Chapter 2

MATRICES

2.1 Basic Review of Matrices

Definition:

A square or rectangular array of numbers or functions is known as matrices. Individual numbers or functions are known as elements of the matrix.

Example: $\left[\begin{array}{ll}2 & 3 \\ 4 & 7\end{array}\right],\left[\begin{array}{cc}1-i & 2+i \\ 4+2 i & x+i y \\ 2+4 i & 3-2 i\end{array}\right],\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]$

Order of a matrix:

A matrix of order $m \times n$ has ' m ' number of rows and ' n ' number of columns.

Every element of matrix is characterised by a row index and a column index:
$a_{i j}: ' i$ ' \rightarrow row index, ' j ' \rightarrow column index, so, $a_{i j}$ is the element of $i^{\text {th }}$ row and $j^{\text {th }}$ column
If a matrix A contains m rows and n columns, then it is written as $A=\left[a_{i j}\right]_{m \times n}$

Basic Review of matrix operation:

(i) Two matrices A and B are said to be equal if they are of the same order and each element of one is equal to corresponding element of the other matrix i.e. $a_{i j}=b_{i j}$ for all values of ' i ' and ' j '.
(ii) Two matrices A and B are said to be conformable for addition/substraction if they have same order.
(iii) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\lambda A=\left(\begin{array}{ll}\lambda a & \lambda b \\ \lambda c & \lambda d\end{array}\right)$
(iv) Two matrices A and B are said to be conformable for multiplication if number of columns in A is equal to number of rows in B. Say, A matrix is of order ' $m \times n$ ' and B matrix is of order ' $p \times q$ ', then $A B$ is possible only if $n=p$.

■ Various Type of Matrices:
(1) Square matrix: Matrix having number of rows equal to the number of columns i.e. $m=n$

