Chapter 1

VECTOR ALGEBRA

1.1 Basic Review of Vectors

■ Definition:

Physical quantities having both magnitude and a definite direction in space. It should follow the law of vector addition.

Example: Velocity, Acceleration, Momentum, Force, Electric Field, Torque, etc.

Note: Current is a physical quantity that has both magnitude and direction but it does not follow the law of vector addition. So, current is a scalar quantity.

■ Various type of vectors:

- (1) Equal vectors: Vectors having same magnitude and same direction.
- **(2) Null Vectors:** Vectors having coincident initial and terminal point i.e. its magnitude is zero and it has any arbitrary direction.
- (3) Unit Vector: Vector having unit magnitude. Unit vector along \vec{a} is $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
- (4) Reciprocal Vector: Vector having same direction as \vec{a} but magnitude reciprocal to that of \vec{a} , is known as the reciprocal vector of \vec{a} . Reciprocal vector of \vec{a} is $\vec{a}^{-1} = \frac{1}{|a|}\hat{a}$
- **(5) Negative Vector:** Vectors having same magnitude as \vec{a} but direction opposite to that of \vec{a} , is known as the negative vector of \vec{a} . Negative vector as \vec{a} is $-\vec{a} = -|a|\hat{a}$

Orthogonal Resolution of Vectors:

Any vector \vec{A} in the 3-D right-handed rectangular cartesian coordinate system can be represented as

$$\overrightarrow{OP} = \overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
,

where, \hat{i} , \hat{j} and \hat{k} are the unit vectors in direction of x, y and z axis respectively and A_x , A_y , A_z are the rectangular components of vector \vec{A} along x, y, z axis.

Magnitude of vector \vec{A} is $|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$

Unit vector along
$$\vec{A}$$
 is $\hat{A} = \vec{A} / |\vec{A}| = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) / \sqrt{A_x^2 + A_y^2 + A_z^2}$