ty of being the sum of 9	from the throw of two	unbiased dice
	(a) $\frac{1}{4}$	(b) $\frac{1}{9}$	(c) $\frac{1}{12}$	(d) $\frac{1}{6}$
7.	In the below figure, A	is the centre of the circl	le and $\angle ACD = 50^\circ$, and	d $\angle ABD = 15^\circ$, then what is the value of
	∠BAC ? (a) 100° (b) 70° (c) 80° (d) 75°	A B C 50° D	ENDEAVOU	R
8.	Two cylinders have ra (a) 1:3	adius in the ratio 3 : 1 a (b) 2: 1	nd heights in the ratio 1 (c) 3:1	: 3. Ratio of their volumes is - (d) 1:4
9.	Find the angle of elev (a) 60°	ation of the sun, if the s (b) 30°	hadow of a tower is $\sqrt{3}$ (c) 45°	times the length of the tower. (d) 0°
10.	If in a certain code 'S (a) UGHXYMK	TUDENT' is coded 'T (b) UGDGYNK	VXHJTA', then what w (c) UGDGMKY	vill be the code for 'TEACHER' (d) SGDGMKY
			PART-B	
11.	A fertilized egg is ca (a) germ cell	lled a: (b) embryo	(c) zygote	(d) blastula

 $\boxed{1}$

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

12.	Which of the following reflects Weismann's n	nodel of development?				
	(a) somatic development and change does not contribute directly to the characteristics of the next generation					
	(b) factors, or "determinants", in the nucleus regulate development					
	(c) development is "mosaic"					
	(d) all of the above were important to Weism	nann's view of biological development				
13.	The experiments of Spemann and Mangold fi	rst defined what feature of amphibian embryos?				
	(a) the zygote	(b) the blastopore				
	(c) the neural tube	(d) the organizer				
14.	Genes control development by:					
	(a) controlling where and when proteins are synthesized					
	(b) containing small preformed body parts and organs that become "expressed" during development					
	(c) directly controlling phenotypes, without intermediates or influence from the environment					
	(d) acting as enzymes to build proteins					
15.	The folding of sheets of cells, the migration of	of cells, and cell death are all mechanisms of:				
	(a) cleavage division	(b) pattern formation				
	(c) morphogenesis	(d) differentiation				
16.	How much time drosophila embryo takes to	hatch out and become 1 st instar larvae?				
	(a) one hour	(b) three hours				
	(c) one day	(d) ten days				
17.	In Xenopus during gastrulation germ layer start moving inside the embryo through blastopore in contrast,					
	in chickens, gastrulation involves cells moving inward through the:					
	(a) blastoderm	(b) yolk				
	(c) cleavage furrow	(d) primitive streak				
18.	In mammalian development, the embryo will	form from which population of cells?				
	(a) the blastocyst	(b) the inner cell mass				
	(c) the trophectoderm	(d) the blastocoel				
19.	Identify the hormone secreted by the pituitary	gland that causes the smooth muscle of the uterus to contract				
	during parturition in mammals					
20	(a) Vasopressin (b) Oxytocin	(c) Prolactin (d) Gonadotropins				
20.	(a) An intracellular signaling molecule					
	(a) An initiacential signaling molecule (b) Deamination of histidine results into nitric oxide production					
	(b) Deamination of histoline results into hitric oxide production (c) Stimulates guanylyl cyclase to produce cGMP					
	 (c) Stimulates guanylyl cyclase to produce cGMP (d) Can be produced by activated neutrophils 					
01	(d) Can be produced by activated neutrophil	lS				
21.	A class of spermicides (used for contraception) inhibits the flagellar motion of the sperm thereby preventing it from swimming towards the egg. This is achieved by					
	(a) inhibiting the motor protein dynaine	(b) inhibiting the motor protein kinesin				
	(a) disrupting the microfilements	(d) depolymerizing microtubules				
22	(c) distupuing the inicionalitents	(d) depolymenting incrodubules				
<i>LL</i> .	I ne correct sequence for sperm migration after its production in testis is					
	(a) Seminiferous tubule \rightarrow epididymis \rightarrow vas deferens \rightarrow urethra (b) Urethra \rightarrow vas deferens \rightarrow epididymis \rightarrow seminiferous tubula					
	(b) Uternra \rightarrow vas deferens \rightarrow epididymis \rightarrow seminiferous tubule					
	(c) Epididyinis \rightarrow vas deferens \rightarrow urethra	\rightarrow semimierous tubule				

