Chapter 1 # **VECTOR ALGEBRA** #### 1.1 Basic Review of Vectors #### ■ Definition: Physical quantities having both magnitude and a definite direction in space. It should follow the law of vector addition. Example: Velocity, Acceleration, Momentum, Force, Electric Field, Torque, etc. **Note:** Current is a physical quantity that has both magnitude and direction but it does not follow the law of vector addition. So, current is a scalar quantity. ### ■ Various type of vectors: - (1) Equal vectors: Vectors having same magnitude and same direction. - **(2) Null Vectors:** Vectors having coincident initial and terminal point i.e. its magnitude is zero and it has any arbitrary direction. - (3) Unit Vector: Vector having unit magnitude. Unit vector along \vec{a} is $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ - (4) Reciprocal Vector: Vector having same direction as \vec{a} but magnitude reciprocal to that of \vec{a} , is known as the reciprocal vector of \vec{a} . Reciprocal vector of \vec{a} is $\vec{a}^{-1} = \frac{1}{|a|}\hat{a}$ - **(5) Negative Vector:** Vectors having same magnitude as \vec{a} but direction opposite to that of \vec{a} , is known as the negative vector of \vec{a} . Negative vector as \vec{a} is $-\vec{a} = -|a|\hat{a}$ ## Orthogonal Resolution of Vectors: Any vector \vec{A} in the 3-D right-handed rectangular cartesian coordinate system can be represented as $$\overrightarrow{OP} = \overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$, where, \hat{i} , \hat{j} and \hat{k} are the unit vectors in direction of x, y and z axis respectively and A_x , A_y , A_z are the rectangular components of vector \vec{A} along x, y, z axis. Magnitude of vector \vec{A} is $|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$ Unit vector along $$\vec{A}$$ is $\hat{A} = \vec{A} / |\vec{A}| = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) / \sqrt{A_x^2 + A_y^2 + A_z^2}$