Chapter 1

VECTOR ALGEBRA

1.1 Basic Review of Vectors

■ Definition:

Physical quantities having both magnitude and a definite direction in space. It should follow the law of vector addition.
Example: Velocity, Acceleration, Momentum, Force, Electric Field, Torque, etc.
Note: Current is a physical quantity that has both magnitude and direction but it does not follow the law of vector addition. So, current is a scalar quantity.

Various type of vectors:

(1) Equal vectors: Vectors having same magnitude and same direction.
(2) Null Vectors: Vectors having coincident initial and terminal point i.e. its magnitude is zero and it has any arbitrary direction.
(3) Unit Vector: Vector having unit magnitude. Unit vector along \vec{a} is $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$
(4) Reciprocal Vector: Vector having same direction as \vec{a} but magnitude reciprocal to that of \vec{a}, is known as the reciprocal vector of \vec{a}. Reciprocal vector of \vec{a} is $\vec{a}^{-1}=\frac{1}{|a|} \hat{a}$
(5) Negative Vector: Vectors having same magnitude as \vec{a} but direction opposite to that of \vec{a}, is known as the negative vector of \vec{a}. Negative vector as \vec{a} is $-\vec{a}=-|a| \hat{a}$

- Orthogonal Resolution of Vectors:

Any vector \vec{A} in the 3-D right- handed rectangular cartesian coordinate system can be represented as

$$
\overrightarrow{O P}=\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}
$$

where, \hat{i}, \hat{j} and \hat{k} are the unit vectors in direction of x, y and z axis respectively and A_{x}, A_{y}, A_{z} are the rectangular components of vector \vec{A} along x, y, z axis.
Magnitude of vector \vec{A} is $|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$
Unit vector along \vec{A} is $\hat{A}=\vec{A} /|\vec{A}|=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) / \sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$

■ Direction cosines of vector \vec{A} :

If \vec{A} makes angles α, β, γ with x, y and z axes respectively, then direction cosines of \vec{A} are defined as

$$
l=\cos \alpha=\frac{A_{x}}{A} ; m=\cos \beta=\frac{A_{y}}{A} ; n=\cos \gamma=\frac{A_{z}}{A} \quad \text { and } l^{2}+m^{2}+n^{2}=1
$$

Note: Unit vector along \vec{A} can be written as $\hat{A}=l \hat{i}+m \hat{j}+n \hat{k}$

1.2 Products of Vectors

- Scalar Product or Dot Product:

Dot product of two vectors \vec{a} and \vec{b} are defined as

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \Rightarrow \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Note:

(i) Dot product is commutative in nature i.e. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
(ii) For two mutually perpendicular vectors \vec{a} and $\vec{b}, \vec{a} \cdot \vec{b}=0$
(iii) $\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot i=0, \hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$
(iv) If $\vec{a}=a_{z} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$ and $\vec{b}=b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}$, then $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$
(v) Projection of \vec{A} on $\vec{B}=\vec{A} \cdot \hat{B}$

- Vector Product or Cross Product :

Cross product of two vectors \vec{a} and \vec{b} are defined as $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
where $\hat{\mathrm{n}}$ is unit vector normal to the plane containing \vec{a} and \vec{b}.

Note:

(i) Cross product is not commutative i.e. $\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})$
(ii) For two collinear vectors (parallel or anti-parallel vectors) $\vec{a} \times \vec{b}=0$.
(iii) $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0, \hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}$
(iv) If $\vec{a}=a_{z} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$ and $\vec{b}=b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}$, then $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$

Example 1: The range of x for which the angle between the vectors

$$
\vec{A}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k} \text { and } \vec{B}=7 \hat{i}-2 \hat{j}+x \hat{k}
$$

is obtuse, is equal to
(a) $x<0$
(b) $x>1 / 2$
(c) $0<x<1 / 2$
(d) None of these

Soln: Since, $90^{\circ}<\theta<180^{\circ}$, then $\cos \theta<0 \Rightarrow \vec{A} \cdot \vec{B}<0 \Rightarrow 14 x^{2}-7 x<0 \Rightarrow x(2 x-1)<0$
Case I: $x>0$ and $(2 x-1)<0 \Rightarrow x<\frac{1}{2}$. Therefore, $0<x<\frac{1}{2}$
Case II: $x<0$ and $(2 x-1)>0 \Rightarrow x>\frac{1}{2}$. Both of them cannot be satisfied simultaneously.

