Chapter 4

Electrostatic Energy

Electrostatic Energy:

The work necessary to assemble a system of charges against coulomb forces is stored in the field as potential energy. This is known as electrostatic energy.

Electrostatic energy system of point charges:

Let at any time we have placed a point charge q_{1} at \vec{r}_{1}. To place the charge q_{1} at the position \vec{r}_{1}, we require no work because there is no interacting coulomb field.

$$
\therefore \quad U_{1}=0
$$

But to bring the charge q_{2} to the position \vec{r}_{2} we require work done against coulomb repulsion due to q_{1}.

This work $\quad U_{2}=-\frac{1}{4 \pi \varepsilon_{0}} \int_{\infty}^{r_{12}} \frac{q_{1} q_{2}}{r^{2}} d r=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{\left|r_{1}-r_{2}\right|}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}$
Therefore for two point charges,

$$
u=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}}
$$

To bring another charge, we need work done.

$$
U_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right]
$$

Therefore, net work done

$$
U=U_{1}+U_{2}+U_{3}=0+\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right]
$$

For N point charged,

$$
U=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i} q_{j}}{r_{i j}}
$$

We know electrostatic potential

$$
\phi_{i}=\sum_{\substack{j=1 \\ i \neq j}}^{N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j}}{r_{i j}}
$$

$\therefore \quad U=\frac{1}{2} \sum_{i=1}^{N} q_{i} \phi_{i}$
Potential energy of interaction of a charge ' q ' with other charges

$$
u=q V \text {, where } V \text { is potential at location of } q \text { due to other charges. }
$$

For continuous charge distribution :

For continous charge distribution u is given by

$$
U=\frac{1}{2} \int \rho(\vec{r}) \phi(\vec{r}) d r \quad[\rho(\vec{r}) \text { is volume charge distribution] }
$$

Electrostatic Energy in terms of field :

Suppose we have a finite region of space V in a dielectric medium of permitivity ε and the volume charge density ρ.
Therefore, the electrostatic energy of the system is given by

$$
\begin{aligned}
U & \left.=\frac{1}{2} \varepsilon_{0} \int \rho(r) \phi(r) d V=\frac{1}{2} \int(\vec{\nabla} \cdot \vec{E}) \phi d V \quad \text { [Gauss's law } \varepsilon_{0} \vec{\nabla} \cdot \vec{E}=\rho\right] \\
& \left.=\frac{1}{2} \varepsilon_{0} \int(\vec{\nabla} \cdot \phi \vec{E})-\vec{\nabla} \phi \cdot \vec{E}\right) d V \\
& =\frac{1}{2} \varepsilon_{0} \int(\vec{\nabla} \cdot \phi \vec{E}) d V-\frac{\varepsilon_{0}}{2} \int(\vec{\nabla} \phi \cdot \vec{E}) d V \\
& =\frac{1}{2} \varepsilon_{0} \int(\phi \vec{E}) d S+\frac{\varepsilon_{0}}{2}(\vec{E} \cdot \vec{E}) d V
\end{aligned}
$$

At large distance from the charge distribution the first term will be vanish.
$\therefore \quad U=\frac{1}{2} \varepsilon_{0} \int E^{2} d V$

Therefore, the energy density,

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}
$$

Forces and Torques from electrostatic energy:

We know work done $=$ force. displacement

$$
\Rightarrow \quad d W=\vec{F} \cdot d \vec{r}
$$

Also for isolated system, the work done

$$
\begin{array}{ll}
& d W=-d U=-\vec{\nabla} U \cdot d \vec{r} \\
\therefore & \vec{F}=-\vec{\nabla} U, u=-\int \vec{F} \cdot d \vec{r}
\end{array}
$$

If the part of the system under consideration is constrained to rotate about an axis and it undergoes a small rotation do under the action of a torque $\vec{\tau}$ then,

$$
\begin{array}{ll}
& d W=\vec{\tau} \cdot d \vec{\theta}=-d U=-\nabla_{\theta} U \cdot d \theta \\
\therefore & \vec{\tau}=-\nabla_{\theta} U \quad \text { and } u=\int \vec{F} \cdot d \vec{r}
\end{array}
$$

Example: Charges $q_{1}=2 \times 10^{-6} \mathrm{C}$ and $q_{2}=1 \times 10^{-6} \mathrm{C}$ are placed at the corners P and Q of a square of side 5 cm as shown in figure. The work done in moving a charge $1 \times 10^{-6} \mathrm{C}$ from corner R to S is given by

(a) 0.053 J
(b) 0.53 J
(c) 1.06 J
(d) 0.106 J

Soln. Let the third charge be $q_{3}=1 \times 10^{-6} c$
Initial configuration:
Potential energy of initial configuration

$$
U_{i}=k\left[\frac{q_{1} q_{3}}{\sqrt{2} a}+\frac{q_{1} q_{2}}{a}+\frac{q_{2} q_{3}}{a}\right]
$$

Final configuration:

$$
U_{f}=k\left[\frac{q_{1} q_{3}}{a}+\frac{q_{1} q_{2}}{a}+\frac{q_{3} q_{2}}{\sqrt{2} a}\right]
$$

Work done $=U_{f}-U_{i}$

$$
\begin{aligned}
& =\frac{k}{a}\left[q_{1} q_{3}\left(1-\frac{1}{\sqrt{2}}\right)+q_{3} q_{2}\left(\frac{1}{\sqrt{2}}-1\right)\right] \\
& =\frac{k q_{3}}{\sqrt{2} a}\left[q_{1}-q_{2}\right](\sqrt{2}-1)
\end{aligned}
$$

Substituting the values of $k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$,
$q_{1}=2 \times 10^{-6} \mathrm{C}, q_{2}=1 \times 10^{-6} \mathrm{C}, a=5 \mathrm{~cm}, q_{3}=1 \times 10^{-6} \mathrm{C}$
We get, work done $=\frac{9 \times 10^{9} \times 1 \times 10^{-6}}{\sqrt{2} \times 5 \times 10^{-2}}[2-1] \times 10^{-6}(\sqrt{2}-1)$

$$
=0.053 \mathrm{~J}
$$

Correct option is (a)

The electrostatic energy associated with a uniform spherical charge distribution of total charge q and radius R.

The electric field of this distribution is

$$
\begin{aligned}
& E=E_{1}=\frac{q r}{4 \pi \varepsilon_{0} R^{3}} \text { for } r \leq R \\
& E=E_{2}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \text { for } r \geq R
\end{aligned}
$$

Since, the field is radially symmetric, the volume element may be expressed as $d V=4 \pi r^{2} d r$, so that the energy is

