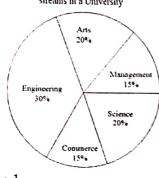
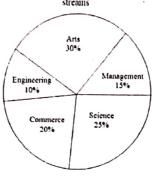
CARFER ENDEAVOUR


Graduate Aptitude Test in Engineering 2020 01st Feb S2

Participant ID	40.
Participant Name	CAREER ENDEAVOUR
Test Center Name	100 TO
Test Date	01/02/2020
Test Time	2:30 PM - 5:30 PM
Subject	CY CHEMISTRY


General Aptitude

Q.1 The two pie-charts given below show the data of total students and only girls registered in different streams in a university. If the total number of students registered in the university is 5000, and the total number of the registered girls is 1500; then, the ratio of boys enrolled in Arts to the girls enrolled in Management is _____.

Percentage of students enrolled in different streams in a University

Percentage of girls enrolled in different streams

Options 1. 2 : 1

2.11:9

3.9:22

4.22:9

OPTION - 4

Question ID : 2672363925 Status : Answered

Chosen Option:

Q.2 There are five levels {P, Q, R, S, T} in a linear supply chain before a product reaches customers, as shown in the figure.

かき a 理事 1人

At each of the five levels, the price of the product is increased by 25%. If the product is produced at level P at the cost of Rs. 120 per unit, what is the price paid (in rupees) by the customers?

SEED!

Options 1. 292.96

2.187.50

3.366.21

4.234.38

OPTION - 3

Question ID : 2672363920 Status : Answered

		CAREER	ENDE	EAVOUR
Q.3	project. How many nu complete the strip?	52 men can complete a stri d Q in 10 days. Due to an eme imber of days, more than the o	ip in a newly	constructed highway n were sent to another
Options	1.5 days			and the same of th
	2.10 days		But.	7)
	3.13 days		Charles !	-2
	4.3 days	OPTION - 4		
				Question ID : 2672363923
				Status ; Answered
				Chosen Option : ,
Q.4	Find the missing	element in the following	g figure.	
			\wedge	
		/	/ ₅ \	
		1		h
			n	
		?		x
			9 /	
			Y	
Options	1. y 2. e	OPTION-4		6 - 7/17/9
	3. W	OPTION-4		n: 5)
	4. d		4:7	4 (42,11) 1,2000
				Question ID : 2672363922
				Status : Not Attempted and Status : Marked For Review
				Chosen Option :
Q.5 S	Select the word	that fits the analogy:		
1	White: Whitenin	g : : Light:		, , , , , , , , , , , , , , , , , , , ,
tions 1	Lightning			
2	Lighting	OPTION- 5	O Smile	
	Lightening Enlightening	D Menter	Z	runi . y
	_		, A. 10	Question ID : 2672363918
				Status : Answorod
			I	Chosen Option :

	CAREER ENDEAVOUR
Q.6	n one of the greatest innings ever seen in 142 years of Test history, Ben Stokes upped the empo in a five-and-a-half hour long stay of 219 balls including 11 fours and 8 sixes that saw him tinish on a 135 not out as England squared the five-match series.
	Based on their connotations in the given passage, which one of the following meanings OOES NOT match?
Options	saw = resulted in squared = lost oupped = increased tempo = enthusiasm
	Question ID : 2672363919 Status : Answered Chosen Option .
Q.7	An engineer measures THREE quantities X, Y and Z in an experiment. She finds that they ollow a relationship that is represented in the figure below; (the product of X and Y inearly varies with Z)
Options	For fixed Y; X is proportional to Y For fixed X; X is proportional to Y For fixed X; Z is proportional to Y XY/Z is constant
	Question ID : 2672363924 Status : Answered Chosen Option :
	he recent measures to improve the output wouldthe level of production to our intrinsfaction.
	speed OPTION: 1 decrease equalise
	Question ID : 2672363917 Status : Answered Chosen Option :

