

Radial probability density :

The probability of finding the electron in volume element $d\tau$ is given by

$$\left|\psi_{nlm}\right|^2 d\tau = \left|\psi_{nlm}\right|^2 r^2 \sin\theta dr d\theta d\phi$$

Therefore, the probability of finding the electron in a spherical shell of radius r and thickness dr is,

$$P(r)dr = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} |\psi_{nlm}|^2 r^2 \sin\theta dr d\theta d\phi = |R_{nl}|^2 r^2 dr$$

Here, P(r) is called the radial probability density.

Figure : Variation of $R_{n\ell}(r)$ with *r* in units of a_0

Energy values for the hydrogen atom:

Energy eigenvalues of n^{th} state of hydrogen atom $E_n = -\frac{\mu z^2 e^4}{32\pi^2 \varepsilon_0^2 \hbar^2 n^2}$

For the hyrogen atom z = 1 and hence, $E_n = -\frac{\mu e^4}{32\pi^2 \varepsilon_0^2 \hbar^2 n^2} = -\frac{13.6}{n^2} eV$

where, $n = 1, 2, 3, \dots$ and is called the principal quantum number. This shows that the energy values for different quantum states are discrete which is in agreement with old quantum theory and experiment.

Degeneracy:

For a particular value of $n, \ell = (n-1), (n-2), -2, -1, 0$, i.e. ℓ can take (*n*) values. Also for a particular value of $l, m = \ell, (\ell - 1), (\ell - 2), ..., 0, ..., -(\ell - 1), -\ell$, i.e., *m* can take $(2\ell + 1)$ values. Thus degeneracy of a particular energy level is, $\sum_{l=0}^{n-1} (2l+1) = n^2$

Virial theorem for hydrogen atom:

The statement of Virial theorem has been expressed in the previous chapter. Applying it to the case of Hydrogen atom results in the following.

Potential, $V \propto r^{-1} \Rightarrow V \propto x^n \Rightarrow n = -1$

Therefore,
$$2\langle T \rangle = n \langle V \rangle \Longrightarrow 2\langle T \rangle = -\langle V \rangle$$

$$\Rightarrow \frac{\langle T \rangle}{\langle V \rangle} = -\frac{1}{2} \Rightarrow \langle E \rangle = \langle T \rangle + \langle V \rangle$$
$$\Rightarrow \frac{\langle E \rangle}{\langle V \rangle} = \frac{-\frac{1}{2} \langle V \rangle + \langle V \rangle}{\langle V \rangle} = \frac{1}{2} \Rightarrow \frac{\langle E \rangle}{\langle V \rangle} = \frac{1}{2}$$
where, E = total energy
T = kinetic energy

V = potential energy.

1. The eigenfunctions $\{\psi_{n,l,m}\}$ are simultaneous eigenstates of the Hamiltonian (\hat{H}) , Angular momentum (\hat{L}^2) , and the *z*-component of angular momentum (\hat{L}_z) . The corresponding eigenvalues are as follows:

$$\hat{H}\psi_{n,l,m} = E_n\psi_{n,l,m}$$
, where $E_n = -\frac{13.6}{n^2}$ eV; $\hat{L}^2\psi_{n,l,m} = \hbar^2 l (l+1)\psi_{n,l,m}$, and $\hat{L}_z\psi_{n,l,m} = m\hbar\psi_{n,l,m}$

- 2. The number of nodes in the radial part of the wavefunction $(R_{n,l}(r))$ is equal to (n-l-1).
- **3.** The expectation values of some useful operators for the state $\psi_{n,l,m}$ are listed below:

(i)
$$\langle r \rangle = \frac{1}{2} \Big[3n^2 - l(l+1) \Big] a_0$$

(ii) $\langle r^2 \rangle = \frac{n^2}{2} \Big[5n^2 + 1 - 3l(l+1) \Big] a_0^2$
(iii) $\langle r^{-1} \rangle = \frac{1}{n^2 a_0}$
(iv) $\left\langle \frac{1}{r^2} \right\rangle = \frac{2}{n^3 (2l+1) a_0^2}$

4. The most probable distance of an electron in the *n*th state of Hydrogen atom with l = 0 is given by

 $r_{\text{most probable}} = n^2 a_0$.

Hartree Theory:

Hartree's method of self-consistent fields:

An important method for obtaining a suitable central field is due to Hartree. In this method, a suitable function $\overline{V}(r_i)$ is first chosen with property close to that given by equation

$$\overline{V} = -\frac{Ze^2}{r_i} + \text{constant (for small } r_i)$$
And,
$$\overline{V} = -\frac{Ze^2}{r_i} \text{ (for large } r_i) \text{ (J)}$$

$$\dots (1)$$

The single particle states ψ_i are then obtained by solving the Schrodinger equation. Now, the part of the potential due to all electrons other than the ith is calculated by assuming that each of these electrons yields a charge distribution as given by their wavefunctions already worked out.

Consider the jth electron, $j \neq i$. The average charge in a volume element $d\tau_i$ due to this electron is

 $e d\tau_j |\psi(r_j)|^2$ and the potential energy of interaction with the ith electron is

Thus, the ith electron moves in a potential generated by all the other electrons,

Namely,

$${}^{2}\sum_{j\neq i}\int d\tau_{j}\frac{\left|\psi_{j}\left(r_{j}\right)\right|^{2}}{\left|r_{i}-r_{j}\right|}$$

e

So, that the full potential is,