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  One-dimensional potentials
3.1 Introduction to Bound States :
If the motion of a particle is confined to a limited region of space by potential energy so that the particle can
move back and forth in the region, then the particle is in a bound state. The simplest example of all motions in
bound state is the motion of a particle in a one-dimensional box with zero potential energy and the potential
energy is assumed to be infinite at the walls of the box.
The motion of a particle in three-dimensional box, one-dimensional box, motion of a simple harmonic
oscillator, motion of a particle in a one-dimensional square well potential with (E < V0), motion of a particle
in a one-dimensional square well potential with (E < V0), motion of a particle in one-dimensional (also in
three-dimensional) potential well, motion of a particle in spherically symmetric potential, etc. are the common
examples of bound state. Application of Schrodinger time-independent equal to such problems leads to
discrete energy values of the particles.

Properties of 1-D bound states:
(i) Energy eigenstates corresponding to one dimensional bounds states are of discrete energy and non-degen-

erate in nature.
(ii) The wavefunction of a particle moving under a one dimensional symmetric potential should have a definite

parity i.e. it will be either even or odd parity.
(iii) The wavefunction of a particle in the nth state will have n-nodes if n = 0 corresponds to the ground state of

the particle and will have n-1 nodes if n = 1 corresponds to the ground state of the particles.

3.2 One-dimensional infiitely deep potential well :
Consider a particle of mass ‘m’ and energy ‘E’ is moving along x-axis, in the region from x = 0  to x = a  under
the following potential i.e.

  0 0
otherwise

V x x a  

 

x = 0 x = a
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Figure :  Schematic diagram of 1-D infinite potential well.

The particle experiences no force within the potential well but feels a sudden large force directed towards the
origin as it reaches the points x = 0, a. Since, the potential is infinite outside, the particle  cannot penetrate
outside of the region 0 x a   i.e. 0   for the particle outside the box.

Chapter 3
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According to 1-D time-independent Schrodinger equaion,
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For the region 0 x a  , the equation becomes,
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Solution of eqn. (2) can be written as,

  sin cosx A kx B kx   (3)
Since, the particle remains confined within the box, then the probablity of finding the particle at x = 0 and x =
a must be zero.

Boundary conditions:  x  will be continuous at x = 0 and  x = a
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Note: If 0n    0 0 0k E x       everywhere inside the box. Thereofore, there will be no
admissible particle with zero energy within the box.

Normalization of the wave function:
The wave function n  corresponding to nth quantum state is
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Since, the particle must be somewhere within the box, the total probability of finding the particle inside the box
is unity i.e.
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Therefore, the normallized wave function will be
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Energy eigenvalues:

We know that,  
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So, we get an infinite sequence of descrete energy levels that corresponds to all integral values of n, where n is
called the quantum number representing the different states of the particle.

Ground state energy: 
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First excited state energy: 
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In general, 2
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Figure : Energy levels of a particle in a 1-D infinite potential well

Difference between two consecutive energy levels
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Spacing between two energy levels increases with ‘n’, decreases with size of the box ‘a’ and the mass of the
particle ‘m’. As 0na E     i.e. the energy levels gets closer, forming a continuum of energy..

Momentum eigenvalues:
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where ‘ ’ sign is due to the back and forth motion of the particle within the box.
Difference of momentum between two consecutive energy levels
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Various eigenstates of the particle inside a 1-D box :
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1( )x

x 
Ground state

    
x=0 x=aa/4

a/2
2( )x

x 

3 4a/

First excited state
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Note:  n x  has (n–1) nodes (excluding the boundary at x = 0 and x = a)

Variation of probability density corresponding to various eigenstates of the particle:

Probability density of finding the particle in the nth quantum state is given by,

    2 22 sinn n
n xP x x

a a


 

      
x=0 a/2 x=a

x

 2
1 x



          
x=0 x=ax


 2

2 x           
x=0 x=ax

 2
3 x



Figure : Variation of probability density corresponding to ground, first excited and second excited state respectively

Note:
(1) Probability of finding the particle in the left half of the well = Probability of finding the particle in the left half
of the well = 1/2, for any state n.

(2) Probability of finding the particle between 
3

4 4
a ax   is 1/2 for n = 2, 4, 6, .......

• The energy eigenfunctions of the particle confined in a 1-D box, satisfies the orthonormality condition i.e.
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• As the energy eigenfunctions form a complete set, an arbitary function  x  (which is well behaved and
satisfy the same boundary conditions) can be expanded in terms of these eigenfunctions as
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Expectation values of 2 2ˆ ˆ ˆ ˆ, , ,x xx p x p :
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Note: Expectation value of momentum for a real wave function is always zero.
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Uncertainity in the position of the particle is
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Uncertainity in the momentum of the particle is
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Example 1: A particle in a deep square well potential extending from 0x   to x L  has a wave function

  1 2
1 2
5

x        where 1  and 2  denote the ground state and the first excited state wave

functions. Find the expectation of ‘x’ in this state.

Soln.    1 2 1 2
1 12 2
5 5

x x x        

     1 1 1 2 2 1 2 2
1 2 2 4
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Therefore,  2 2 2
1 32 32 644.
5 2 2 29 9 45
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Example 2: Calculate xp  for    1 2
1
2

x     where 1  and 2  are the ground state and the

first excited state wave functions of a particle in a deep square well potential.

Soln. x xp p  1 1 2 1 1 2 2 2
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Therefore, 0xp

Example 3: The wave function of a particle in a deep square well potential extending from 0x  to x L  is

   30 /  ix x x L L  (a) Find the value of i, (b) Find the average value of  ‘x’ in this state.

Soln. (a) Any wave function of a particle in one dimension has the dimensions of 
1
L . Thus 
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Example 4: A particle is in the ground state of a deep square well in the range 0 x L  . Suddenly the wall
x L  of the well is shifted to 2x L , so as to make it a deep square well in the range 0 2x L  . Immedi-
ately after this, the energy of the particle is measured. What will be the probability of getting the energy as the
new ground state energy?

Soln. The wave function just before the shifting of the wall is

  2 sin for 0

0 otherwise

xx x L
L L

   



This is the energy eigenfunction corresponding to the ground state in the original well. When the wall is shifted,
the new ground state wave function becomes,

  2 sin  for 0 2
2 2

0 otherwise

xx x L
L L

   



 The probability of getting the ground state energy in measurements is 2| 


