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Time Independent perturbation theory:
The potential energy of most of the real systems are different from the standard potentials that have been
considered till now, and an exact solution is not possible. A slight change in the potential of the system can be
treated as a perturbation. The perturbation may be time dependent or time independent. In this chapter, we
shall only discuss time independent perturbation theory.
Non-degenerate Perturbation Theory:
In this section, we consider that the perturbation is applied on a system which is not degenerate. In the time

independent perturbation approach, the Hamiltonian of the system can be written as: '
0

ˆ ˆ ˆH H H  ,

where 0Ĥ  is the unperturbed Hamiltonian, whose nondegenerate energy eigenvalues  0 0,1,2......nE n 

and corresponding eigenfunctions  0 0,1,2......n n   are assumed to be known. The functions

 0 0,1,2......n n   form a complete orthonormal basis and 'Ĥ  is the time independent perturbing
Hamiltonian.

First order correction to energy of the nth state =  1 0 ' 0
n n nE H 

First order correction to wave function of the nth state =  
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SOLVED PROBLEMS

1. If a perturbation of the form  
vH x
a

 is added in a 1-D box having length 0 to a, find the total energy of the

system corrected upto first order.

Soln. The non-perturbed states are:  2 sin  and ' Givenn x vH x
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The unperturbed energy spectrum is 
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Therefore, the corrected total energy upto first order 
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2. Consider an anharmonic oscillator whose potential is 2 31 1
2 6

kx x . Calculate the 1st order correction to the

ground state harmonic oscillator energy.

Soln. As we know,  * 3
0 0

1
6

E x  




  
Since, the integrand of the above integral is odd and it is integrated over a symmetric interval, it is equal to zero.
Therefore, 0 E

3. Calculate the First order correction to the  ground state energy of an anharmonic oscillator whose potential

energy is 2 3 41
2 6

kx x bx
 

Soln.  The first order correction is, 
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4. A particle of mass ‘m’ is confined in a one-dimensional box of length L. Using the first order perturbation
theory, the energy of the particle in the ground state in presence of the perturbation
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Soln. The ground state function of the particle in a box is
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And the ground state energy 
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1 22
E
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Therefore, the first order correction of energy in the ground state
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Correct option is (c)

5. Consider a particle of mass ‘m’ subjected to a one dimensional potential 2 21( )
2

V x m x . Then we applied

a potential ( )pV x x , where   is very less and independent of x. The first order energy correction to

ground state for positive value of x is (Given : 
m
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Soln. The ground state wave function of 1-D SHM is 
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6. The perturbation,  
'

0 otherwise
b a x a x a

H
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
acts on a particle of mass ‘m’ confined in an infinite square well potential

  0
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The first order correction to the ground state energy of the particle is
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PRACTICE  SET
1. For the n = 2 states of a hydrogen atom in a uniform electric field of strength F,

(a) the first-order correction to the energy equals zero for all four states.
(b) there are four different values of the energy to first order
(c) the first-order correction to the energy is proportional to F for two states.
(d) the first-order correction to the energy is proportional to F2 for two states.

2. Which one of the following statements is true for a hydrogen atom in its ground state that is placed in a uniform
z-directed electric field?
(a) The first-order correction to the energy equals zero

(b) the proper zeroth-order wavefunctions are   1/ 2 1 2 zs p

(c) the second-order correction to the energy is positive
(d) the first-order correction to the wavefunction contains some 2s AO.

3. The hydrogen atom transition 3 2xy xd p  is
(a) dipole allowed and z-polarized (b) dipole allowed and x-polarized
(c) dipole allowed and y-polarized (d) dipole allowed and xy-polarized

4. Which of the following integrals over all space vanish by symmetry for a hydrogen atom with nucleus at the
coordinate origin?

(1) 1 2 zs y p dv (2) 2 3z xyp z d dv (3) 2 3z xzp x d dv
(a) 1 only (b) 1 and 2 only (c) 1 and 3 only
(d) 2 and 3 only (e) 1, 2 and 3

5. A particle in a one-dimensional infinite potential box is perturbed as shown in figure.
(i) Find out the first order energy of the system.
(ii) Calculate the second order correction for the lowest eigenvalue

L/2O L

V=0.1E1
0

6. An electron moving in a simple harmonic potential 21
2

V kx  is subjected to a perturbation ˆ 'H Ex  where E

is the strength of the electric field which is applied in the x-direction. Determine the effect of first and second
order perturbation on the energy.

7. A hydrogen atom is exposed to an electric field of strength F applied in the z-direction. Calculate the first order
and the second order effects for the ground state of the atom (Stark effect).

ANSWER KEY

1. (c) 2. (a) 3. (c) 4. (b)
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