JUK
of sources of non- change aspects. The aspectively.
nation?
se gas emissions.
e of fossil fuels.
ge.
te change.
Question ID : 2672363921
Status : Not Answered
Chosen Option :
n agree him.
Question ID : 2672363916
Status : Answered
Chosen Option :
rate against inverse
16 s and intercept
mol L ⁻¹ , rounded off
-
Question ID : 2672363949
Status : Answered
of neon at constant
ng (in J K ⁻¹ , rounded
ing (in s it () during
18-69
18.69
18 - 69 Question ID : 2672363947 Status : Answered
Question ID : 2672363947 Status : Answered molecule are 0.4 and
18 - 69 Question ID : 2672363947 Status : Answered
Question ID : 2672363947 Status : Answered molecule are 0.4 and
Question ID : 2672363947 Status : Answered molecule are 0.4 and
Question ID : 2672363947 Status : Answered molecule are 0.4 and tant is $Y \times 10^7$ s ⁻¹ , the
Question ID : 2672363947 Status : Answered molecule are 0.4 and

CAREER ENDE	AVOUR
Q.4 In oxyhemocyanin, the coordination number, mode of oxygen	
the net magnetic behavior of copper ions, respectively are:	
(Given: atomic number of Cu is 29)	
Options 1 Five, μ - η^2 : η^2 -O ₂ , colorless and paramagnetic	C
² Five, μ - η^2 : η^2 - O_2^2 , blue and diamagnetic.	Ç.
³ Four, μ - η^1 : η^1 -O ₂ , colorless and paramagnet	ic Anares 10
4 Four, μ - η^1 : η^1 -O2 ²⁻ , blue and diamagnetic.	
OPTION: 82	Question ID : 2672363935 Status : Answered
	Chosen Option :
Q.5 The maximum number of microstates for d^2 electronic config	uration is
Given 13	utation is
Answer:	
ANSWER: 45	Question ID : 2672363943
	Status : Answered
Q.6 At 25 °C, the emf (in volts, rounded off to three decimal places)	of the cell,
A JA D (A D z (a do) a la constant	
Ag AgBr(s) Br ⁻ ($a = 0.20$), Cu ²⁺ ($a = 0.48$), Cu ⁺ ($a = 0.24$) 1	?(
is	
(Given: The standard emf of the cell is 0.082 V; R = 8	314 J K ⁻¹ mol ⁻¹ :
$F = 96500 \text{ C mol}^{-1}$	
Given	
ANSWER! 0.058	
	Question ID : 2672363948
	Status : Answered
Q.7 The CORRECT statement regarding the substitution of coord	inated ligands in
Ni(CO)4 and Co(NO)(CO)3 is:	
(Given: Co-N-O bond is nearly linear; atomic numbers of Co	and Ni are 27 and
28. respectively)	
Octions 1	itiya nathiyay
Both Ni(CO)4 and Co(NO)(CO)3 follow associa	
Ni(CO)4 and Co(NO)(CO)3 follow dissociative and associative	iative pathways,
respectively.	
Ni(CO)4 and Co(NO)(CO)3 follow associative and dissoc	iative pathways,
respectively.	
Both Ni(CO)4 and Co(NO)(CO)3 follow dissocia	ative pathway.
Both reference and collection constraints and	
OPTION: 9.	Question ID : 2672363933
от потт	Status : Marked For Review

CAREER ENDERVOUR

Q.8 The activity of 'm' molal CuSO₄ solution can be expressed in terms of its mean activity coefficient (γ_{\pm}) as:

Options 1. $16m^4\gamma_{\pm}^{4}$

 $2.4m^3\gamma_{\pm}^{3}$

OPTION: 3

- 3. $m^2 \gamma_{\pm}^{2}$
- $4.108m^5\gamma_{\pm}^{-5}$

Question ID: 2672363939 Status: Answered

Chosen Option:

Q.9 Major product formed in the given reaction is:

α-D-glucose

acetone (excess)

H⁺

Options

OPTION: 1%

Question ID: 2672363932 Status: Answered

Chosen Option:

Q.10 For a cubic crystal system, the powder X-ray diffraction pattern recorded using Cu $K\alpha$ source ($\lambda = 1.54 \text{ Å}$) shows a peak at 33.60° (20) for (111) plane. The lattice parameter 'a' (in Å, rounded off to two decimal places) is _____

Given Answer:

ANSWER: 4.62

Question ID : 2672363945 Status : Answered CAREER ENDEAVOUR

Q.11 The character table for a pyramidal AB₃ molecule of C_{3v} point group is given below:

C_{3v}	Е	2C ₃	$3\sigma_v$		
A ₁	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R _z	
E	2	-1	0	$(x,y)(R_x,R_y)$	$(x^2-y^2, xy)(xz, yz)$

The reducible representation of pyramidal AB3 is

The CORRECT option representing all the normal Raman active modes of pyramidal AB₃ is:

Options 1. $2A_1 + 2E$

$$3.3A_1 + A_2 + E$$

$$4.A_1 + A_2 + 2E$$

OPTION: 1

Question ID : 2672363940 Status : Answered

Chosen Option:

1 : 10:11.90

CAREER ENDEAVOUR Q.12 Major product formed in the following reaction is:

Options

OPTION: 3

CP DON: 1

Question ID : 2672363928 Status : Answered

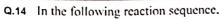
Chosen Option:

Q.13 Among the following species, the one that has pentagonal shape is:

(Given: atomic numbers of O, F, S, I and Xe are 8, 9, 16, 53 and 54, respectively)

Options 1. [XeF5]

2 XeOF4


OPTION: 1

3. JF5

4.[SF5]

Question ID: 2672363936

Status : Answered

the major products P and Q are:

Options

P

Question ID: 2672363931 Status: Answered Chosen Option: 2

Q.15 Absolute stereochemistry of the given compound is:

Options 1.4aS, 8aR 2.4aR, 8aS

3.4aR, 8aR

4.4aS, 8aS

OPTION: 1

Question ID : 2672363930 Status : Answered

Options H₂C

1.

Me

2.

OPTION: 1

EtO₂C
3.

Me
4.

Question ID: 2672363929 Status: Answered Chosen Option:

Q.17 In an NMR spectrometer operating at a magnetic field strength of 16.45 T, the resonance frequency (in MHz, rounded off to one decimal place) of ¹⁹F nucleus is _____

(Given: g factor of 19 F = 5.255; β_N = 5.05 × 10⁻²⁷ J T⁻¹; h = 6.626 × 10⁻³⁴ J s)

Given Answer:

ANSWER: 658.8

Question ID : 2672363946 Status : Answered

Q.18 Among the following, the suitable reagents for the given transformation is:

Options 1. NaBH4 / CeCl3·7H2O

2. H_2N-NH_2 / KOH, Δ

3. Li / Liq. NH₃

4. H₂, Pd / C

OPTION: 1

Question ID : 2672363926 Status : Answered

ÒМе

Question ID: 2672363927 Status: Answered

CAREER ENDEAVOUR

Q.22 A solution containing a metal complex absorbs at 480 nm with molar extinction coefficient of 15,000 L mol⁻¹ cm⁻¹. If the path length of the cell is 1.0 cm and transmittance is 20.5%, the concentration (in mol L⁻¹) of the metal complex is:

Options 1.1.37 × 10⁻⁵

 $^{2.4.59} \times 10^{-5}$

ΟΡΤΙΟΝ: 2

 $^{3.}8.75 \times 10^{-5}$ $^{4.}2.29 \times 10^{-5}$

> Question ID : 2672363937 Status : Answered

Chosen Option

Q.23 Among the following linear combination of atomic orbitals, the CORRECT

representation of the lowest unoccupied π -molecular orbital of butadiene is:

Options 1. $\Psi = 0.372 \, \phi_1 + 0.602 \, \phi_2 + 0.602 \, \phi_3 + 0.372 \, \phi_4$

 $2.\Psi = 0.602 \phi_1 - 0.372 \phi_2 = 0.372 \phi_3 + 0.602 \phi_4$

 $3.\Psi = -0.372 \phi_1 + 0.602 \phi_2 - 0.602 \phi_3 + 0.372 \phi_4$

 $4.\Psi = 0.602 \, \phi_1 + 0.372 \, \phi_2 - 0.372 \, \phi_3 - 0.602 \, \phi_4$

OPTION: 2

Question ID: 2672363938

Status: Answered

Chosen Option:

Q.24 In the following reaction,

the number of peaks exhibited by the major product P in its broadband proton decoupled ¹³C NMR spectrum is ______

Given Answer :

