CSIR-UGC-NET/JRF- JUNE - 2018 PHYSICAL SCIENCES BOOKLET - [A]

PART - B

21. Consider the three vectors $\vec{v}_{1}=2 \hat{i}+3 \hat{k}, \vec{v}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{v}_{3}=5 \hat{i}+\hat{j}+\alpha \hat{k}$, where \hat{i}, \hat{j} and \hat{k} are the standard unit vectors in a three-dimensional Euclidean space. These vectors will be linearly dependent if the value of α is
(a) $31 / 4$
(b) $23 / 4$
(c) $27 / 4$
(d) 0
22. The fourier transform $\int_{-\infty}^{\infty} d x f(x) e^{i k x}$ of the function $f(x)=e^{-|x|}$ is
(a) $-\frac{2}{1+k^{2}}$
(b) $-\frac{1}{2\left(1+k^{2}\right)}$
(c) $\frac{2}{1+k^{2}}$
(d) $\frac{2}{\left(2+k^{2}\right)}$
23. The value of the integral $\int_{-\pi / 2}^{+\pi / 2} d x \int_{-1}^{+1} d y \delta(\sin 2 x) \delta(x-y)$ is
(a) 0
(b) $1 / 2$
(c) $1 / \sqrt{2}$
(d) 1
24. Consider the following ordinary differential equation : $\frac{d^{2} x}{d t^{2}}+\frac{1}{x}\left(\frac{d x}{d t}\right)^{2}-\frac{d x}{d t}=0$ with the boundary conditions $x(t=0)=0$ and $x(t=1)=1$. The value of $x(t)$ at $t=2$ is
(a) $\sqrt{e-1}$
(b) $\sqrt{e^{2}+1}$
(c) $\sqrt{e+1}$
(d) $\sqrt{e^{2}-1}$
25. What is the value of α for which $f(x, y)=2 x+3\left(x^{2}-y^{2}\right)+2 i(3 x y+\alpha y)$ is an analytic function of complex variable $z=x+i y$?
(a) 1
(b) 0
(c) 3
(d) 2
26. A particle moves in the one-dimensional potential $V(x)=\alpha x^{6}$, where $\alpha>0$ is a constant. If the total energy of the particle is E, its time period in a periodic motion is proportional to
(a) $E^{-1 / 3}$
(b) $E^{-1 / 2}$
(c) $E^{1 / 3}$
(d) $E^{1 / 2}$
27. Which of the following figures best describes the trajectory of a particle moving in a repulsive central potential $V(r)=\frac{\alpha}{r}(\alpha>0$ is a constant) ?
(a)

(b)

(c)

(d)

28. Two particles A and B move with relativistic velocities of equal magnitude v, but in opposite directions, along the x-axis of an inertial frame of reference. The magnitude of the velocity of A, as seen from the rest frame of B, is
(a) $\frac{2 v}{\left(1-\frac{v^{2}}{c^{2}}\right)}$
(b) $\frac{2 v}{\left(1+\frac{v^{2}}{c^{2}}\right)}$
(c) $2 v \sqrt{\frac{c-v}{c+v}}$
(d) $\frac{2 v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
29. A particle of mass m, kept in a potential $V(x)=-\frac{1}{2} k x^{2}+\frac{1}{4} \lambda x^{4}$, [where k and λ are positive constants], undergoes small oscillations about an equilibrium point. The frequency of oscillations is
(a) $\frac{1}{2 \pi} \sqrt{\frac{2 \lambda}{m}}$
(b) $\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(c) $\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$
(d) $\frac{1}{2 \pi} \sqrt{\frac{\lambda}{m}}$
30. Two points charges $+2 Q$ and $-Q$ are kept at points with Cartesian coordinates $(1,0,0)$ and $(2,0$, 0), respectively, in front of an infinite grounded conducting plate at $x=0$. The potential at $(x, 0,0)$ for $x \gg 1$ depends on x as
(a) x^{-3}
(b) x^{-5}
(c) x^{-2}
(d) x^{-4}
31. The following configuration of three identical narrow slits are illuminated by monochromatic light of wavelength λ (as shown in the figure below). The intensity is measured at an angle θ (where θ is the angle with the incident beam) at a large distance from the slits. If $\delta=\frac{2 \pi d}{\lambda} \sin \theta$, the intensity is proportional to