(d) Seminiferous tubule \rightarrow vas deferens \rightarrow epididymis \rightarrow urethra

		—				
23.	What is the size of DNA region that is speci	ifically recognized by the type II restriction enzymes?				
	(a) 2 to 4 base pairs.	(b) 4 to 6 base pairs.				
	(c) 8 to 10 base pairs.	(d) 40 to 60 base pairs.				
24.	Select the plasmid used by Cohen and Boye	r for their transformation experiment.				
	(a) pBR322	(b) PUC 18				
	(c) PUC 17	(d) pSC 101				
25.	Name the vector that can maintain the largest fragment of foreign DNA.					
	(a) Bacterial Artificial Chromosome (BAC)	(b) Yeast Artificial Chromosome (YAC)				
	(c) Cosmid	(d) pUC 18				
26.	Select the type of restriction endonuclease that cuts the DNA within the recognition site.					
	(a) Type I	(b) Type II				
	(c) Type III	(d) All of the above				
27.	After four cycles in a PCR reaction, each m	olecule of a duplet DNA will give rise to				
	(a) 16 single strands of DNA	(b) 16 double strands of DNA				
	(c) 18 single strands of DNA	(d) 18 double strands of DNA				
28.	Agrobacterium tumefaciens is a					
	(a) Gram-negative soil bacterium causing crown gall disease in monocots.					
	(b) Gram-positive soil bacterium causing crown gall disease in both dicots and monocots.					
	(c) Gram-negative soil bacterium causing crown gall disease in dicots.					
	(d) Gram-positive soil bacterium causing crown gall disease in dicots.					
29.	The transfer of T-DNA and processing into plant genome requires the product of genes.					
	(a) vir B, E (b) vir A, G	(c) <i>vir</i> D, C (d) All of the above				
30.	Which one of the following is correct match	ing of a plant, its habit and the forest type where it normally				
	occurs?					
	(a) Prosopis, tree, scrub (b) Saccharum, grass, forest					
	(c) Shorea robusta, herb, tropical rain fores	t (d) Acacia catechu, tree, coniferous forest				
31.	The Temperate Grassland or Shrub-Land Biome is commonly known as –					
	1. Steppe in Central Asia					
	2. Prairie in North America					
	3. Veld in South America					
	Choose the correct option:					
	(a) 1 and 2 (b) 1 and 3	(b) 2 and 3 (d) 1, 2 and 3				
32.	The 'Olive Ridley turtles' are considered to be endangered because of their few remaining nesting sites in					
	the world. In this context, which among thefollowing Statement(s) is/are correct?					
	1. Their peculiar behaviour of synchronized nesting in mass numbers is known as 'Arribada'.					
	2. Gahirmatha Beach in Orissa is one of th	eir few nesting grounds in the world.				
	(a) Only 1 (b) Only 2	(c) Both 1 and 2 (d) Neither 1 nor 2				
33.	The 'thickness' of Stratospheric Ozone layer	t is measured in/on:				
	(a) Sieverts (b) Dobson units	(c) Melson units (d) Beaufort Scale				
34.	The largest number of Tiger Reserves are lo	ocated in :				
	(a) Karnataka (b) Andhra Pradesh	(c) Madhya Pradesh (d) West Bengal				

