Chapter 2

Metal Carbonyls and Clusters

This type of bonding where both π and σ bond help (reinforce) each other is called synergistic bonding during σ -bond formation CO donates electron density to the metal. As a result of which –ve charge on the metal increases. Metal can remove this excess electron density by π back bonding from a filled d-orbital of metal to empty π^* orbital of CO.

If a molecules has C_{2V} or C_s point group than the number of IR bands = number of CO's present in that molecules.

9

FACTOR AFFECTING v_{c-0} : (1) Charge of the metal:

Greater the –ve charge on the metal stronger will be the back π – bonding , hence lower will be the v_{C-O} structure due to weak CO bond and vice versa.

(2) Presence of other Ligand on metal:

(a) σ -donor: Presence of σ bonded ligand on a metal like NH₃, Pyridine. Increase electron density on the

metal, so π -back bonding increases and v_{C-O} decreases.

(b) π - acceptor Ligands: π -acceptor ligands decreases the electron density on metal. So, π -back bonding is decreases and v_{C-O} increases.

e.g. (i) v_{C-O} in decreasing order?

$$(1) \left[Mn \left(CO \right)_6 \right]^+ \qquad (2) \quad CO \qquad (3) \quad H_3O^+ \leftarrow CO \qquad (4) \left[v \left(CO \right)_6 \right]^- \\ 3 > 2 > 1 > 4$$

Soln:

(ii) Arrange the following in the decreasing order of back donation.

$$\operatorname{Cr}(\operatorname{CO})_{6}, [\operatorname{Ti}(\operatorname{CO})_{6}]^{2^{-}}, [\operatorname{Mn}(\operatorname{CO})_{6}]^{+}, [\operatorname{Ir}(\operatorname{CO})_{6}]^{3^{+}} \text{ and } [V(\operatorname{CO})_{6}]^{3^{+}}$$

Soln. As we know that if an electron density increases on the metal the back, donation (back π – bonding) will also increase so, the order will be

$$\left[\operatorname{Ir}(\operatorname{CO})_{6}\right]^{3+} > \left[\operatorname{Mn}(\operatorname{CO})_{6}\right]^{+} > \left[\operatorname{Cr}(\operatorname{CO})_{6}\right] > \left[\operatorname{V}(\operatorname{CO})_{6}\right]^{-} > \left[\operatorname{Ti}(\operatorname{CO})_{6}\right]^{2-}$$

H NMR SPECTROSCOPY OF METAL CARBONYL:

In 1 H NMR if there is any signal in negative chemical shift that clearly indicates that there is a metal hydride band.

¹³C NMR SPECTROSCOPY OF METAL CARBONYL :

Note: ¹³C NMR spectrum of organometallic complex occur in region (M-R)-40 to 20 δ ppm

Third :

than all carbons of CO would be in different environment and we will get 3 signal.

Hence, first structure predict the correct data. So, correct option is (b)

³¹P NMR SPECTROSCOPY OF ORGANOMETALLIC COMPOUND :

Then two types of P present. So, we will get two signals in ³¹P NMR.

PREPARATION OF METAL CARBONYL: (1) Direct Reaction :

Ni + 4 CO
$$\xrightarrow{1 \text{ bar}}$$
 Ni (CO)₄
Fe + 5CO $\xrightarrow{100 \text{ bar}}$ Fe (CO)₅

(2) **Reductive Carbonylation :** This uses as reducing agent to convert a metal from high oxidation to low oxidation state along with CO.

(a) Using a Reducing Agent :

 $\begin{array}{rcl} MCl_3 + Al &+ & n \text{ CO} &\longrightarrow & M (CO)_n + AlCl_3\\ & \text{reducing agent} \end{array}$ $CrCl_3 + Al + 6 \text{ CO} &\longrightarrow & Cr (CO)_6 + AlCl_3\\ MoCl_5 + 5 \text{ Na} + 6 \text{ CO} &\longrightarrow & Mo (CO)_6 + 5 \text{ NaCl} \end{array}$

(b) By reducing CO itself : Using CO as a reducing agent

$$CO \rightarrow CO_2$$

OsO₄ + CO $\xrightarrow{\text{MeOH}}$ Os₂ (CO) ... +

$$OsO_4 + CO \xrightarrow{MeOH} Os_3(CO)_{12} + 4CO_2$$

(3) Using Photochemical / Thermal Reaction : Generally use for binuclear carbonyls :

$$Fe(CO)_{5} \xrightarrow{hv} Fe_{2}(CO)_{9} + CO$$
$$2CO_{2}(CO)_{8} \xrightarrow{70^{\circ}C} CO_{4}(CO)_{12} + 4CO$$

REACTIONS OF METAL CARBONYLS: 1. Associative Mechanism SN²:

$$LnM(CO) \xrightarrow{+Y} LnM \begin{pmatrix} CO \\ g \\ -CO \end{pmatrix} LnMY$$

Dissociative Mechanism SN¹:

$$LnM - CO \xrightarrow{-CO, k_1} LnM \xrightarrow{+Y, k_2} LnM - Y$$

An 18 electron species undergo nucleophilic substitution by dissociative or SN¹ mechanism where as 16 or 17 electron species of carbonyl undergo associative mechanism.

 \square

A

Fe (CO)₅
$$\xrightarrow{: PPh_3}$$
 Fe (CO)₄ + CO $\xrightarrow{: PPh_3}$ Fe (CO)₄ PPh₃
18 e⁻ Δ 16e⁻
V (CO)₆ $\xrightarrow{: PPh_3}$ V (CO)x, PPh₃ $\xrightarrow{-CO}$ V (CO)₅ (PPh₃)

(2) Activation : Activate by some heating substance methyl cyanide :

$$Cr (CO)_{6} \xrightarrow{3 CH_{3}CN} Cr(CO)_{3} (CH_{3}CN)_{3} \xrightarrow{3 PPh_{3}} Cr(CO)_{3} (PPh_{3})_{3}$$

weak bonding
$$Cr (CO)_{6} \xrightarrow{Cr} CO$$

(3) Carbonylate Anions: Negatively charged carbonyl:

$$\begin{array}{cccc}
\operatorname{Mn}_{2}(\operatorname{CO})_{10} & & & & 2\operatorname{Na}[\operatorname{Mn}(\operatorname{CO})_{5}]\\ \operatorname{Co}_{2}(\operatorname{CO})_{8} & & & & & 2\operatorname{Na}[\operatorname{Co}(\operatorname{CO})_{4}]\\ \operatorname{Fe}_{2}(\operatorname{CO})_{9} & & & & & & \operatorname{Na}_{2}\operatorname{Fe}(\operatorname{CO})_{4}\\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & &$$

(4) Collmann Reagent: Na₂ [Fe(CO)₄]

$$Na_{2} [Fe(CO)_{4}] \xrightarrow{-Nax} [RFe(CO)_{4}] \xrightarrow{\ominus} CO \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \xrightarrow{CO} \begin{bmatrix} R \\ | \\ C = 0 \\ Fe (CO)_{4} \end{bmatrix} \xrightarrow{CO} \xrightarrow{$$

(5) Photochemical Reaction : Used for monosubstitution :

$$W(CO)_6 \xrightarrow{: PPh_3} W(CO)_5 PPh_3 + CO$$

(6) Using π - bonding Ligand :