(a) $2 \cos \delta+2 \cos 2 \delta$
(b) $3+\frac{1}{\delta^{2}} \sin ^{2} 3 \delta$
(c) $3+2 \cos \delta+2 \cos 2 \delta+2 \cos 3 \delta$
(d) $2+\frac{1}{\delta^{2}} \sin ^{2} 3 \delta$
32. The electric field of a plane wave in a conducting medium is given by

$$
\vec{E}(z, t)=\hat{i} E_{0} e^{-z / 3 a} \cos \left(\frac{z}{\sqrt{3} a}-\omega t\right),
$$

where ω is the angular frequency and $a>0$ is a constant. The phase difference between the magnetic field \vec{B} and the electric field \vec{E} is
(a) 30° and \vec{E} lags behind \vec{B}
(b) 30° and \vec{B} lags behind \vec{E}
(c) 60° and \vec{E} lags behind \vec{B}
(d) 60° and \vec{B} lags behind \vec{E}
33. The electric field \vec{E} and the magnetic field \vec{B} corresponding to the scalar and vector potentials, $V(x, y, z, t)=0$ and $\vec{A}(x, y, z, t)=\frac{1}{2} \hat{k} \mu_{0} A_{0}(c t-x)$, where A_{0} is a constant, are
(a) $\vec{E}=0$ and $\vec{B}=\frac{1}{2} \hat{j} \mu_{0} A_{0}$
(b) $\vec{E}=-\frac{1}{2} \hat{k} \mu_{0} A_{0} c$ and $\vec{B}=\frac{1}{2} \hat{j} \mu_{0} A_{0}$
(c) $\vec{E}=0$ and $\vec{B}=-\frac{1}{2} \hat{i} \mu_{0} A_{0}$
(d) $\vec{E}=\frac{1}{2} \hat{k} \mu_{0} A_{0} c$ and $\vec{B}=-\frac{1}{2} \hat{i} \mu_{0} A_{0}$
34. A particle of mass m is confined in a three-dimensional box by the potential

$$
V(x, y, z)=\left\{\begin{array}{lc}
0, & 0 \leq x, y, z \leq a \\
\infty, & \text { otherwise }
\end{array}\right.
$$

The number of eigenstates of Hamiltonian with energy $\frac{9 \hbar^{2} \pi^{2}}{2 m a^{2}}$ is
(a) 1
(b) 6
(c) 3
(d) 4
35. The Hamiltonian of a spin- $\frac{1}{2}$ particle in a magnetic field \vec{B} is given by $H=-\mu \vec{B} \cdot \vec{\sigma}$, where μ is a real constant and $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ are the Pauli spin matrices. If $\vec{B}=\left(B_{0}, B_{0}, 0\right)$ and the spin state at time $t=0$ is an eigenstate of σ_{x}, then of the expectation values $\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{y}\right\rangle$ and $\left\langle\sigma_{z}\right\rangle$
(a) Only $\left\langle\sigma_{x}\right\rangle$ changes with time
(b) Only $\left\langle\sigma_{y}\right\rangle$ changes with time
(c) Only $\left\langle\sigma_{z}\right\rangle$ changes with time
(d) All three change with time
36. Two Stern-Gerlach apparatus S_{1} and S_{2} are kept in a line (x-axis). The directions of their magnetic fields are along the positive z - and y-axes, respectively. Each apparatus only transmits particles with spins aligned in the direction of its magnetic field. If an initially unpolarized beam of spin- $\frac{1}{2}$ particles passes through this configuration, the ratio of intensities $I_{0}: I_{f}$ of the initial and final beams, is

(a) $16: 1$
(b) $2: 1$
(c) $4: 1$
(d) $1: 0$
37. A particle of mass m is constrained to move in a circular ring to radius R. When a perturbation

