2. Oxoacids : (a) Oxoacids of sulphur : Sulphur forms a number of oxoacids, of which sulphuric acid is the most stable.

Oxoacids of Sulphur

The oxoacids of sulphur are more numerous and more important than those of Se and Te. Many of the oxoacids of sulphur do not exist as free acids, but are known as anions and salts. Acids ending in-ous have S in the oxidation state (+IV), and form salts ending in-ite. Acids ending in-ic have S in the oxidation state (+VI) and form salts ending in -ate. The oxoanions have strong π bonds and so they have little tendency to polymerize compared with the phosphates and silicates. To emphasize structural similarities the acids are listed in four series.

- 1. sulphurous acid series. 2. sulphuric acid series.
- 3. thionic acid series. 4. peroxoacid series.
- 1. Sulphurous acid series

1. Sulphurous acid series

Though SO₂ is very soluble in water, most is present as hydrated SO₂ (SO₂H₂O) Sulphurous acid H₂SO₃ may exist in the solution in minute amounts, or not at all, though the solution is acidic. Its salts, the sulphites SO_3^{2-} , form stable crystalline solids. Many sulphites are insoluble or are sparingly soluble in water, e.g. CaSO₃, BaSO₃ or Ag₂SO₃. However, those of the Group 1 metals and ammonium are soluble in water, and in dilute solutions the hydrogen sulphite (bisulphite) ion HSO₃⁻ is the predominant species.

The sulphite ion exists in crystals and has a pyramidal structure that is tetrahedral with one position occupied by a lone pair. The bond angles O—S—O are slightly distorted (106°) due to the lone pair, and the bond lengths are 1.51 Å. The π bond is delocalized, and hence the S—O bonds have a bond, order of 1.33.

Reduction of sulphite solution plus SO_2 with Zn dust, or electrolytically, yields dithionites. These contain S in the oxidation state (+III).

$$2HSO_{3}^{-} + SO_{2} \xrightarrow{Zn} S_{2}O_{4}^{2-} + SO_{3}^{2-} + H_{2}O$$

dithionite
$$CARC_{2}Na^{+} \begin{bmatrix} O & O \\ O & S & S & O \end{bmatrix}^{2-} UR$$

sodium dithionite

The dithionite ion has an eclipsed conformation, with a very long S—S bond (2.39Å) and S—O bond lengths of 1.51Å. Sodium dithionite $Na_2S_2O_4$ crystallizes out on adding NaCl to the mixture. The parent acid does not exist. $Na_2S_2O_4$ is a powerful reducing agent, which has a variety of industrial uses. These include bleaching paper pulp and making dyestuffs. It is used to treat water since it reduces many heavy metal ions (Pb²⁺, Cu⁺, Bi³⁺) to the metal. In NaOH solution $Na_2S_2O_4$ is used to absorb dioxygen in gas analysis. It is also used to preserve foodstuffs and fruit squashes.

Sulphuric acid series

 H_2SO_4 is the most important acid used in the chemical industry. By far the most important commercial process for its manufacture is the contact process, in which SO_2 is oxidized by air to SO_3 , using a catalytic surface. Formerly a platinum gauze or platinized asbestos was used as catalyst. This has now been replaced by vanadium pentoxide, which is slightly less efficient but is cheaper and less easily poisoned. The SO_3 could be mixed with water to give H_2SO_4 , but the reaction is violent and produces a dense chemical mist which is difficult to-condense. Instead, the SO_3 is passed into 98% H_2SO_4 , forming pyrosulphuric acid $H_2S_2O_7$, sometimes called oleum or fuming sulphuric acid. (Some

trisulphuric acid $H_2S_3O_{10}$ is also, formed.) This solution may be sold as oleum. or diluted with water to give concentrated sulphuric acid which is a 98% mixture with water (an 18 M solution).

$$\begin{array}{r} H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4 \\ H_2S_3O_{10} + 2H_2O \rightarrow 3H_2SO_4 \end{array}$$

Pure sulphuric acid melts at 10.5 °C, forming a viscous liquid. It is strongly hydrogen bonded, and in the absence of water it does not react with metals to produce H₂. Many metals reduce H₂SO₄ (S +VI) to SO₂ (S +IV), especially if heated. If pure H₂SO₄ is heated, a little SO₃ is evolved, and an azeotropic mixture of 98.3% H₂SO₄ and 1.7% water is produced. This boils at 338°C. Pure H₂SO₄ is used as a non-aqueous solvent and as a sulphonating agent.

Anhydrous H_2SO_4 and concentrated H_2SO_4 mix with water in all proportions• and evolve a great deal of heat (880 kJ mol⁻¹). If water is poured into concentrated acid• the heat evolved leads to boiling of the drops of water and causes violent splashing. The safe way to dilute strong acids is to carefully pour the acid into the water with stirring.

Concentrated H_2SO_4 has quite strong oxidizing properties. Thus when NaBr is dissolved in concentrated H_2SO_4 , HBr is formed but in addition some Br^- ions are oxidized to Br_2 . Cu does not react with acids because it is lower than H in the electrochemical series. However, several noble metals such as Cu dissolve in concentrated H_2SO_4 due to its oxidizing properties. The oxidizing properties of SO_4^{2-} convert Cu into Cu^{2+} .

Concentrated H_2SO_4 absorbs water avidly. and is an effective drying agent for gases. It is sometimes used as a drying agent in desiccators. It dehydrates HNO₃, forming the nitronium ion NO_2^+ , which is very important in the nitration of organic compounds.

$$HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$$

H₂SO₄ can also remove the elements of water, for example in the preparation of ethers.

$$2C_2H_5OH + H_2SO_4 \rightarrow C_2H_5OC_2H_5 + H_2SO_4H_2O$$

It removes water so strongly from some organic compounds that they char, and only the carbon remains. Paper and cloth are completely destroyed.

In dilute aqueous solution H_2SO_4 acts as a strong acid. The first proton dissociates very readily, and hence hydrogen sulphates HSO_4^- formed. The second proton dissociates much less readily, to form sulphates $SO_4^{2^-}$. Because of this, solutions of hydrogen sulphates are acidic.

The thiosulphate ion is structurally similar to the sulphate ion.

Figure: Structure of sulphate and thiosulphate ions

Hydrated sodium thiosulphate Na₂S₂O₃.5H₂O is called hypo. It forms very large colourless hexagonal crystals, m.p. 48°C. It is readily soluble in water and solutions are used for iodine titrations in volumetric analysis. Iodine very rapidly oxidizes thiosulphate ions $S_2O_3^{2-}$ to tetrathionate ions $S_4O_6^{2-}$ and the I₂ is reduced to Γ ions.

