191

FOURIER SERIES

CASE 3:

2r
Suppose a function f (t) is defined in the interval (Ozj , then the Fourier series expansion of f (X) is

f (t):a—20+ D a, cosnwt+ Y b, sin nwt
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CASE 4:
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Suppose a function f (t) is defined in the interval (—5 1;] , then the Fourier series expansion of f (x) is

f (t):"’l—zo+2an cos nwt + »_ by sin net
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a, =2 J f(t)dt:a, =— I f(tycosnatdt: b == J' f (t)sin nwt dt
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B Nature of the fourier series for even function and odd function:

CASE 1: EVEN FUNCTION

A function is said to be even if f (—x)= f (x) i.e. nature of the function is symmetric about x = 0.
We know that

ZJ' F (x)dx if F (x) isan even function

0 if F(x)isan odd function
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b == f(x)sin——dx=0
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This series will contain only cosine terms and the fourier series expansion can be written as
a « Nz X

f(x)=—+ ) a,cos——
(x) 2,2 C0S=