$$
V^{\prime}=\frac{a}{R^{2}} \cos ^{2} \phi
$$

(where a is a real constant) is added, the shift in energy of the ground state, to first order in a, is
(a) a / R^{2}
(b) $2 a / R^{2}$
(c) $a /\left(2 R^{2}\right)$
(d) $a /\left(\pi R^{2}\right)$
38. Which of the following statements concerning the coefficient of volume expansion α and the isothermal compressibility κ of a solid is true ?
(a) α and κ are both intensive variables.
(b) α is an intensive and κ is an extensive variable.
(c) α is an extensive and κ is an intensive variable.
(d) α and κ are both extensive variables.
39. The van der Waals equation for one mole of a gas is $\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$. The corresponding equation of state for n moles of this gas at pressure p, volume V and temperature T, is
(a) $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$
(b) $\left(p+\frac{a}{V^{2}}\right)(V-n b)=n R T$
(c) $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=R T$
(d) $\left(p+\frac{a}{V^{2}}\right)(V-n b)=R T$
40. The number of ways of distributing 11 indistinguishable bosons in 3 different energy levels is
(a) 3^{11}
(b) 11^{3}
(c) $\frac{(13)!}{2!(11)!}$
(d) $\frac{(11)!}{3!8!}$
41. In a system of N distinguishable particles, each particle can be in one of two states with energies 0 and $-E$, respectively. The mean energy of the system at temperature T, is
(a) $-\frac{1}{2} N\left(1+e^{E / k_{B} T}\right)$
(b) $-\frac{N E}{\left(1+e^{E / k_{B} T}\right)}$
(c) $-\frac{1}{2} N E$
(d) $-\frac{N E}{\left(1+e^{-E / k_{B} T}\right)}$
42. In the following JK flip-flop circuit, J and K inputs are tied together to $+V_{C C}$. If the input is a clock signal of frequency f, the frequency of the output Q is

(a) f
(b) $2 f$
(c) $4 f$
(d) $f / 2$
43. Which of the following gates can be used as a parity checker ?
(a) an OR gate
(b) a NOR gate
(c) an exclusive OR (XOR) gate
(d) an AND gate
44. A sinusoidal signal with a peak voltage V_{P} and average value zero, is an input to the following circuit.

Assuming ideal diodes, the peak value of the output voltage across the load resistor R_{L}, is
(a) V_{P}
(b) $V_{P} / 2$
(c) $2 V_{P}$
(d) $\sqrt{2} V_{P}$
45. In the following circuit, the value of the common-emitter forward current amplification factor β for the transistor is 100 and $V_{B E}$ is 0.7 V .

The base current I_{B} is
(a) $40 \mu \mathrm{~A}$
(b) $30 \mu \mathrm{~A}$
(c) $44 \mu \mathrm{~A}$
(d) $33 \mu \mathrm{~A}$

PART - C

46. In the function $P_{n}(x) e^{-x^{2}}$ of a real variable $x, P_{n}(x)$ is a polynomial of degree n. The maximum number of extrema that this function can have is
(a) $n+2$
(b) $n-1$
(c) $n+1$
(d) n
47. The Green's function $G\left(x, x^{\prime}\right)$ for the equation $\frac{d^{2} y(x)}{d x^{2}}+y(x)=f(x)$, with the boundary values $y(0)=y\left(\frac{\pi}{2}\right)=0$, is
(a) $G\left(x, x^{\prime}\right)=\left\{\begin{array}{cl}x\left(x^{\prime}-\frac{\pi}{2}\right), & 0<x<x^{\prime}<\frac{\pi}{2} \\ \left(x-\frac{\pi}{2}\right), & 0<x^{\prime}<x<\frac{\pi}{2}\end{array}\right.$
(b) $G\left(x, x^{\prime}\right)= \begin{cases}-\cos x^{\prime} \sin x, & 0<x<x^{\prime}<\frac{\pi}{2} \\ -\sin x^{\prime} \cos x, & 0<x^{\prime}<x<\frac{\pi}{2}\end{cases}$
(c) $G\left(x, x^{\prime}\right)=\left\{\begin{array}{ll}\cos x^{\prime} \sin x, & 0<x<x^{\prime}<\frac{\pi}{2} \\ \sin x^{\prime} \cos x, & 0<x^{\prime}<x<\frac{\pi}{2}\end{array}\right.$ (d) $G\left(x, x^{\prime}\right)= \begin{cases}x\left(\frac{\pi}{2}-x^{\prime}\right), & 0<x<x^{\prime}<\frac{\pi}{2} \\ x^{\prime}\left(\frac{\pi}{2}-x\right), & 0<x^{\prime}<x<\frac{\pi}{2}\end{cases}$
48. The fractional error in estimating the integral $\int_{0}^{1} x d x$ using Simpson's $\frac{1}{3}$-rule, using a step size 0.1 , is nearest to
(a) 10^{-4}
(b) 0
(c) 10^{-2}
(d) 3×10^{-4}
49. Which of the following statements is true for a 3×3 real orthogonal matrix with determinant +1 ?
(a) the modulus of each of its eigenvalues need not be 1 , but their product must be 1 .
(b) at least one of its eigenvalues is +1 .
(c) all of its eigenvalues must be real.
(d) none of its eigenvalues need be real.
50. A particle of mass m moves in a central potential $V(r)=-\frac{k}{r}$ in an elliptic orbit $r(\theta)=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}$, where $0 \leq \theta \leq 2 \pi$ and a and e denote the semi-major axis and eccentricity, respectively. If its total energy is $E=-\frac{k}{2 a}$, the maximum kinetic energy is
(a) $E\left(1-e^{2}\right)$
(b) $E \frac{(e+1)}{(e-1)}$
(c) $\frac{E}{\left(1-e^{2}\right)}$
(d) $E \frac{(1-e)}{(1+e)}$
51. The Hamiltonian of a one-dimensional system is $H=\frac{x p^{2}}{2 m}+\frac{1}{2} k x$, where m and k are positive constants. The corresponding Euler-Lagrange equation for the system is
(a) $m \ddot{x}+k=0$
(b) $m \ddot{x}+2 \dot{x}+k x^{2}=0$
(c) $2 m x \ddot{x}-m \dot{x}^{2}+k x^{2}=0$
(d) $m x \ddot{x}-2 m \dot{x}^{2}+k x^{2}=0$
52. An inertial frame K^{\prime} moves with a constant speed v with respect to another inertial frame K along their common x-axis in the positive x-direction. Let ($x, c t$) and ($x^{\prime}, c t^{\prime}$) denote the space-time coordinates in the frame K and K^{\prime}, respectively. Which of the following space-time diagrams correctly describes the t^{\prime}-axis ($x^{\prime}=0$ line) and the x^{\prime}-axis $\left(t^{\prime}=0\right.$ line) in the $x-c t$ plane ? (In the following figures $\tan \varphi=v / c$).
(a)

