CASE 3:

Suppose a function $f(t)$ is defined in the interval $\left(0, \frac{2 \pi}{\omega}\right)$, then the Fourier series expansion of $f(x)$ is

$$
\begin{gathered}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \omega t+\sum_{n=1}^{\infty} b_{n} \sin n \omega t \\
a_{0}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} f(t) d t ; a_{n}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} f(t) \cos n \omega t d t ; b_{n}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} f(t) \sin n \omega t d t
\end{gathered}
$$

CASE 4:

Suppose a function $f(t)$ is defined in the interval $\left(-\frac{\pi}{\omega}, \frac{\pi}{\omega}\right)$, then the Fourier series expansion of $f(x)$ is

$$
\begin{gathered}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \omega t+\sum_{n=1}^{\infty} b_{n} \sin n \omega t \\
a_{0}=\frac{\omega}{\pi} \int_{-\pi / \omega}^{\pi / \omega} f(t) d t ; a_{n}=\frac{\omega}{\pi} \int_{-\pi / \omega}^{\pi / \omega} f(t) \cos n \omega t d t ; b_{n}=\frac{\omega}{\pi} \int_{-\pi / \omega}^{\pi / \omega} f(t) \sin n \omega t d t
\end{gathered}
$$

- Nature of the fourier series for even function and odd function:

CASE 1: EVEN FUNCTION

A function is said to be even if $f(-x)=f(x)$ i.e. nature of the function is symmetric about $x=0$.
We know that

$$
\begin{aligned}
& \int_{-L}^{L} F(x) d x= \begin{cases}2 \int_{0}^{L} F(x) d x & \text { if } F(x) \text { is an even function } \\
0 & \text { if } F(x) \text { is an odd function }\end{cases} \\
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x=\frac{2}{L} \int_{0}^{L} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x=0
\end{aligned}
$$

This series will contain only cosine terms and the fourier series expansion can be written as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