35.	Which of the following statements is true?				
	(a) Photochemical smog always contains Ozone.				
	(b) The toxic effect of Carbon Monoxide is due to its greater affinity for haemoglobin as compared to oxygen.				
	(c) Lead is the most hazardous metal pollutant of automobile exhaust.				
	(d) All the above				
36.	Which one of the following is a useful biological indicator of Sulphur-dioxide pollution ?				
	(a) Bryophytes (b) Algal blooms (c) Pseudomonas (d) Lichens				
37.	In Nitrogen Cycle, soil nitrates are transformed into free nitrogen by:				
	(a) Nitrifying bacteria (b) Denitrifying bacteria				
	(c) Ammonifying bacteria (d) Both (a) and (c)				
38.	Which of the following is not a characteristic of the fungi				
	(a) They are all absorptive heterotrophs				
	(b) They have a cell wall made of chitin				
	(c) Mitosis takes place with the nuclear membrane				
	(d) They are all motile				
39.	The unicellular green algae that undergo both sexual and asexual reproduction are				
	(a) chlamydomonas (b) selaginella (c) pinus (d) Dryopteris				
40.	A marine biologist dredged up a small animal from the bottom of the ocean. It was uniformly segmented, with short, stiff appendages and soft, flexible skin. It had a complete digestive system and a circulatory system but no skeleton. Based on this description, this animal sounds most like				
	(a) a Lancelet (b) a crustacean (c) a mollusc (d) an annelid				
41.	African sleeping sickness is due to				
	(a) Plasmodium vivax transmitted by Tsetse fly				
	(b) Trypanosoma lewsii transmitted by Bed Bug				
	(c) Trypanosoma gambiense transmitted by Glossina palpalis				
	(d) Entamoeba gingivalis spread by Housefly.				
42.	The level of taxonomic study concerned with biological aspects of taxa, including intraspecific populations,				
	speciation, and evolutionary rates and trends.				
	(a) alfa taxonomy (b) Beta taxonomy (c) gamma taxonomy (d) theta taxonomy				
43.	An aquatic plant introduced from America to check pollution turned out to be a troublesome weed in Indian				
	water bodies. The name of this 'invasive alien species' is :				
	(a) Opuntia (b) Aegilops (c) Eichhornia (d) Pistia Eichhornia				
44.	In which of the following food chains, the Pyramid of Numbers will be always inverted?				
	(a) Grassland Food chain (b) Ponds Food chain				
	(c) Forests Food (d) Parasitic food chain				
45.	The National Chambal (Gharial) Wildlife Sanctuary, which is one of the large eco-reserves of the country is co administered by which among the following states?				
	(a) Rajasthan & Uttar Pradesh (b) Rajasthan & Madhya Pradesh				

- (c) Madhya Pradesh & Uttar Pradesh (d) Ra
- (d) Rajasthan, Madhya Pradesh & Uttar Pradesh

4)

	PART-C	
46.	. Match the following:	
	1) Isolecithal egg A) Ce	phalochordata
	2) Mesolecithal egg B) An	nphibians
	3) Alecithal C) Hu	iman
	4) Centrolecithal D) Ins	sects
	A B C D	
46.	(a) 2 1 3 4	
	(b) 1 4 3 2	
	(c) 3 2 4 1	
	(d) 1 2 3 4	
47.	. Nipah Virus outbreak has been reported lately in number of In	idian states. Diagnosis of this pathogen can
	be done using some of the following techniques.	
	A) Western blot and Southern blot B) No	orthern blot and western blot
	C) ELISA and RT-PCR D) PC	CR and electron microscopy
	Choose the combination of techniques that correctly lists the d	letection methods.
	(a) A and B only (b) C a	and D only
	(c) B and C only (d) A a	and D only
48.	. Electrophoretic Mobility Shift Assay (EMSA), is a technique whi	iich is used to study protein-DNA interaction
	and for validating the DNA binding sites for transcription factor	rs While working with three proteins A B

and for validating the DNA binding sites for transcription factors. While working with three proteins, A, B and C, a researcher used EMSA to validate the potential role of these proteins in gene expression. The purified proteins were allowed to bind to a labelled DNA and the results obtained after autoradiography are as follows:

A - + - - + + b - - + + + + c - + + + + + (-) (+)

Following conclusions were made

- i) Protein A possesses DNA binding motif
- ii) Protein C possesses DNA binding motif

- iii) Protein C binds to the DNA-protein A complex
- iv) Protein A, B and C form a complex and prevents nuclear localisation of A.
- v) Presence of Protein B, causes nuclear localisation of protein A and C.

Choose the CORRECT combination of interpretations.