(b)

(c)

(d)

53. The loop shown in the figure below carries a steady current I.

The magnitude of the magnetic field at the point O is
(a) $\frac{\mu_{0} I}{2 a}$
(b) $\frac{\mu_{0} I}{6 a}$
(c) $\frac{\mu_{0} I}{4 a}$
(d) $\frac{\mu_{0} I}{3 a}$
54. In the region far from a source, the time dependent electric field at a point (r, θ, ϕ) is

$$
\vec{E}(r, \theta, \phi)=\hat{\phi} E_{0} \omega^{2}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right]
$$

where ω is angular frequency of the source. The total power radiated (average over a cycle) is
(a) $\frac{2 \pi}{3} \frac{E_{0}^{2} \omega^{4}}{\mu_{0} c}$
(b) $\frac{4 \pi}{3} \frac{E_{0}^{2} \omega^{4}}{\mu_{0} c}$
(c) $\frac{4}{3 \pi} \frac{E_{0}^{2} \omega^{4}}{\mu_{0} c}$
(d) $\frac{2}{3} \frac{E_{0}^{2} \omega^{4}}{\mu_{0} c}$
55. A hollow waveguide supports transverse electric (TE) modes with the dispersion relation $k=\frac{1}{c} \sqrt{\omega^{2}-\omega_{m n}^{2}}$, where $\omega_{m n}$ is the mode frequency. The speed of flow of electromagnetic energy at the mode frequency is
(a) c
(b) $\omega_{m n} / k$
(c) 0
(d) ∞
56. The energy of a free relativistic particle is $E=\sqrt{|\vec{p}|^{2} c^{2}+m^{2} c^{4}}$, where m is its rest mass, \vec{p} is its momentum and c is the speed of light in vacuum. The ratio v_{g} / v_{p} of the group velocity v_{g} of a quantum mechanical wave packet (describing this particle) to the phase velocity v_{p} is
(a) $|\vec{p}| c / E$
(b) $|\vec{p}| m c^{3} / E^{2}$
(c) $|\vec{p}|^{2} c^{2} / E^{2}$
(d) $|\vec{p}| c / 2 E$
57. The n-th energy eigenvalue E_{n} of a one-dimensional Hamiltonian $H=\frac{p^{2}}{2 m}+\lambda x^{4}$, (where $\lambda>0$ is a constant) in the WKB approximation, is proportional to
(a) $\left(n+\frac{1}{2}\right)^{4 / 3} \lambda^{1 / 3}$
(b) $\left(n+\frac{1}{2}\right)^{4 / 3} \lambda^{2 / 3}$
(c) $\left(n+\frac{1}{2}\right)^{5 / 3} \lambda^{1 / 3}$
(d) $\left(n+\frac{1}{2}\right)^{5 / 3} \lambda^{2 / 3}$
58. The differential scattering cross section $d \sigma / d \Omega$ for the central potential $V(r)=\frac{\beta}{r} e^{-\mu r}$, where β and μ are positive constants, is calculated in the first Born approximation. Its dependence on the scattering angle θ is proportional to
(A is a constant below).
(a) $\left(A^{2}+\sin ^{2} \frac{\theta}{2}\right)$
(b) $\left(A^{2}+\sin ^{2} \frac{\theta}{2}\right)^{-1}$
(c) $\left(A^{2}+\sin ^{2} \frac{\theta}{2}\right)^{-2}$
(d) $\left(A^{2}+\sin ^{2} \frac{\theta}{2}\right)^{2}$
59. At $t=0$, the wavefunction of an otherwise free particle confined between two infinite walls at $x=0$ and $x=L$ is