ANSWER! 8

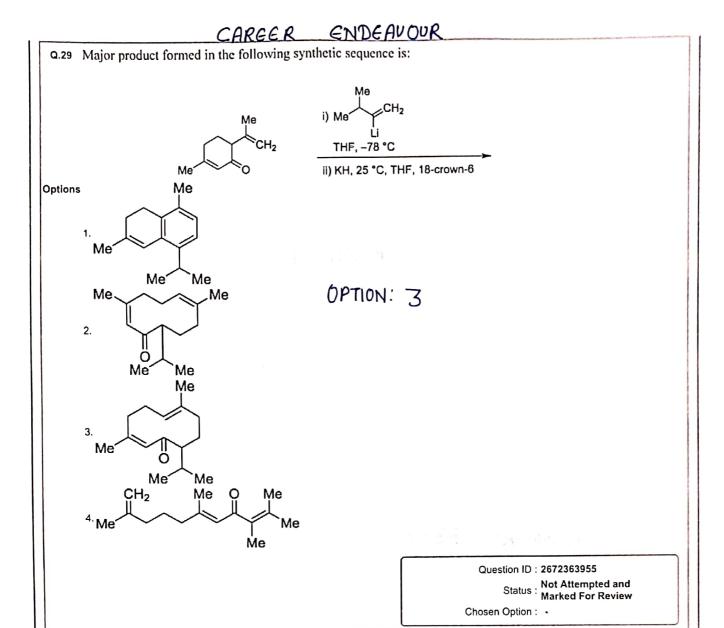
Question ID : 2672363941 Status : Answered

Q.25 The CORRECT statement about hexagonal boron nitride is:

Options 1. It is reactive towards fluorine.

2. It has same layer stacking as that of graphite.

3. It is a good electrical conductor.


4. It has lower thermal stability in air compared to that of graphite.

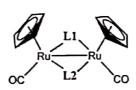
OPTION: 2

Question ID: 2672363934

Status:

CAREER ENDEAVOUR Q.26 The rate of solvolysis of the given compounds is in the order; Options 1. R > T > Q > S > P 2 O > T > R > P > S2.Q > T > R > P > S $\operatorname{a.} T > Q > R > P > S$ 4. T > R > Q > S > PQuestion ID: 2672363957 Status: Answered Chosen Option: Assuming no interaction between vibrational and rotational energy levels in HF, the frequency (in cm⁻¹, rounded off to the nearest integer) of the R branch line originating from J = 4 in its IR spectrum is (Given: Rotational constant for HF = 19.35 cm⁻¹; $\bar{v}_0 = 4138.52$ cm⁻¹) Given Answer: ANSWER: 4332 Question ID: 2672363976 Status: Answered The total number of g_{II} lines expected in the EPR spectrum of a solution of Q.28 bis(salicylaldimine) copper(II) having pure 63Cu and 14N at 77 K is ____ (Given: I values of 63 Cu, 14 N and 1 H are $\frac{3}{2}$, 1 and $\frac{1}{2}$, respectively) Given ANSWER: 60 Answer: Question ID: 2672363972 Status:

CARGER ENDEAVOUR


Q.30 Major products P and Q, formed in the reactions given below, are:

Me
$$\longrightarrow$$
 OH \longrightarrow P

Question ID : 2672363953 Status : Answered

Chosen Option:

Q.31 The CORRECT combination of L1 and L2 among H⁻, NO⁻, MeCH²⁻ and CO, that will satisfy the 18 electron rule for both metal centers in the following neutral molecule, is

(Given: atomic number of Ru is 44)

Options 1. MeCH2-, CO

2. H-, NO-

3. MeCH2-, NO-

4. H-, CO

OPTION: 1

Question ID : 2672363961 Status : Answered

CARGER ENDEAVOUR

♦ 32 In the electronic absorption spectrum of an aqueous solution of [Ni(NH₃)₆]², a very weak band is observed between the bands due to the transitions ${}^{3}\Lambda_{2g} \rightarrow {}^{3}T_{2g}$ and ${}^{3}\Lambda_{2g} \rightarrow {}^{3}T_{1g}(F)$. The transition responsible for the very weak band is

(Given: atomic number of Ni is 28)

Cottons (${}^{1}\Lambda_{2g} \rightarrow {}^{1}E_{g}$

2
 $^{3}A_{2g} \rightarrow {}^{1}T_{2g}$

OPTION: 1

$$3.1 A_{2g} \rightarrow {}^{1}T_{1g}$$

 $4.3 A_{2g} \rightarrow 1 A_{2g}$

Question ID: 2672363959

Status : Not Attempted and Marked For Review

Chosen Option:

Q.33 The van der Waals constants α and δ for gaseous CO are given as 1.49 L² atm mol ² and action to mot be respectively. The fligacity (in atm, rounded off to two decimal places) of CO at 35 °C and 95 atm is_

(Given: $R = 0.082 \text{ L atm } K^{-1} \text{ mol}^{-1}$)

GIVEN Answer

ANSWER: 90.71*

Question ID: 2672363977

Status: Answered

Q.34 Among the following.

