CHAPTER

Data Representation

Data Representation

- Subscript, indicates the number is in binary notation. (base 2) •
- . Example:
 - 10011, is:

2^4	2 ³	2^2	2^1	2^{0}
1	0	0	1	1

 $1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^2 = 9$

Integers and fractions in binary:

Binary numbers can represent fractional values as well as integes:

- e.g.: 10011.011 ₂	2^{4}	2^{3}	2 ²	2^{1}	2°		2^{-1}	2^{-2}	2 ⁻³
	1	0	0	1	1	•	0	1	1

- 10011.011, is an 8-bit number.
- What if we want to represent $(19.376)_{10}$ with an 8-bit binary number?

Conversion: decimal to binary (method 1)

- Express the decimal number as the sum of powers of 2.
- 1s and 0s written in the corresponding bit positions.

Example 1:

Example 2: $50_{10} = 32 + 18$ $338.5_{10} = 256 + 82.5$ =32+16+2= 256 + 64 + 18.5 $=1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{1}$ = 256 + 64 + 16 + 2.5 $50_{10} = 110010_2$ = 256 + 64 + 16 + 2 + 0.5 $= 1 \times 2^8 + 1 \times 2^6 + 1 \times 2^4 + 1 \times 2^1 + 1 \times 2^{-1}$ $338.5_{10} = (101010010.1)_{2}$

Conversion: decimal to binary (method 2)

Repeated division

		Quotient	Remainder
50/2	=	25	0
25/2	=	12	1
12/2	=	6	0
6/2	=	3	0
3/2	=	1	1
1/2	=	0	1
		$50_{10} = 11001$	102

Conversion: binary to decimal

Determine the power of 2 for the position of each 1, and then sum.

Examples: $(10101)_2 = 2^4 + 2^2 + 2^0 = 16 + 4 + 1 = (21)_{10}$

Binary Addtion:

• Firstly, recall decimal addition:

	1	1		
А	1	2	5	4
+B		7	8	2
Sum	2	0	3	6

• Binary addition follows the same pattern, but

0 + 0	=0 carry 0		1	1		
0 + 1 = 1 + 0	=1 carry 0	А	0	1	1	1
1+1	=0 carry 1	+B	0	1	1	0
1 + 1 + 1	=1 carry 1	Sum	1	1	0	1

Note that to calculate each bit S_0 of the sum, we need to consider the values of 3 input bits:

• The corresponding bits of A and B, $(a_n \text{ and } b_n)$.

• The carry-out from the previous addition.

Each bit or column of the binary addition generates two outputs.

• Sum S_0 and carry-out.

Hexadecimal numbers:

- Base 16 representation
- Easy to convert to and from binary numbers
- More compact to write, easier for us to read than binary.

It is used in Microprocessor deals with instructions and data that use hexadecimal number system for programming purposes.

DECIMAL	BINARY	HEXADECIMAL
0	0000	0
1	0001	1
2	0010	2
3	0011	LCAREER ENDEAVOUR
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Data Representation

•

Hexadecimal number conversions:

- Binary to hexadecinmal:
 - 1. Separate the binary number into 4-bit groups.
 - 2. Replace each group with the hexadecimal equivalent.

• Hexadecimal to decimal:

- 1. Re-write each hexadecimal digit as the 4-bit binary equivalent.
- 2. Convert the binary number to decimal.

• Decimal to hexadecimal

• Repeated division by 16

BINARY CODED DECIMAL (BCD)

- Use 4-bit binary represented one decimal digit
- Easy to convert between decimal \leftrightarrow binary.
- Wastes bits (4 bits can represent 16 values, but only 10 values are used) and 6 value are invalid
- Used extensively in financial calculations.
- It is also known as "8-4-2-1 code"

DECIMAL DIGIT	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

• Convert 011010010010111 (BCD) to its decimal equivalent:

0110	1001	0001	0111

• Convert the BCD number 011111000001 to decimal

- 0111 1100 0001
- 7 ? 1

The forbidden code group indicates an error has occured.

Putting it all together

Decimal	Binary	Octal	Hexadecimal	BCD
0	0	0	0	0000
1	1	1	CADICCD	0001
2	10	2	CAR2CCR	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	А	0001 0000
11	1011	13	В	0001 0001
12	1100	14	С	0001 0010
13	1101	15	D	0001 0011
14	1110	16	Е	0001 0100
15	1111	17	F	0001 0101

Note: BCD code is used in calculators, counters, digital voltmeters, digital clocks etc.