$$
\psi(x, t=0)=\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}\right) .
$$

Its wavefunction at a later time $t=\frac{m L^{2}}{4 \pi \hbar}$ is
(a) $\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{2 \pi x}{L}\right) e^{-i \pi / 6}$
(b) $\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}+\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 6}$
(c) $\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 8}$
(d) $\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}+\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 8}$
60. The pressure P of a system of N particles contained in a volume V at a temperature T is given by

$$
P=n k_{B} T-\frac{1}{2} a n^{2}+\frac{1}{6} b n^{3}
$$

where n is the number density and a and b are temperature independent constants. If the system exhibits a gas-liquid transition, the critical temperature is
(a) $\frac{a}{b k_{B}}$
(b) $\frac{a}{2 b^{2} k_{B}}$
(c) $\frac{a^{2}}{2 b k_{B}}$
(d) $\frac{a^{2}}{b^{2} k_{B}}$
61. Consider a particle diffusing in a liquid contained in a large box. The diffusion constant of the particle in the liquid is $1.0 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}$. The minimum time after which the root-mean-squared displacement becomes more than 6 cm is
(a) 10 min
(b) 6 min
(c) 30 min
(d) $\sqrt{6} \mathrm{~min}$
62. A thermally insulated chamber of dimensions $(L, L, 2 L)$ is partitioned in the middle. One side of the chamber is filled with n moles of an ideal gas at a pressure P and temperature T, while the other side is empty. At $t=0$, the partition is removed and the gas is allowed to expand freely. The time to reach equilibrium varies as

(a) $n^{1 / 3} L^{-1} T^{1 / 2}$
(b) $n^{2 / 3} L T^{-1 / 2}$
(c) $n^{0} L T^{-1 / 2}$
(d) $n L^{-1} T^{1 / 2}$
63. The maximum intensity of solar radiation is at the wavelength of $\lambda_{\text {sun }} \sim 5000 \AA$ and corresponds to its surface temperature $T_{\text {sun }} \sim 10^{4} \mathrm{~K}$. If the wavelength of the maximum intensity of an X-ray star is $5 \AA$, its surface temperature is of the order of
(a) $10^{16} \mathrm{~K}$
(b) $10^{14} \mathrm{~K}$
(c) $10^{10} \mathrm{~K}$
(d) $10^{7} \mathrm{~K}$
64. The full scale of a 3-bit digital-to-analog (DAC) converter is 7 V . Which of the following tables represents the output voltage of this 3-bit DAC for the given set of input bits?
(a)

Input bits	Output voltage
000	0
001	1
010	2
011	3

(b)

Input bits	Output voltage
000	0
001	1.25
010	2.5
011	3.75

(c)

Input bits	Output voltage
000	1.25
001	2.5
010	3.75
011	5

(d)

Input bits	Output voltage
000	1
001	2
010	3
011	4

65. The input V_{i} to the following circuit is a square wave as shown in the following figure : Which of the waveforms V_{o} best describes the output ?