 $[B_{12}H_{12}]^2$, $[Nis(CO)_{12}]^2$, $[C_2B_0H_{11}]^2$, $Rh_0(CO)_{16}$, $Os_0(CO)_{20}$, B_2H_{11} , B_0H_{10}

the total number of species having nido structure is

(Given: atomic numbers of H, B, C, O, Ni, Rh and Os are 1, 5, 6, 8, 28, 45 and 76, respectively)

Given

Answer

ANSWER: 3

Question ID: 2672363973

Status: Answered

Q.35 The following table lists the reaction/conversion catalyzed by metalloenzymes.

	Reaction / conversion	Metalloenzyme		
P	$R-H + O_2 + 2H' + 2e \rightarrow R-OH + H_2O$	1	Coenzyme B ₁₂	
Q	$O_2 + 4e^- + 811^+ \rightarrow 211_2O + 411^+$	11	Cytochrome P-450	
R	$2H_2O_2 \rightarrow 2H_2O + O_2$	Ш	Cytochrome e oxidase	
s	$NII_2-CII_2-CO_2II \rightarrow NII_2-CII(CII_2OII)-CO_2II$	IV	Cutalase	

The CORRECT combination is

Options 1. P-IV; Q-III; R-II; S-I

2. P-II; Q-III; R-IV; S-I

3. P-I; Q-IV; R-III; S-II

4. P-II; Q-I; R-III; S-IV

OPTION: 2

Question ID: 2672363963

Status: Answered

Chosen Option:

Q.36 Among the following,

the total number of compounds showing characteristic carbonyl stretching frequency less

than 1700 cm⁻¹ in their IR spectra is ___

Giver. Answer:

ANSWER: 3

Question ID: 2672363970 Status: Answered

Q.37 The CORRECT 'voltage (E) versus time' excitation signal used in cyclic voltammetry is Options Time . OPTION: 2 $_{2.}\mathbf{E}$ 3. **E** Time 4. E Time Question ID: 2672363965 Status : Not Attempted and Marked For Review Chosen Option: **Q.38** ΔG_f^0 and ΔH_f^0 for Fe(g) are 370.7 kJ mol⁻¹ and 416.3 kJ mol⁻¹ at 298 K, respectively. Assuming ΔH_I^0 is constant in the interval 250 K to 375 K, ΔG_I^0 (rounded off to the nearest integer) for Fe(g) at 375 K is: Options 1.325 kJ mol⁻¹ OPTION: 4 ^{2.}338 kJ mol⁻¹ 3.310 kJ mol-1 4.359 kJ mol⁻¹ Question ID: 2672363967 Status: Answered Chosen Option: 1

The frequency (in cm⁻¹, rounded off to two decimal places) for pure rotational line in the spectrum of NO molecule due to change in the quantum number from J = 1 to J = 2

(Given: Moment of inertia of NO = $1.6427 \times 10^{-46} \text{ kg m}^2$; $h = 6.626 \times 10^{-31} \text{ J s}$; $c = 3 \times 10^8 \text{ m/s}$

Given 1 Answer:

ANSWER: 6.82

Question ID: 2672363974 Status: Answered

For the ring opening reaction of cyclopropane to propene at 25 °C, the pre-exponential factor is 4.3×10^{15} s⁻¹. The entropy of activation (in J K⁻¹ mol⁻¹, rounded off to two decimal places)

(Given: $h = 6.626 \times 10^{-34} \text{ J s}$; $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$; $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

Answer:

ANSWER: 46.06

Question ID: 2672363979 Status: Answered

Q.41 In the following reaction sequence, the major products Q and R are:

Options and

and

Q

Question ID: 2672363958

Not Attempted and Status: Marked For Review

Chosen Option: -

OPTION: 77 4

Q.42 The experimental magnetic moment (3.4 BM) of a hydrated salt of Eu³⁺ at 27 °C is significantly different from the calculated value. The difference is due to

(Given: atomic number of Eu is 63)

Options 1.

population of electrons at higher J level(s) via thermal excitation.

- 2 pairing of electrons in f-orbitals.
- 3 strong ligand field splitting of f-orbitals.
- 4 strong spin-orbit coupling.

