Chapter 1

VECTOR ALGEBRA

1.1 Basic Review of Vectors

Definition:

Physical quantities having both magnitude and a definite direction in space. It should follow the law of vector addition.

Example: Velocity, Acceleration, Momentum, Force, Electric Field, Torque, etc.

Note: Current is a physical quantity that has both magnitude and direction but it does not follow the law of vector addition. So, current is a scalar quantity.

Various type of vectors:

(1) Equal vectors: Vectors having same magnitude and same direction.

(2) Null Vectors: Vectors having coincident initial and terminal point i.e. its magnitude is zero and it has any arbitrary direction.

(3) Unit Vector: Vector having unit magnitude. Unit vector along \vec{a} is $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

(4) Reciprocal Vector: Vector having same direction as \vec{a} but magnitude reciprocal to that of \vec{a} , is known as the reciprocal vector of \vec{a} . Reciprocal vector of \vec{a} is $\vec{a}^{-1} = \frac{1}{|a|}\hat{a}$

(5) Negative Vector: Vectors having same magnitude as \vec{a} but direction opposite to that of \vec{a} , is known as the negative vector of \vec{a} . Negative vector as \vec{a} is $-\vec{a} = -|a|\hat{a}$

Orthogonal Resolution of Vectors:

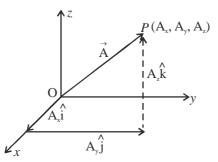
Any vector \vec{A} in the 3-D right- handed rectangular cartesian coordinate system can be represented as

$$\overrightarrow{OP} = \overrightarrow{A} = A_x \widehat{i} + A_y \widehat{j} + A_z \widehat{k},$$

where, \hat{i}, \hat{j} and \hat{k} are the unit vectors in direction of x, y and z axis respectively and A_x, A_y, A_z are the rectangular components of vector \vec{A} along x, y, z axis.

Magnitude of vector \vec{A} is $\left|\vec{A}\right| = \sqrt{A_x^2 + A_y^2 + A_z^2}$

Unit vector along \vec{A} is $\hat{A} = \vec{A} / \left| \vec{A} \right| = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \right) / \sqrt{A_x^2 + A_y^2 + A_z^2}$



Direction cosines of vector \vec{A} :

If \vec{A} makes angles α , β , γ with x, y and z axes respectively, then direction cosines of \vec{A} are defined as

$$l = \cos \alpha = \frac{A_x}{A}$$
; $m = \cos \beta = \frac{A_y}{A}$; $n = \cos \gamma = \frac{A_z}{A}$ and $l^2 + m^2 + n^2 = 1$

Note: Unit vector along \vec{A} can be written as $\hat{A} = l\hat{i} + m\hat{j} + n\hat{k}$

1.2 Products of Vectors

Scalar Product or Dot Product:

Dot product of two vectors \vec{a} and \vec{b} are defined as

$$\vec{a}.\vec{b} = \left|\vec{a}\right| \left|\vec{b}\right| \cos\theta \Rightarrow \cos\theta = \frac{\vec{a}.\vec{b}}{\left|\vec{a}\right| \left|\vec{b}\right|}$$

Note:

(i) Dot product is commutative in nature i.e. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

- (ii) For two mutually perpendicular vectors \vec{a} and \vec{b} , $\vec{a} \cdot \vec{b} = 0$
- (iii) $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot i = 0, \ \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$

(iv) If
$$\vec{a} = a_z \hat{i} + a_y \hat{j} + a_z \hat{k}$$
 and $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$, then $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$

(v) Projection of \vec{A} on $\vec{B} = \vec{A} \cdot \hat{B}$

Vector Product or Cross Product :

Cross product of two vectors \vec{a} and \vec{b} are defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$

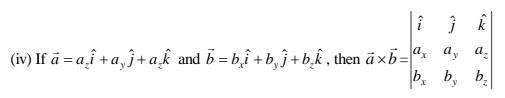
where \hat{n} is unit vector normal to the plane containing \vec{a} and \vec{b} .

Note:

(i) Cross product is not commutative i.e. $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

- (ii) For two collinear vectors (parallel or anti-parallel vectors) $\vec{a} \times \vec{b} = 0$.
- (iii) $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$, $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$

2



Example 1: The range of *x* for which the angle between the vectors

$$\vec{A} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}$$
 and $\vec{B} = 7\hat{i} - 2\hat{j} + x\hat{k}$

is obtuse, is equal to (a) x < 0 (b) x > 1/2 (c) 0 < x < 1/2 (d) None of these

Soln: Since, $90^{\circ} < \theta < 180^{\circ}$, then $\cos \theta < 0 \Rightarrow \vec{A} \cdot \vec{B} < 0 \Rightarrow 14x^2 - 7x < 0 \Rightarrow x(2x-1) < 0$

Case I:
$$x > 0$$
 and $(2x-1) < 0 \Rightarrow x < \frac{1}{2}$. Therefore, $0 < x < \frac{1}{2}$

Case II: x < 0 and $(2x-1) > 0 \Rightarrow x > \frac{1}{2}$. Both of them cannot be satisfied simultaneously.