Gra	Gray to Binary code convertor											
G_2	\mathbf{G}_1	\mathbf{G}_{0}			B_2	\mathbf{B}_1	\mathbf{B}_0					
0	0	0	=	0	0	0	0					
0	0	1	=	1	0	0	1					
0	1	1	=	3	0	1	0					
0	1	0	=	2	0	1	1					
1	1	0	=	6	1	0	0					
1	1	1	=	7	1	0	1					
1	0	1	=	5	1	1	0					
1	0	0	=	4	1	1	1					

$$B_0 = \Sigma m (1, 2, 7, 4)$$

$$B_1 = \Sigma m(2, 3, 4, 5)$$

 $B_2 = \Sigma m(4, 5, 6, 7)$

K-map for B_2

$G_{2} G_{1}G_{0}$	00	01	11	10	
0					
1	1	1	1	1	

K-map for B_1

$G_{2} G_{1}G_{0}$	00	01	11	10
0			1	1)
1	1	1		

 $\mathbf{B}_1 = \mathbf{G}_2 \overline{\mathbf{G}}_1 + \overline{\mathbf{G}}_2 \mathbf{G}_1 = \boxed{\mathbf{G}_2 \oplus \mathbf{G}_1}$

K-map for B_0

$G_{2} G_{1}G_{0}$	00	01	11	10	
0		1			$\mathbf{C} \mathbf{B}_0 = \mathbf{G}_2 \oplus \mathbf{G}_1 \oplus \mathbf{G}_0 \vee \mathbf{U} \cup \mathbf{K}$
1	1		1		

 $B_2 = G_2$

Convertion:

Gray
$$G_2$$
 G_1 G_0
Binary B_2 B_1 B_0
B 1 0 1 1
 \downarrow
G 1 1 1 0
 $\downarrow \nearrow \checkmark \checkmark$
B 1 0 1 1
B₃ = G₃
B₂ = G₃ \oplus G₂
B₁ = G₃ \oplus G₂ \oplus G₁
B₀ = G₃ \oplus G₂ \oplus G₁ \oplus G₀

Logic Circuit

Types of Code (a) BCD code range 0 to 9 In BCD code each digit is represented in 4 binary bit

0	\rightarrow	0000
1	\rightarrow	0001
2	\rightarrow	0010
3	\rightarrow	0011
4	\rightarrow	0100
5	\rightarrow	0101
6	\rightarrow	0110
7	\rightarrow	0111
8	\rightarrow	1000
9	\rightarrow	1001
10	\rightarrow	0001-0000
15	$\xrightarrow{\text{BCD}}$	0001-0101
$\begin{bmatrix} 0 \end{bmatrix}$		
:	Binary =	BCD
9	-	
	e. II IS Well	

In BCD 10, 11, 12, 12, 14, 15 are don't care.

(b) X-3 code or excess 3 code

X-3 code = BCD code + 3 Range of X-3 code = 3 to 12 6 + 3 = 9 $6 \xrightarrow{X-3} 1001$ $4 \xrightarrow{X-3} 0111$ $9 \xrightarrow{X-3} 1100$ $12 \xrightarrow{X-3} 12 \rightarrow 0100, 0101$ + 33 $\overline{45}$ Don't care for X-3 code are, 0, 1, 2, 13, 14, 15 = X

A B	С	D	
,0 0	1	1	
/,0 1	0	0	
// 0 1	0	1	
	1	0	
	1	1	Self complement code
1 0	0	0	-
$\left 1 \right $	0	1	
$\setminus 1 0$	1	0	
1 0	1	1	
	0	0	
E . 5011 (.	0)	Ũ	
E.g. 5211 (+	-9) I		
	1		
	,		
	,		
)		
E.g. 84 – 2 -	-1[9	9]	
Again self co	mple	ement cod	e
E.g. 4311 [9]		
Self compler	nenta	ary code	
(c) α numer	1C CO	de/6 bit co	
ASCII -	→ ′	7-bit code	
EBCDID -	· → ′	7-bit code	
Hollerith -	\rightarrow	12-bit cod	le
(Used in pun	ich ca	ard reader	r).

Gray Codes:			
DECIMAL	BINARY	GRAY CODE	
0	0000	0000	
1	0001	0001	
2	0010	0011	
3	0011	0010	
4	0100	0110	
5	0101	0111	
6	0110	0101	
7	0111	0100	
8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	

Note: Gray code is also known as "minimum change code"

• BCD is "weighted code system" while gray code, excess-3 code are "unweighted code system"

- Only one bit in the code changes in the sequence.
- Useful for industrial control
- Binary code results in glitches. Gray code avoids glitches.

ASCII CODE:

- Codes representing letter is of the alphabet, puctuation marks and other special characters are called alphanumeric codes.
- The most widely used alphanumeric code is the American Standard Code for information interchange or ASCII.
- ASCII is pronounced "askee".
- It is a 7-bit code.