- (a) (i) and (iii) only. (b) (i), (iii) and (v) only.
- (c) (i) and (iv) only. (d) (i), (iii) and (iv) only.
- 49. The activation of zygotic hunchback expression by blond protein illustrates what principle in the establishment of positional information in embryos?
 - (a) The mother can influence development through the parping of materials into the egg
 - (b) A gradient of a protein can activate a gene in a create region of an embryo through a threshold effect.
 - (c) The identity of segments in the embryo is a reflection of their position in the embryo
 - (d) A cascade of gene activations occurs in the syncitial blastoderm.
- 50. What are the lin-4 and lin-14 genes of C. elegans?
 - (a) Lin-4 encodes a miRNA that represses lin-14 translation, which in turn regulates the timing of larval development
 - (b) Lin-4 and lin-14 are genes that are named for their contral of the first division and hence the underage of the AB and P1 cells.
 - (c) Lin-4 and lin-4 are C. elegans versions of the Hox genes.
 - (d) Lin-4 and lin-14 both encode mRNA that serve as cell-cell signalling molecules in C. elegans.
- 51. If the nerve supply to newt limb is served before amputation, how will this affect regeneration?
 - (a) It will have no effect, since regeneration involves growth of new muscle, bone and connective tissue
 - (b) Regeneration of most tissues will occur normally, but regeneration of the nerves will not occur
 - (c) Outgrowth will occur, but the identity of the limb will be lost and normal proximo-destal patterning will not occur.
 - (d) A blastema will form but will hot grow and regeneration will foil.
- 52. Choose the combination of statements that are correct for the cerebrum of the human brain
 - P. It is the largest part of brain
 - Q. Controls the pituitary hormone secretion
 - R. Involved in coordinating the movements of the body
 - S. Receives and processes the sensory information
 - (a) PQ (b) QR
 - (c) PS Choose the correct match from A, B, C and D
 - Group I
 - P. Epinephrine
 - O. Parathormone
 - R. Oxytocin
 - S. Luteinizing hormone
 - (a) P-1, Q-2, R-5, S-6
 - (c) P-5, Q-2, R-3, S-4

Group II

- 1. Uterine contractions
- 2. Water resorption
- 3. Ca^{2+} uptake
- 4. Glycogen breakdown
- 5. Thyroid hormone synthesis

(d) QS

- 6. Progesterone secretion
- (b) P-5, Q-6, R-1, S-2
- (d) P-4, Q-3, R-1, S-6

53.

7

54.	Ma	atch the diseases in Grou	up-I	with the corresponding hormones in Group-II .			
		Group-I	1	Group-II			
	P.	Myxoedema	1.	Excess secretion of T_2 and T_4			
	Q.	Cushing's syndrome	2.	Insufficient secretion of T_2 and T_4 in adults			
	R.	Acromegaly	3.	Growth hormone hypersecretion before complete ossification			
	S.	Grave's disease	4.	Glucocorticoid hypersecretion			
			5.	Growth hormone hypersecretion after complete ossification			
	(a)	P-3, O-2, R-1, S-5		(b) P-5, O-3, R-2, S-4			
	(c)	P-2, O-4, R-5, S-1		(d) P-3, O-1, R-4, S-2			
55.	Ba	sed on the dissociation	const	ant K_{J} , the protein - ligand pair that has the strongest interaction is			
	(a)	(a) insulin and insulin receptor ($K = 1 \times 10^{-10}$)					
	(b)	avidin and biotin (K_{i})	-1 ×	(10^{-15})			
	(c)	HIV surface protein a	nd ai	nti-HIV IgG ($K_{1} = 4 \times 10^{-10}$)			
	(d)	calmodulin and calciu	m (<i>K</i>	$f_{a} = 3 \times 10^{-6}$			
56.	A	batch of students studied	the e	effect of changing either phospholipid composition or temperature on the			
	tra	transport of solutes across liposomal membranes. From these studies, the students arrived at the following					
	conclusions:						
	P: Increase in the saturation of hydrogen chains led to an increase in the rate of diffusion of oxygen						
	Q: Decreasing the temperature to 5°C led to a decrease in the rate of potassium transport by valinomycir						
	(a carrier ionophore)						
	R: Increase in the hydrocarbon chain length did not have any effect on the transport mediated by gramicidir						
	(a channel ionophore)						
	W	hich of these conclusion	(S) 19	s/are NOT correct?			
	(a)	Only R	(b)	Only \mathbf{Q} and \mathbf{R} (c) Only \mathbf{P} (d) Only \mathbf{P} and \mathbf{Q}			
57.	Pla	Plasmid pBR322 has been widely used in genetic engineering experiment having all of the following features					
	exe	except,					
	(a)	 (a) Small overall size, which facilitates the plasmid entry into host cells. (b) A number of conveniently located recognition size for rectriction engrance. 					
	(b)	 (b) A number of conveniently located recognition sites for restriction enzymes. (c) A number of palindromic sequences near the EcoPI site, which parmit the plasmid to assume the secure of the secure o					
	(c)	(c) A number of paindromic sequences near the EcoKI site, which permit the plasmid to assume a confirmation that protects newly inserted DNA from nuclease degradation					
	(1)	(d) Resistance to two different antibiotics, which permit a rapid screening for recombinant plasmids containing					
	(d)	Resistance to two differe	ent an	tibiotics, which permit a rapid screening for recombinant plasmids containing			
50	117	Ioreign DNA.		1.1			
58.	(-)	(c) For obtaining single strended environ of allowed DNA systems for DNA systems in a					
	(a) For obtaining single stranded copies of cloned DNA suitable for DNA sequencing.						
	(b) For obtaining double stranded copies of cloned DNA suitable for DNA sequencing.						
	(c)	 (c) For obtaining cloned DNA single stranded fragments for electrophoresis. (d) For obtaining cloned DNA double stranded fragments for electrophoresis. 					
-	(d)	For obtaining cloned D	NA (louble stranded fragments for electrophoresis.			
59.	In	an <i>in-vitro</i> DNA synthesi	zing	mixture, what would result when the mixture contain the four ddNTPs and			
	no	no dNTPs?					
	(a)	It helps in the formatio	n of p	phosphodiester bonds.			
	(b)	All products would be	one r	nucleotide longer than the primer.			
	(c)	All products would have	ve the	e same size as a primer.			

