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Kinetics of complex reactions

Kinetics of complex reactions

The study of chemical kinetics becomes highly complicated due to the occurrence of complex reactions which
involve more than one step. Important among such reactions are the following categories:
1. Reversible Reactions
2. Consecutive Reactions
3. Chain Reactions

Kinetics of Reversible Reactions
In a reversible process, if the rate of backward reaction is much less as compared to the rate of forward
reaction, the equilibrium will be far away from the staring end and the reaction may be found to follow a
simple and straight forward path as discussed earlier. However, when the reaction rates are appreciable for
both the forward and backward directions, the kinetics must be taken into consideration for both the direction.

Let us consider a simple reaction,
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where 1 1 and k k  are rate contants for forward and backward directions, respectively..

Rate of forward reaction =  1
nk a x

Rate of backward reaction  1
mk x

The net rate of formation of products will be the difference between the two, i.e.

Net rate of reaction    1 1
n mdx k a x k x

dt     ... (1)

At equilibrium, the rate of forward reaction is equal to the backward reaction and, therefore, net rate of
reaction will be zero. Thus, at equilibrium when ex x  (concentration of B, measured separately)
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Substituting the value of 1k  from equation (1), in (2), we get
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If reaction is simple first order in both therefore, i.e.
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The measurement of x at different times would give the value of k1. The value of 1k  can be obtained with
the help of equation (2), which reduces to
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An alternate expression may also be used if the equilibrium concentration xe is not known. Equation (1) for
above simple reaction can be reduced to
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On integration, we get
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The value of integration constant z is obtained as follows:

When t = 0, x = 0;    1
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Substituting the value of z and rearranging, gives
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again, equilibrium constant 1 1/K k k  and, therefore, equation (6) can be written in terms of K as
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Thus, with the help of equations (6) and (7), the values of 1 1 and k k  can be obtained.

For a given reaction at constant temperature, the equilibrium concentrations, i.e.  and e ea x x  attain

the definite values depending on the value of a and therefore, 
e

a
x  can be considered to be a constant under

these conditions. The differential equation can be written as
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Equation (8) on integration and rearrangement becomes
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Thus, equation (9) becomes
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Therefore, the reaction will behave like a first order with  1 1k k  as the rate constant and ex  as the initial
concentration in place of a.

Reversible reaction when both the opposing processes are second order:
Let us consider a general reaction,
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The net rate of reaction can be written as
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Again, equation (12) can be written as
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The above equation can also be written as      1 1
dx k k dt
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which, on integrating and rearranging, gives
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Since, 1

1

kK
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 , knowing the value of equilibrium constant , 1 1 and k k  can be determined.

Problem: For a reversible chemical reaction 1
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are first order and the intial concentration of A is a0 and the equilibrium concentratin of X is xe, the value of
k–1 in terms of k1 is given by
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Correct option is (c)
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Problem: Find the values of fk  and bk  for reaction,
k f

kb
A B

If   3
0 0.30A mol dm   30.172eA mol dm

 10 0.285A and  100 0.21A M
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f e

b e

k a x
k x

 
  
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

3 15.31 10 secfk   

3 15.25 10 secfaverage
k   

3
3 15.25 10 7.05 10 sec

0.744bk


 
  

Principle of Microscopic reversibility:

The equilibrium constant Keq of the reaction, A B  given by

f
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k
K

k
 ... (1)

The above relation was derived from the principle that at equilibrium the rate of forward reaction is equal to
the rate of backward reaction. In fact, equation (1) is applicable to all types of one-step elementary reversible
reactions. For example, consider a reaction of the type second-order opposed by second-order i.e.

A B C D 
At equilibrium, we will have

Rate of forward reaction = Rate of backward reaction

       f beq eq eq eq
k A B k C D

Hence,
   
   

eq eq f
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eq beq

C D k
K

A B k
 

The principle that for one-step elementary reaction at equilibrium, the rate of forward reaction is equal to the
rate of backward reaction, is known as the principle of microscopic reversibility. This principle helps us
in establishing the connection between the equilibrium constant of an elementary reaction and the rate constants
of its forward and backward processes. If a reaction mechanism involves more than one elementary process,
each elementary process follows the principle of microscopic reversibly. For example, the reaction,

2 2 22 2NO F NO F  ... (2)
involves the following two elementary reactions.