OPTION: 1

Question ID : 2672363960 Status : Answered

Chosen Option :

Q.43 Adsorption of N₂ on TiO₂ was carried out at 75 K. A plot of $\frac{z}{(1-z)V}$ versus z ($z = p/p^0$) gives a straight line with an intercept, 4.0×10^{-6} mm⁻³ and slope, 1.0×10^{-3} mm⁻³. The volume (rounded off to the nearest integer) corresponding to the monolayer coverage is:

Options 1.555 mm 3

- ^{2.}690 mm³
- 3.996 mm³
- 4.785 mm³

OPTION: 3

Question ID: 2672363968

Status: Not Answered

Chosen Option: -

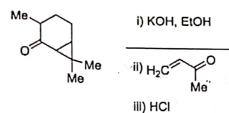
Q.44 The CORRECT statement with respect to the stereochemistry of α-hydroxy acids P and Q formed in the following reactions is:

$$P \xrightarrow{\bigcirc OH} Me \xrightarrow{Br} CO_2H \xrightarrow{Ag_2O} Q$$

Options 1

P is formed with inversion of configuration and Q with retention of configuration.

- $\stackrel{2}{P}$ is formed with retention of configuration and Q with inversion of configuration.
- 3. Both P and Q are formed with retention of configuration.
- 4 Both P and Q are formed with inversion of configuration.


OPTION: 1

Question ID: 2672363956

Status : Answered

CARGER ENDEAVOUR

Q.45 Major product formed in the following reaction sequence is:

OPTION: 1

Question ID: 2672363951

Status : Not Attempted and Marked For Review

Chosen Option:

Q.46 A compound with molecular formula $C_{10}H_{12}O_2$ showed a strong IR band at $\sim 1720~\text{cm}^{-1}$, a peak at m/z 122 in the mass spectrum and the following ¹H NMR signals: δ 8.1–8.0 (2H, m), 7.6-7.5 (1H, m), 7.5-7.3 (2H, m), 4.3 (2H, t), 1.8 (2H, sextet) and 1.0 (3H, t). The structure of the compound is:

Me Мe

Options

OPTION: 4

Question ID: 2672363954


Status : Not Attempted and Marked For Review

CAREER ENT	DGAVOUR
Q.47 At 30 °C, the vapor pressure and density of a 1.0 M aqueous	
31.207 mm Hg and 1.1256 g/mL, respectively. If the vapor pressure	
31.824 mm Hg, the activity coefficient (rounded off to three decim	al places) of water in the
given solution is	
(Given: The molar mass of sucrose = 342.3 g mol^{-1})	
Given	
Answer: ANSWER: *	
71100001	Question ID : 2672363978
	Status : Answered
Q.48 Among the following sets,	
Me	Me
0 0	0
Ph Ph Ph Ph	and Me
Me CH ₂	H₂C Me
· · · · · · · · · · · · · · · · · · ·	'
Ph, Ph Ph Ph NH2	NH ₂
Ph Ph and Ph Ph Ph Ph Me Me Me OU	and Me CO H
Un Un	CO ₂ n
Me H , Me O	Q
OH HN Me and Me and	OH HN Me Me
Ph u Ph	Me
Ph	Ph
the total number of set(s) of diastereomeric pair(s) is	
Given	
Answer:	
ANSWER: 4	Out 15 18 227
	Question ID : 2672363969 Status : Answered
Q.49 The % error (rounded off to two decimal places) in the ground state	
one dimensional box of length 'a' described by a trial variation fur $0 \le x \le a$, is	ction $\varphi = x(a-x)$, where
0 3 X 3 U, 13	
(Given: The true ground state energy of the above system is $h^2/8mc$	$t^2; \int_0^a \varphi^* \varphi d\tau = a^5/30$
Given .	
ANSWER: 1.32	
,.	Question ID : 2672363975
	Status : Answered

307,73%

CAREER ENDEAVOUR

Q.50 Major products P and Q, in the given reaction sequence, are:

Options

OPTION: 1

Question ID: 2672363952 Status: Answered

Chosen Option:

Q.51 The fission reaction of $^{235}_{92}$ U with thermal neutron is represented below.

$$\overset{235}{\stackrel{92}{}}U \overset{!}{\stackrel{0}{\stackrel{0}{}}} D \xrightarrow{\overset{236}{\stackrel{92}{}}} U \xrightarrow{\overset{92}{\stackrel{92}{}}} U \xrightarrow{\overset{92}{\stackrel{92}{}}} Sb \xrightarrow{} Y_1 \xrightarrow{} Y_2 \xrightarrow{} Y_3 \xrightarrow{} Y_4$$

