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Classical theory (Free electron gas model): In 1900, Drude and Lorentz explained the properties of
metals on the basis of free electron model. For free electron model, the following assumptions were made:
(a) A metal consists of positive ions core and valence electrons. The valence electrons move freely among

these ion cores.
(b) Electrons and ions are bound by electrostatic attraction.
(c) The potential of these ion cores is assumed to be constant throughout the metal.
(d) The mutual repulsion between electrons is ignored.
(e) The behaviour of free electrons inside the metals is considered to be similar to that of atoms or

molecules in perfect gas. These free electrons are also considered as free electron gas. There are some
differences in the molecules of a perfect gas and electrons of free electron gas. The concentration of
electrons in the gas is quite large as compared to the concentration of molecules in an ordinary gas. The
free electrons are negatively charged while molecules are neutral. The valence electrons are also known
as conduction electrons and they follow Pauli’s exclusion principle. These electrons are responsible for
conduction of electricity.

(f) Since, these electrons move in constant electrostatic field of ion cores, there potential energy remains
constant and can be taken as zero. Thus, we can ignore the existence of ion cores. Hence, the total
energy of free electrons is their kinetic energy. Also, since the movement of conduction electrons is
restricted to within the crystal only, the potential energy of a stationary electron inside a metal is less
than the potential energy of an identical electron just outside it.

(g) This difference of potential energies serves as a potential barrier and stops the inner electrons from
leaving the surface of the metal. Thus, the movement of free electrons in a metal is equivalent to
movement of a particle in a potential energy box.

Successes of classical free electron theory:
The free electron model was successful in explaining the following properties:
(1) Ohm’s Law: It was successful in explaining Ohm’s law. As free electrons move in random directions
and do not constitute current until an electric field is applied across the metal. The electric field accelerates
these electrons. During their motion, electrons suffer elastic collisions with the ions which slow down the
speed of electrons. This collision gives rise to a steady state current. The magnitude of current is proportional
to the voltage applied provided the temperature remains constant. This leads to Ohm’s law.
(2) Wiedemann-Franz Law: As free electrons have the ability to move easily inside the metal, the metals
exhibit high electrical and thermal conductivity. According to Wiedemann-Franz Law, the electronic contribution
for electric to thermal conductivity of a metal is proportional to the temperature.
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i.e., the ratio of electrical and thermal conductivities is constant for all metals at a constant temperature.
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If   be electrical conductivity and K be the thermal conductivity, then Constant
K



(3) Free electron theory also explains the high lustre and complete opacity of metals. The opacity is due
to the complete absorption of all the incident electromagnetic radiations by free electrons which are then
set into forced oscillations.
Failures of classical free electron theory:
(1) The temperature dependence of resistivity could not be explained. Classical free electron theory predicted

that the resistivity varies as T  whereas actually it is found to vary linearly with temperature.

(2) This theory also failed to explain the heat capacity of solids.
(3) This theory also failed to explain paramagnetic susceptibility of the conduction electrons.

Sommerfeld’s quantum theory:
In classical theory, Drude and Lorentz assumed classical Maxwell-Boltzmann statistics which allows all the
free electrons to gain energy. This gives rise to a much higher value of heat capacity and paramagnetic
susceptibility.
In 1927, Sommerfeld tried to solve the problem quantum mechanically using the Fermi-Dirac statistics. The
possible electronic states in the potential energy box and the distribution of electrons in these states are then
determined using quantum mechanics.
Free electron gas in one-dimensional box:
Let us consider an electron of mass m moving in a potential box of length L. This electron is bound to move
within this box under the potential energy given by
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Let the wave function n  be the eigen function of nth state. The energy eigenvalues En are given by
Schrodinger equation

2

2 2

2 ( ) 0n
n n

d m E V
dx


   


... (1)

For the potential box, 0V 
Therefore, equation (1) becomes
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The general solution of the above equation is



Free Electron Theory98

( ) sin cosn x A kx B kx   ... (4)

where A and B are constants.
The boundary conditions are
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From equation (9), it is clear that the allowed wavefunction ( )n x  and the allowed energy values En exist
only for integral values of n. This number n is called principal quantum number.
Thus the energy spectrum consists of discrete energy levels and the spacing of energy levels can be
determined by n and L. The spacing between energy levels decreases with increasing L and it increases
with increasing n. The plot of vs.nE n  is shown in the adjacent figure.

5

10

15
20

1 2 3 4
n

Energy (in units of          )En

2

28

h

mL

The constant A in equation (8) can be determined by using the orthonormality condition as follows
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The above condition states that the probability of finding an electron somewhere in the box (1-D) is unity.
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The wave functions corresponding to 1, 2,3,4n   and 5 are shown in the figure below..
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In further sections, we will determine the Fermi energy and density of states.
Fermi energy:
The distribution of electrons among the various possible energy levels is governed by Pauli’s exclusion
principle which states that “no two electrons can have all their quantum numbers identical”. Thus, each
orbital or state can be occupied by at the most one electron. In a solid, an electron in a conduction
electronic state has the quantum numbers n and ms where n is the principal quantum number and ms is the
magnetic spin quantum number. Each set of values of n and ms define a quantum state. For each value of
n, ms can take values, +1/2 and –1/2. This means that each energy level defined by the quantum number


