CHAPTER

4

Regular Grammer

Regular Grammars:

A grammar is called a **regular grammar** if each production takes one of the following forms, where the capital letters are non-terminals and 'w' is a non-empty string of terminals.

 $S \rightarrow \lambda$ $S \rightarrow W$ $S \rightarrow V$ $S \rightarrow WV$

In other words each production should be either left linear or right linear that is $V \rightarrow T * V + T * OR$

 $V \rightarrow VT^* + T^*$ where $V \in Variable$ and $T \in Terminal$

Regular Expression		Regular Grammar
a*		$S \rightarrow \lambda \mid aS$
(a+b)*		$S \rightarrow \lambda aS bS$
a *+ b *	\rightarrow	$S \rightarrow \lambda A B$
		$A \rightarrow a \mid aA$
		$B \rightarrow b \mid bB$
a*b	\rightarrow	$S \rightarrow b \mid aS$
ba*	\rightarrow	$S \rightarrow bA$
		$A \rightarrow \lambda \mid aA$
(ab)*	\rightarrow	$S \rightarrow \lambda \mid abS$

Suppose we want to construct a regular grammar for the language of the regular expression a*bc*. First we observe that the strings of a*bc* start with either the letter 'a' or the letter 'b'. We can represent this property by writing down the followng two productions, where 'S' is the start symbol.

 $S \rightarrow aS \mid bC$

These productions allow us to derive strings of the form bC, abC, aabC, and so on. Now all we need is a definition for C to derive the language of c*. The following two productions do the job.

 $C \mathop{\rightarrow} \lambda \,|\, cC$

Therefore, a regular grammar for	a*bc* can written as follow	ws:	
$S \rightarrow aS \mid bC$			
$C \rightarrow \lambda \mid cC$			
Langauge	Expression Regular Grammar		
$\left\{a^mb^n\mid m\geq 0 \text{ and } n>0\right\}$	a*bb*	$S \rightarrow aS \mid B$	
		$B \rightarrow b \mid bB$	
$\left\{a^mb^n\mid m>0 \text{ and } n\geq 0\right\}$	aa*b*	$S \rightarrow aA$	
		$A \rightarrow aA \mid B$	
		$B \rightarrow b \mid bB$	
$\left\{a^mb^n\mid m>0 \text{ and } n>0\right\}$	aa*bb*	$S \rightarrow aA$	
		$A \rightarrow aA \mid B$ $B \rightarrow b \mid bB$	
$\left\{a^mb^n\mid m>0 \text{ or } n>0\right\}$	aa*b* + a*bb*	$S \rightarrow aA \mid bB$	
		$A \to \lambda aA B$	
		$B \to \lambda bB$	

Linear Grammer: If every production rules have atmost 1 non-terminal on the RHS.

A grammar is linear if all all productions are of the form $A \rightarrow w_1 B w_2$ or $A \rightarrow w_3$ where A and B are variables, and w_1, w_2 and w_3 are the string (with no variables in them).

Example: A linear grammar:

 $S \rightarrow aB$

 $S \rightarrow \lambda$ Shorter notation: $S \rightarrow aB \mid \lambda$

 $B \rightarrow Sb$

 $S \Rightarrow \lambda; S \Rightarrow aB \Rightarrow aSB \Rightarrow \lambda; S \Rightarrow aB \Rightarrow aSb \Rightarrow aaBb \Rightarrow aaSbb \Rightarrow aabb$

Language: $(a^n b^n : n \ge 0)$ not a regular language. Thus, a linear grammar may generate a language that is not accepted by any finite automaton.

e.g. $\begin{array}{c} S \rightarrow Sa \\ S \rightarrow bS \\ S \rightarrow \lambda \end{array}$ It is neither right nor left but it is linear $S \rightarrow \lambda$ It is linear grammar $S \rightarrow \lambda$ It is linear grammar

All the Left Linear Grammars and Right Linear Grammars are linear grammers.

Right Linear Grammar:

A grammar is right-linear if all productions are of the form $A \rightarrow wB$ or $A \rightarrow w$

Example: Right -linear grammar.

$S \rightarrow aA \mid \lambda$	$S \Rightarrow \lambda$
$A \rightarrow aA \mid bbB$	$S \Rightarrow aA \Rightarrow abbB \Rightarrow abbbC \Rightarrow abbbS \Rightarrow abbb$
$B \rightarrow bc$	$S \mathop{\Rightarrow} aA \mathop{\Rightarrow} aaA \mathop{\Rightarrow} aabbB \mathop{\Rightarrow} aabbbC \mathop{\Rightarrow} aabbbS \mathop{\Rightarrow} aabbb$
$C \rightarrow S$	Language: $(a^*bbb)^*$