⁹⁹Nb and ¹³³Sb are the primary fission fragment pair, which undergo series of radioactive decay to form stable nuclei X_3 and Y_4 (chain enders). The X_3 and Y_4 , respectively are:

Options 1.87Br and 124Tc 2.99Ru and 133Cs

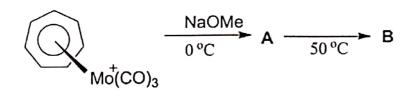
- 3.93/sr and 127/35/Ag 4.96/Nb and 130/Sb

OPTION: 2

Question ID: 2672363964 Status: Answered

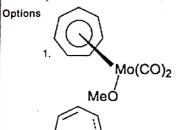
Chosen Option: 4

Consider that AgX crystallizes in rock salt structure. The density of AgX is 6477 kg/m³ and unit cell length is 577.5 pm. Atomic weight of Ag is 107.87 g mol⁻¹. The atomic weight of X (in g mol 1, rounded off to two decimal places) is _____

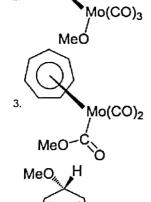

Given 467.205 Answer:

ANSWER: 79.07

Question ID: 2672363971


Status: Answered

Q.53 In the following reaction sequence,



the structure of B is

(Given: atomic number of Mo is 42)

OPTION: 4

Mo(CO)₃

Question ID : 2672363962 Status : Answered

CAREER ENDEAVOUR

Q.54 The hydrogen-like radial wave function of the 3s orbital is given as

$$R_{3.0} = \frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - 2\rho + \frac{\rho^2}{9}\right) e^{-\rho/6}$$

where $\rho = 2Zr/a_0$; Z = atomic number; r = distance from the nucleus and a_0 = Bohr radius,

Positions of the radial nodes (in units of a_0) of the 3s orbital are at

Options
1.
$$\frac{3 + \sqrt{3}}{2Z}$$
, $\frac{3 - \sqrt{3}}{2Z}$
2. $\frac{6 + 3\sqrt{3}}{2Z}$, $\frac{6 - 3\sqrt{3}}{2Z}$
3. $\frac{3 + 3\sqrt{3}}{2Z}$, $\frac{3 - 3\sqrt{3}}{2Z}$
4. $\frac{9 + 3\sqrt{3}}{2Z}$, $\frac{9 - 3\sqrt{3}}{2Z}$

OPTION: 4

Question ID: 2672363966

Status : Not Attempted and Marked For Review

Chosen Option: --

In a reaction, reactant X is converted to products Y and Z consecutively with rate constants 6.0×10^{-2} min⁻¹ and 9.0×10^{-3} min⁻¹, respectively. If the initial amount of X is 12.5 moles, the number of moles (rounded off to one decimal place) of Y formed after 10 minutes

Given

Answer:

ANSWER: 5.4

Question ID: 2672363980 Status: Answered

GATE 2020 | CHEMISTRY-CY

ANSWER KEY					GATE 2020
	NERAL APTITUDE		SECTION : C	Y-CHEMISTRY	•
Q. NO.	ANSWER	Q. NO.	ANSWER	Q. NO.	ANSWER
1.	4	1.	0.08	29.	3
2.	3	2.	18.69	30.	1
3.	4	3.	8	31.	1
4.	4	4.	2	32.	1
5.	2	5.	45	33.	90.71*
6.	2	6.	0.058	34.	3
7.	2	7.	2	35.	2
8.	1	8.	3******	36.	3
9.	2	9.	1	37.	2
10.	1	10.	4.62	38.	4
		11.	1	39.	6.82
		12.	3	40.	46.06
		13.	1	41.	4
		14.	2	42.	1
		15.	1	43.	3
		16.	1	44.	1
		17.	658.8	45.	1
		18.	1	46.	4
		19.	4	47.	. *
		20.	4*	48.	4
		21.	1	49.	1.32
	CADO	~ r22. ~ n	IDCAVIO	50.	1
	LAKE	23.	IUC21VU	UF61/	2
	The same and the	24.	**************************************	52.	79.07
		25.	2	53.	4
		26.	4	54.	4
		27.	4332	55.	5.4
		28.	60		

Disclaimer: Career Endeavour is not responsible for any discrepancy (if arises) in the answer key, which has been published.