
e.g. Si, As, Sb, Ge, Te

Position of metals, non-metals and metalloids in the periodic table.

Metals have the tendency to form cations by loss of electrons and this property make the elements as electro positive elements or metals.

 $M(g) \longrightarrow M^+(g) + e^-$

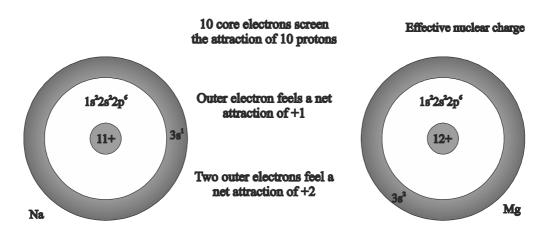
- The tendency of an element to lose electron is closely connected to the (IE) of the element.
- Smaller the (IE) of an element, the greater will be its tendency to lose electrons and thus greater will be its metallic character.
- Greater the metallic character, greater the reducing nature.
- * (IE) increases moving along a period left to right and decreases down the group, hence metallic and reducing nature decrease along the period and increase down the group.

Nuclear charge	increases left to right in period			
Shielding	increases left to right in period			
But the nuclear charge wins so:				
Tendencey to form the ions	decreases left to right in period			
Reducing power	decreases left to right in period			
Metallic nature	decreases left to right in period			

Problem-2: Tendency to lose electrons shows reducing property of the element. Arrange the following in order of reducing property.

(a) Na,K,Rb	(b) Na, Mg, Al	(c) F^-, Cl^-, Br^-, I^-	(d) Mg, Ca, Sr
(a) $Na < K < Rb$		(b) $Na > Mg > Al$	
(c) $F^- < Cl^- < Br^- < I^-$		(d) Mg < Ca < Sr	
(iii) Size of atoms(a) Atomic Radii :			

The distance from centre of the nucleus to the outermost shell is called radius of an atom, it depends on following factors: (i) Principal Quantum number (n) (ii) Effective Nuclear Charge


 $\frac{1}{2}$ AB = covalent radius

(ii) Effective Nuclear Charge

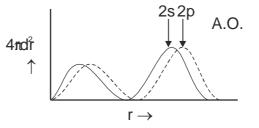
Soln.

Effective nuclear charge (ENC) or Z*:

- The effective nuclear charge is the positive charge that an electron experience from the nucleus.
- It is the nuclear attractive force experienced by the electron when it is shielded by innerlying electrons.
- It is the nuclear charge reduced by shielding or screening from any intervening electrons.
- 2p electron is shielded more than or 2s electron as it penetrates the 1s orbital less than 2s orbital.
- As a result we have the energy sequence.

 $\begin{array}{l} 2s < 2p \\ 3s < 3p < 3d \\ 4s < 4p < 4d < 4f \end{array}$

As we move to atoms of elements of higher atomic number, the energy difference between orbitals of same value of n decreases.


Screening Effect:

The decrease in the nuclear force of attraction on the valence electrons or outermost electrons due to repulsive forces of inner lying electrons is called **screening effect.**

The electrons of inner shell repel the electrons of outermost shells. The electrons of outermost shell are thus shielded or screened from the nucleus by inner electrons.

As a result of screening effect the outermost electrons do not experience the complete nuclear charge. The radial distribution of electron densities indicates that 2s and 2p orbitals of H-atom have substantial values at the distance of 1s orbital also, the 2s and 2p orbitals penetrate the 1s orbital.

5