(d) All products would have 2-3 nucleotides shorter than the primer.

- 60. In a gene cloning experiment, consider the following steps.
 - A. To produce a recombinant DNA molecule a fragment of DNA, containing the gene to be cloned, is inserted into a circular DNA molecule called a vector.
 - B. Vector multiplies within a host cell, producing numerous identical copies of itself and of the gene that it carries.
 - C. A colony or a clone is produced after a large number of cell divisions. Each cell in the clone contains one or more copies of the recombinant DNA molecule.
 - D. The vector transports the gene into a host cell, which is actually a bacterium, although other types of living cell can be used.
 - E. When the host cell divides, copies of the recombinant DNA molecule are passed to the progeny and further vector replication takes place.

In a gene cloning experiment, which of the following is correct sequence?

- (a) A—B—C—D—E
- (b) D—E—A—C—B (c) E—D—A—C—B (d) D - E - B - C - A

Space for Rough Work

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

9

CSIR-UGC-NET/JRF LIFE SCIENCES TEST SERIES-3

(Part-A + Developmental Biology + Human Physiology + Recombinant DNA Technology + Diversity + Ecology + Relevant Techniques)

Date : 02-12-2018

_	-		
P	ART-A		
2. (a)	3. (a)	4. (b)	5. (c)
7. (b)	8. (c)	9. (b)	10. (c)
P	ART-B		
12. (d)	13. (d)	14. (a)	15. (c)
17. (d)	18. (b)	19. (b)	20. (b)
22. (a)	23. (b)	24. (d)	25. (b)
27. (a)	28. (c)	29. (d)	30. (a)
32. (c)	33. (b)	34. (c)	35. (d)
37. (b)	38. (d)	39. (a)	40. (d)
42. (c)	43. (c)	44. (d)	45. (d)
P	ART-C		
47. (c)	48. (d)	49. (b)	50. (a)
52. (c)	53. (d)	54. (c)	55. (d)
57. (c)	58. (a)	59 . (b)	60 . (a)
	P 2. (a) 7. (b) P 12. (d) 17. (d) 22. (a) 27. (a) 27. (a) 32. (c) 37. (b) 42. (c) P 47. (c) 52. (c) 57. (c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PART-A 2. (a) 3. (a) 4. (b) 7. (b) 8. (c) 9. (b) PART-B 12. (d) 13. (d) 14. (a) 17. (d) 18. (b) 19. (b) 22. (a) 23. (b) 24. (d) 27. (a) 28. (c) 29. (d) 32. (c) R 28. (c) 29. (d) 32. (c) 88. (d) 39. (a) 42. (c) 43. (c) 34. (c) 37. (b) 38. (d) 39. (a) 42. (c) 43. (c) 39. (a) 57. (c) 58. (a) 59. (b)

[ANSWER KEY]

10