(a)

(b)

(c)

(d)

66. Two signals $A_{1} \sin (\omega t)$ and $A_{2} \cos (\omega t)$ are fed into the input and the reference channels, respectively, of a lock-in amplifier. The amplitude of each signal is 1 V . The time constant of the lock-in amplifier is such that any signal of frequency larger than ω is filtered out. The output of the lock-in amplifier is
(a) 2 V
(b) 1 V
(c) 0.5 V
(d) 0 V
67. A photon energy 115.62 keV ionizes a K-shell electron of a Be atom. One L-shell electron jumps to the K-shell to fill this vacancy and emits a photon of energy 109.2 keV in the process. If the ionization potential for the L-shell is 6.4 keV , the kinetic energy of the ionized electron is
(a) 6.42 keV
(b) 12.82 keV
(c) 20 eV
(d) 32 eV
68. The value of the Lande g-factor for a fine structure level defined by the quantum numbers $\mathrm{L}=1$ and $\mathrm{J}=2$ and $\mathrm{S}=1$, is
(a) $11 / 6$
(b) $4 / 3$
(c) $8 / 3$
(d) $3 / 2$
69. The electronic energy level diagram of a molecule is shown in the following figure.

Let $\Gamma_{i j}$ denote the decay rate for a transition from the level i and j. The molecules are optically pumped from level 1 to 2 . For the transition from level 3 to level 4 to be a lasing transition, the decay rates have to satisfy
(a) $\Gamma_{21}>\Gamma_{23}>\Gamma_{41}>\Gamma_{34}$
(b) $\Gamma_{21}>\Gamma_{41}>\Gamma_{23}>\Gamma_{34}$
(c) $\Gamma_{41}>\Gamma_{23}>\Gamma_{21}>\Gamma_{34}$
(d) $\Gamma_{41}>\Gamma_{21}>\Gamma_{34}>\Gamma_{23}$
70. Sodium Chloride (NaCl) crystal is a face centred cubic lattice, with a basis consisting of Na^{+}and Cl^{-} ions separated by half the body diagonal of a unit cube. Which of the planes corresponding to the Miller indices given below will not give rise to Bragg reflection of X-rays ?
(a) (220)
(b) (242)
(c) $\left(\begin{array}{ll}2 & 1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & 1 & 1\end{array}\right)$
71. The dispersion relation for the electrons in the conduction band of a semiconductor is given by $E=E_{0}+\alpha k^{2}$, where α and E_{0} are constants. If ω_{c} is the cyclotron resonance frequency of the conduction band electrons in a magnetic field B, the value of α is
(a) $\frac{\hbar^{2} \omega_{c}}{4 e B}$
(b) $\frac{2 \hbar^{2} \omega_{c}}{e B}$
(c) $\frac{\hbar^{2} \omega_{c}}{e B}$
(d) $\frac{\hbar^{2} \omega_{c}}{2 e B}$
72. Hard discs of radius R are arranged in a two-dimensional triangular lattice. What is the fractional area occupied by the discs in the closests possible packing ?
(a) $\frac{\pi \sqrt{3}}{6}$
(b) $\frac{\pi}{3 \sqrt{2}}$
(c) $\frac{\pi \sqrt{2}}{5}$
(d) $\frac{2 \pi}{7}$
73. Which of the following elementary particle processes does not conserve strangeness ?
(a) $\pi^{0}+p \rightarrow K^{+}+\Lambda^{0}$
(b) $\pi^{-}+p \rightarrow K^{0}+\Lambda^{0}$
(c) $\Delta^{0} \rightarrow \pi^{0}+n$
(d) $K^{0} \rightarrow \pi^{+}+\pi^{-}$
74. A deutron d captures a charged pion π^{-}in the $l=1$ state, and subsequently decays into a pair of neutrons (n) via strong interaction. Given that the intrinsic parities of π^{-}, d and n are $-1,+1$ and +1 respectively, the spin-wavefunction of the final state neutrons is a
(a) linear combination of a singlet and a triplet
(b) singlet
(c) triplet
(d) doublet
75. The reaction ${ }^{63} \mathrm{Cu}_{29}+p \rightarrow{ }^{63} \mathrm{Zn}_{30}+n$ is followed by a prompt β-decay of zinc
${ }^{63} \mathrm{Zn}_{30} \rightarrow{ }^{63} \mathrm{Cu}_{29}+e^{+}+v_{e}$. If the maximum energy of the position is 2.4 MeV , the Q-value of the original reaction in MeV is nearest to
[Take the masses of electrons, proton and neutron to be $0.5 \mathrm{MeV} / c^{2}, 938 \mathrm{MeV} / c^{2}$ and $939.5 \mathrm{MeV} / c^{2}$, respectively].
(a) -4.4
(b) -2.4
(c) -4.8
(d) -3.4

