Chapter 1

VECTOR ALGEBRA

1.1 Basic Review of Vectors

■ Definition:

Physical quantities having both magnitude and a definite direction in space. It should follow the law of vector addition.
Example: Velocity, Acceleration, Momentum, Force, Electric Field, Torque, etc.
Note: Current is a physical quantity that has both magnitude and direction but it does not follow the law of vector addition. So, current is a scalar quantity.

Various type of vectors:

(1) Equal vectors: Vectors having same magnitude and same direction.
(2) Null Vectors: Vectors having coincident initial and terminal point i.e. its magnitude is zero and it has any arbitrary direction.
(3) Unit Vector: Vector having unit magnitude. Unit vector along \vec{a} is $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$
(4) Reciprocal Vector: Vector having same direction as \vec{a} but magnitude reciprocal to that of \vec{a}, is known as the reciprocal vector of \vec{a}. Reciprocal vector of \vec{a} is $\vec{a}^{-1}=\frac{1}{|a|} \hat{a}$
(5) Negative Vector: Vectors having same magnitude as \vec{a} but direction opposite to that of \vec{a}, is known as the negative vector of \vec{a}. Negative vector as \vec{a} is $-\vec{a}=-|a| \hat{a}$

- Orthogonal Resolution of Vectors:

Any vector \vec{A} in the 3-D right- handed rectangular cartesian coordinate system can be represented as

$$
\overrightarrow{O P}=\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}
$$

where, \hat{i}, \hat{j} and \hat{k} are the unit vectors in direction of x, y and z axis respectively and A_{x}, A_{y}, A_{z} are the rectangular components of vector \vec{A} along x, y, z axis.
Magnitude of vector \vec{A} is $|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$
Unit vector along \vec{A} is $\hat{A}=\vec{A} /|\vec{A}|=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) / \sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$