Correct option is (c)

Example 2: Given: $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}+5 \hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}-4 \hat{k}$ are the sides of
(a) an isosceles triangle
(b) a right-angled triangle
(c) an equilateral triangle
(d) none of these

Soln: For the given set of vectors, $\vec{a} \cdot \vec{c}=0 \Rightarrow \vec{a}$ is perpendicular to \vec{c} and

$$
|\vec{a}|^{2}+|\vec{c}|^{2}=14+21=35=|\vec{b}|^{2}
$$

Therefore, \vec{a}, \vec{c} will correspond to base and height respectively and \vec{b} will correspond to hypotenus i.e. the given set of vectors are sides of a right-angled triangle.

Correct option is (b)

Example 3: Given : $\vec{P}=2 \hat{i}-3 \hat{j}, \vec{Q}=\hat{i}+\hat{j}-\hat{k}, \vec{R}=3 \hat{i}-\hat{k}$, the vector \vec{V}, which is orthogonal to \vec{P} and \vec{Q} and having unit scalar product with \vec{R}, can be estimated to be
(a) $(3 \hat{i}+2 \hat{j}+5 \hat{k}) / 4$
(b) $(3 \hat{i}+2 \hat{j}-5 \hat{k}) / 4$
(c) $(3 \hat{i}-2 \hat{j}+5 \hat{k}) / 4$
(d) $(3 \hat{i}-2 \hat{j}-5 \hat{k}) / 4$

Soln: Unit vector along \vec{V} is $\hat{V}=\frac{\vec{P} \times \vec{Q}}{|\vec{P} \times \vec{Q}|}=\frac{3 \hat{i}+2 \hat{j}+5 \hat{k}}{\sqrt{38}}$
According to the question, $\vec{V} \cdot \vec{R}=1 \Rightarrow(V \hat{V}) \cdot \vec{R}=1 \Rightarrow V=\frac{\sqrt{38}}{4}$

Correct option is (a)

Example 4: For any vector \vec{a}, the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to
(a) $|\vec{a}|^{2}$
(b) $2|\vec{a}|^{2}$
(c) \vec{a}^{2}
(d) $2 \vec{a}^{2}$

Soln: Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \quad$ (Here, a_{1}, a_{2}, a_{3} are not constants)

$$
\begin{array}{ll}
\therefore & \vec{a} \times i=a_{2} \hat{k}-a_{3} \hat{j} \\
& |\vec{a} \times \hat{i}|=\sqrt{a_{2}^{2}+a_{3}^{2}}
\end{array}
$$

Similarly, $|\vec{a} \times \hat{j}|=\sqrt{a_{1}^{2}+a_{3}^{2}} \quad$ and $\quad|\vec{a} \times \hat{k}|=\sqrt{a_{1}^{2}+a_{2}^{2}}$

$$
\therefore \quad|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)=2|\vec{a}|^{2}
$$

Correct option is (b)

Example 5: If $\vec{F}=\hat{i}+3 \hat{j}-\hat{k}$ acts at the point (1, 1, 1), then the torque of \vec{F} about the line $\vec{r}=3 \hat{i}+2 \hat{k}+(2 \hat{i}-2 \hat{j}+\hat{k}) t$ is \qquad .

Soln: We first find the vector torque about a point on the line, say the point $(3,0,2)$.
This is $\vec{r} \times \vec{F}$, where \vec{r} is the vector from the point about which we want the torque, to the point at which
\vec{F} acts, that is, from $(3,0,2)$ to $(1,1,1)$.
$\therefore \quad \vec{r}=(\hat{i}+\hat{j}+\hat{k})-(3 \hat{i}+2 \hat{k})=-2 \hat{i}+\hat{j}-\hat{k}$
$\therefore \quad \vec{r} \times \vec{F}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & -1 \\ 1 & 3 & -1\end{array}\right|=2 \hat{i}+3 \hat{j}-7 \hat{k}$

The torque about the line is $\hat{n} \cdot(\vec{r} \times \vec{F})$ where \hat{n} is a unit vector along the line $\hat{n}=\frac{1}{3}(2 \hat{i}-2 \hat{j}+\hat{k})$
Therefore, torque about the line, $\hat{n} \cdot(\vec{r} \times \vec{F})=1$

Correct answer is (1)

- Scalar Triple Product:

Scalar triple product of three vectors \vec{a}, \vec{b} and \vec{c} are defined as

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=[a b c]
$$

Note:

(i) $\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})$ i.e. $[a b c]=[b c a]=[c a b]$
(ii) Volume of a parallelopiped having $\vec{a}, \vec{b}, \vec{c}$ as concurrent edges is : $\mathrm{V}=|\vec{a} \cdot(\vec{b} \times \vec{c})|$