Correct option is (c)

Example 2: Given: $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}, \vec{b} = \hat{i} - 3\hat{j} + 5\hat{k}$ and $\vec{c} = 2\hat{i} + \hat{j} - 4\hat{k}$ are the sides of (a) an isosceles triangle (b) a right-angled triangle (c) an equilateral triangle (d) none of these

Soln: For the given set of vectors, $\vec{a}.\vec{c} = 0 \Rightarrow \vec{a}$ is perpendicular to \vec{c} and

$$\left|\vec{a}\right|^{2} + \left|\vec{c}\right|^{2} = 14 + 21 = 35 = \left|\vec{b}\right|^{2}$$

Therefore, \vec{a} , \vec{c} will correspond to base and height respectively and \vec{b} will correspond to hypotenus i.e. the given set of vectors are sides of a right-angled triangle. **Correct option is (b)**

Example 3: Given : $\vec{P}=2\hat{i}-3\hat{j}$, $\vec{Q}=\hat{i}+\hat{j}-\hat{k}$, $\vec{R}=3\hat{i}-\hat{k}$, the vector \vec{V} , which is orthogonal to \vec{P} and \vec{Q} and having unit scalar product with \vec{R} , can be estimated to be

(a)
$$(3\hat{i}+2\hat{j}+5\hat{k})/4$$
 (b) $(3\hat{i}+2\hat{j}-5\hat{k})/4$ (c) $(3\hat{i}-2\hat{j}+5\hat{k})/4$ (d) $(3\hat{i}-2\hat{j}-5\hat{k})/4$

Soln: Unit vector along \vec{V} is $\hat{V} = \frac{\vec{P} \times \vec{Q}}{\left|\vec{P} \times \vec{Q}\right|} = \frac{3\hat{i} + 2\hat{j} + 5\hat{k}}{\sqrt{38}}$

According to the question, $\vec{V}.\vec{R} = 1 \Rightarrow (V\hat{V}).\vec{R} = 1 \Rightarrow V = \frac{\sqrt{38}}{4}$ Correct option is (a)

Example 4: For any vector \vec{a} , the value of $\left|\vec{a} \times \hat{i}\right|^2 + \left|\vec{a} \times \hat{j}\right|^2 + \left|\vec{a} \times \hat{k}\right|^2$ is equal to

(a) $|\vec{a}|^2$ (b) $2|\vec{a}|^2$ (c) \vec{a}^2 (d) $2\vec{a}^2$

Soln: Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ (Here, a_1, a_2, a_3 are not constants)

¥F

$$\therefore \qquad \vec{a} \times i = a_2 \hat{k} - a_3 \hat{j}$$
$$\left| \vec{a} \times \hat{i} \right| = \sqrt{a_2^2 + a_3^2}$$

Similarly, $|\vec{a} \times \hat{j}| = \sqrt{a_1^2 + a_3^2}$ and $|\vec{a} \times \hat{k}| = \sqrt{a_1^2 + a_2^2}$

$$\therefore \qquad \left| \vec{a} \times \hat{i} \right|^2 + \left| \vec{a} \times \hat{j} \right|^2 + \left| \vec{a} \times \hat{k} \right|^2 = 2 \left(a_1^2 + a_2^2 + a_3^2 \right) = 2 \left| \vec{a} \right|^2$$

Correct option is (b)

Example 5: If $\vec{F} = \hat{i} + 3\hat{j} - \hat{k}$ acts at the point (1, 1, 1), then the torque of \vec{F} about the line $\vec{r} = 3\hat{i} + 2\hat{k} + (2\hat{i} - 2\hat{j} + \hat{k})t$ is_____.

Soln: We first find the vector torque about a point on the line, say the point (3, 0, 2).

This is $\vec{r} \times \vec{F}$, where \vec{r} is the vector from the point about which we want the torque, to the point at which

 \vec{F} acts, that is, from (3, 0, 2) to (1, 1, 1).

$$\therefore \qquad \vec{r} = \left(\hat{i} + \hat{j} + \hat{k}\right) - \left(3\hat{i} + 2\hat{k}\right) = -2\hat{i} + \hat{j} - \hat{k}$$

$$\therefore \qquad \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & -1 \\ 1 & 3 & -1 \end{vmatrix} = 2\hat{i} + 3\hat{j} - 7\hat{k}$$

The torque about the line is $\hat{n} \cdot (\vec{r} \times \vec{F})$ where \hat{n} is a unit vector along the line $\hat{n} = \frac{1}{3} (2\hat{i} - 2\hat{j} + \hat{k})$ **CAREER ENDEAVOUR** Therefore, torque about the line, $\hat{n} \cdot (\vec{r} \times \vec{F}) = 1$

Correct answer is (1)

■ Scalar Triple Product:

Scalar triple product of three vectors \vec{a}, \vec{b} and \vec{c} are defined as

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = [abc]$$

Note:

(i)
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$
 i.e. $[abc] = [bca] = [cab]$

(ii) Volume of a parallelopiped having $\vec{a}, \vec{b}, \vec{c}$ as concurrent edges is :V= $\left|\vec{a} \cdot (\vec{b} \times \vec{c})\right|$