AS	C	II TAI	BLE								
Decimal	Не	x Char	Decimal	Hex	Char	Decimal	Нех	Char	Decimal	Нех	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i -
10	А	[LIVE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
12	С	[FORM FEED]	44	2C	1	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	1.00	78	4E	N	110	6E	n
15	F	SHIT IN	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Ρ	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B]	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

The basics of signed numbers

So far, the numbers are assumed to be positive.

- There is no sign (+ or -) in the representations, so these numbers are called unsigned.
- How can we represent signed numbers?

Solution 1: Sign-magnitude

• Use one bit to represent the sign, and the remaining bits to represent the magnitude.

	7		DEAVOUR J
$sign = 0 \rightarrow +ve$	sign	magnitude	+27 = 00011011
$sign = 1 \rightarrow -ve$	51511	magintude	-27 = 10011011

Problems:

- Need to handle sign and magnitude separately.
- Two values for zero (e.g., 00000000, 10000000)
- Not convenient for arithmetic.

One's complement representation:

In binary number if we replace each 0 by 1 and each 1 by 0, the obtained binary number is called one's complement of the given binary number.

For example:

 $(+7)_{10} = 0111$ Sign bit '0' for positive number

 $(-7)_{10} = 1000$

— Sign bit '1' for negative number

This is obtained by taking one's complement of the given positive number.

The maximum positive and negative number that can be represented using 1's complement are $2^{n-1} - 1$ and $-(2^{n-1}-1)$ respectively.

Example: The one's complement of a binary number 101010 is

Soln. Method-1: One's complement can be obtained by substracting the given number with 111111.

Therefore, 111111

- 101010

 $010101 \Rightarrow 1$'s complement

Method-2: One's complement of the given number can be obtained by replacing each '0' with '1' and each 1 with 0.

Therefore, 101010 \rightarrow 010101

Two's complement:

- Solution 2 is to represent negative numbers by taking the magnitude inverting all bits, and adding one.
 - This is called two's complement. The range of 2's complement number is -2^{n-1} to $(2^{n-1}-1)$

Positive number Invert all bits Add 1	+27 -27	$= 0001 \ 1011$ 1110 0100 - = 1110 0101	This is called one's complement
Taking the two's com	plemen	t again give the orig	inal number.
	-27	=1110 0101	
Invert all bits		0001 1010	
Add 1		0001 1011	=+27
We call this signed tw In order to do this, w • The MSB has a neg Example for 8-bit n	vo's com e chang ative we umbers	nplement form e the meaning of th eighting in 2's comp s:	e left-most bit (MSB) blement form.
unsigned number		2 ⁷ C ⁶ RCCP2 2 ⁷ C ⁶ RCCPb	ENDEAVOUR
signed 2's compleme	nt [\mathbf{p}_{7} b	b_7 is also known as the sign bit
$x = -b_{x-1}^{2}$	$2^{n-1} + b_n$	$a_{n-1}2^{n-2} + \dots + b_12^1 + \dots$	$-b_0 2^0$

The following numbers are in **signed two's complement form:** 0101, 1011, 0111, 1100 What are the decimal values?

vitat are the decimal values:								
2's c	omple	Decimal						
-8	4	2	1					
0	1	0	1	5				
1	0	1	1	-5				
0	1	1	1	7				
1	1	0	0	-4				

Note that the range of 4-bit numbers is different for unsigned and 2's complement. 4-bit unsigned 0 +15

(134)

•

4-bit 2's complement -8 +7

Advantages of using 2's complement:

The major advantage of using two's complement form is that subtraction can be performed by addition using the 2's complement of the substraction.

Example: Using normal substraction

+	27	000110112 minuend

- 17 $0001\,0001_2$ subtrend

10 0000 1010,

27-17 using two's complement addition:

 $+ +27 00011011_{2}$

+ -17 1110 1111₂

 $+10 \quad 0000 \ 1010_2$

r's complement representation:

In r's complement representation 'r' represents the radix. It can be divided as:

- (r-1)'s complement
- r's complement

Similarly, for any radix we can calculate its compliment in two ways:

To determine (r-1)'s complement first write maximum number in the given base, then substract the number.

Example: Determine 7's complement of the octal number 5672 ?

Soln. For a octal number maximum possible number of a 4-digit is 7777.

Therefore, 7's complement of 5672 is

$$= \frac{7777}{\underline{-5672}}$$

= $\underline{-5672}$
 $\underline{2105}$ \leftarrow Ans.

Note: To determine the r's complement, first write (r-1)'s complement of the given by number, then add 1 in the least significant position.

Example: Determine 8's complement of an octal number 2570?

Soln. Firstly (r-1)'s complement i.e., 7777 -2570 -2570 -2570 -2570 -2570 -2570 -2570 -2570 -2570 -2507 + 1 = 5208 = 5210.

