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generalized coordinate in question is an angle  , then the corresponding generalized momentum is the angular
momentum about the axis of  ’s rotation, and the generalized force is the torque.

8.4 Invariance of the equations of motion:
The equations of motion are invariant under a shift of L by a total time derivative of a function of coordi-

nates and time i.e., if  , ,L q q t  is new lagrangian defined as:

     , , , , ,dL q q t L q q t G q t
dt

  

Then L and L  give the same equations of motion.
Theorem of quadratic nature of kinetic energy :
The kinetic energy of a system is, in general, a quadratic function of generalised velocities and, in particu-
lar, a homogeneous quadratic function of generalised velocities when the kinetic energy is independent of
time.
Proof : From the fundamental formula, we have
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where n is the number of particles of the system, im  is the mass of the ith particle and ir  is the velocity of
the ith particle.

Now,  1 2, ,......, ,
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i i fr r q q q t  where f  is the number of degrees of freedom.
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Since the second and third terms are identical, they may be added.
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From this equation (A), it is seen that the kinetic energy is, in general, a quadratic function of generalised
velocities. A case of of considerable importance arises when t is not explicitly involved in the transforma-

tion equation. Then 0ir
t
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 and  therefore, 0ka   and a = 0, so the above equation reduces to
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Thus the kinetic energy is a homogeneous quadratic expression of generalised velocities when the trans-

formation equation is  
 
i i jr r q , i.e., it is independent of time. In a free system, conservative system or

system with scleronomous constraints the kinetic energies are independent of time and so their kinetic
energies are homogeneous quadratic function of generalised velocities.

8.5 Cyclic coordinates and Conservation laws:
Cyclic or ignorable coordinates : If the Lagrangian of a system is not the function of a given coordi-
nate, then that coordinate is said to be cyclic or ignorable coordinate of the system. If the coordinate kq

does not occur in the expression for L, then kq  is said to be ignorable or cyclic.
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L
q
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(a) Conservation theorem for generalised momentum : The theorem is : the generalised momentum
corresponding to a cyclic or ignorable coordinate of a system is conserved.
Proof : According to Lagrange’s equations for a conservative system,
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With this substitution in the Lagrange’s equation,
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 generalised momentum of the sytem.

Therefore, constantkp 
(b) Conservation theorem for energy : The principle of homogeneity of time : The theorem states : If

the Lagrangian of a system does not contain time explicitly, then the quantity defined by k k
i

H p q L   ,

known as the Hamiltonian is a constant. If the transformation equation between the generalized coordi-

nates and normal coordinates is independent of time, i.e.,    andk kr r q V V q 
 

, then the Hamilto-
nian is equal to the total energy of the system and it remains conserved. This follows from the principle of
homogeneity of time which states that the laws of motion of a system does not depend on the choice of
time reference.
Proof : If lagrangian does not contain time, then it is a function of generalised coordinates and velocities
only

That is,  ,L L q q 
The total time derivative of it is given by
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where, f = number of degrees of freedom.

Using Lagrange’s equations 
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Interchanging summation with the total time differential, we have
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Now, let V be a function of generalized coordinates alone. Then,
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Also, the kinetic energy T is a homogeneous second degree function of generalised velocities, that is,
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Where a’s and b’s are constants depending on masses of particles and generalised coordinates.
By Euler’s theorem,
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(c) Conservation of linear momentum : The principle of homogeneity of space. The theorem states
that the linear momentum of a closed system (that is, a system free form external forces) is a constant
(called an integral of motion) of the system.

Proof : The law follows from the principle of homogeneity of space which means that a parallel
translation of a closed system as a whole in no way changes the mechanical property of the system i.e. its
Lagrangian function is left unchanged. In other words we may say that the principle of homogeneity of
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space means that mechanical property of a closed system cannot change if origin of the frame of refer-
ence is chanaged.

The Lagrangian function of a closed system consisting of n particles is given by
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The change in the Lagrangian function upon a parallel translation of the system through an infinitesimal
distance, specified by an arbitrary value s , is
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According to the principle of homogeneity of space this change of the Lagrangian function must be zero.
Hence, for compliance with this fundamental principle we have
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According to Lagranges equation of motion, equation for the linear motion of the i-th particle is
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Where Q’i is the resultant of all non-conservative forces acting on the ith particle of the system. In case of
a closed system, these forces are only internal in origin as a closed system means a system free from

external forces, that is, for such a system 
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their sum is zero.


1

0
i n

i i

d L
dt r





 
  

 

Or,
1

 constant
i n

i i

L a
r








  , or 
1

 constant
i n

i i
i

m v a






linear momentum of -th particle
i

L i
r

 
  




CONSTANT OF THE MOTION
The dynamical state of a particle is completely determined at a given time t, if we know its position x, and its
velocity x . If we know the dynamical state of a particle at some time 0t , and if the force f acting on the particle
is a known function of , andx x t  we can determine the state of the particle at any later time time from the
equations of motion

; 1, 2, 3i if mx i  ... (1)
This set of equations contains of three second order differential equations in the three variables 1 2 3, , andx x x .
The solution of this set of equations for andx x  can be written in the form

( , ); 1, 2, 3i ix x c t i  ... (2)
( , ); 1, 2, 3i ix x c t i   ... (3)

where 1 6,....,c c c  is a set of six independent and arbitrary constants. If we know the values of andx x  at
some instant of time t, the values of the six constant will be uniquely determined. Conversely if the six constants
are known, the values of andx x  at any arbitrary time t are determined.
The set of six equations given by Eqs. (2) and (3) can be solved for the set of six constants ic . If we do this we
obtain six equations,


