CSIR-UGC-NET/JRF- JUNE - 2018

PHYSICAL SCIENCES BOOKLET - [A]

PART - B

Consider the three vectors $\vec{v}_1 = 2\hat{i} + 3\hat{k}$, $\vec{v}_2 = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{v}_3 = 5\hat{i} + \hat{j} + \alpha\hat{k}$, where \hat{i} , \hat{j} and \hat{k} 21. are the standard unit vectors in a three-dimensional Euclidean space. These vectors will be linearly dependent if the value of α is

(a) 31/4

The fourier transform $\int_{-\infty}^{\infty} dx \, f(x) e^{ikx}$ of the function $f(x) = e^{-|x|}$ is 22.

(a) $-\frac{2}{1+k^2}$ (b) $-\frac{1}{2(1+k^2)}$ (c) $\frac{2}{1+k^2}$ (d) $\frac{2}{(2+k^2)}$

The value of the integral $\int_{-\pi/2}^{+\pi/2} dx \int_{-1}^{+1} dy \, \delta(\sin 2x) \, \delta(x-y)$ is 23.

(a) 0

(b) 1/2

(c) $1/\sqrt{2}$ (d) 1

Consider the following ordinary differential equation: $\frac{d^2x}{dt^2} + \frac{1}{x} \left(\frac{dx}{dt}\right)^2 - \frac{dx}{dt} = 0$ 24.

with the boundary conditions x(t=0) = 0 and x(t=1) = 1. The value of x(t) at t=2 is

(a) $\sqrt{e-1}$

(b) $\sqrt{e^2 + 1}$ (c) $\sqrt{e + 1}$

What is the value of α for which $f(x, y) = 2x + 3(x^2 - y^2) + 2i(3xy + \alpha y)$ is an analytic function of 25. complex variable z = x + iy?

(a) 1

(b) 0

(d) 2

A particle moves in the one-dimensional potential $V(x) = \alpha x^6$, where $\alpha > 0$ is a constant. If the total 26. energy of the particle is E, its time period in a periodic motion is proportional to (a) $E^{-1/3}$ (b) $E^{-1/2}$ (c) $E^{1/3}$ (d) $E^{1/2}$

27. Which of the following figures best describes the trajectory of a particle moving in a repulsive central potential $V(r) = \frac{\alpha}{r} (\alpha > 0 \text{ is a constant})$?

Two particles A and B move with relativistic velocities of equal magnitude v, but in opposite direc-28. tions, along the x-axis of an inertial frame of reference. The magnitude of the velocity of A, as seen from the rest frame of B, is

(a) $\frac{2v}{\left(1 - \frac{v^2}{2}\right)}$ (b) $\frac{2v}{\left(1 + \frac{v^2}{2}\right)}$ (c) $2v\sqrt{\frac{c - v}{c + v}}$ (d) $\frac{2v}{\sqrt{1 - \frac{v^2}{2}}}$

- A particle of mass m, kept in a potential $V(x) = -\frac{1}{2}kx^2 + \frac{1}{4}\lambda x^4$, [where k and λ are positive con-29. stants], undergoes small oscillations about an equilibrium point. The frequency of oscillations is
 - (a) $\frac{1}{2\pi}\sqrt{\frac{2\lambda}{m}}$
- (b) $\frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (c) $\frac{1}{2\pi} \sqrt{\frac{2k}{m}}$ (d) $\frac{1}{2\pi} \sqrt{\frac{\lambda}{m}}$
- 30. Two points charges +2Q and -Q are kept at points with Cartesian coordinates (1, 0, 0) and (2, 0, 0)0), respectively, in front of an infinite grounded conducting plate at x = 0. The potential at (x, 0, 0)for $x \gg 1$ depends on x as
 - (a) x^{-3}
- (c) x^{-2}
- The following configuration of three identical narrow slits are illuminated by monochromatic light 31. of wavelength λ (as shown in the figure below). The intensity is measured at an angle θ (where θ is the angle with the incident beam) at a large distance from the slits. If $\delta = \frac{2\pi d}{\lambda} \sin \theta$, the intensity is proportional to

- (a) $2\cos\delta + 2\cos 2\delta$

- 32. The electric field of a plane wave in a conducting medium is given by

$$\vec{E}(z,t) = \hat{i} E_0 e^{-z/3a} \cos\left(\frac{z}{\sqrt{3}a} - \omega t\right),$$

where ω is the angular frequency and a > 0 is a constant. The phase difference between the magnetic field \vec{B} and the electric field \vec{E} is

- (a) 30° and \vec{E} lags behind \vec{B}
- (b) 30° and \vec{B} lags behind \vec{E}
- (c) 60° and \vec{E} lags behind \vec{B}
- (d) 60° and \vec{B} lags behind \vec{E}
- The electric field \vec{E} and the magnetic field \vec{B} corresponding to the scalar and vector potentials, 33. V(x, y, z, t) = 0 and $\vec{A}(x, y, z, t) = \frac{1}{2}\hat{k}\mu_0 A_0 (ct - x)$, where A_0 is a constant, are
 - (a) $\vec{E} = 0$ and $\vec{B} = \frac{1}{2} \hat{j} \mu_0 A_0$
- (b) $\vec{E} = -\frac{1}{2}\hat{k} \mu_0 A_0 c$ and $\vec{B} = \frac{1}{2}\hat{j} \mu_0 A_0$
- (c) $\vec{E} = 0$ and $\vec{B} = -\frac{1}{2}\hat{i} \mu_0 A_0$
- (d) $\vec{E} = \frac{1}{2}\hat{k} \mu_0 A_0 c$ and $\vec{B} = -\frac{1}{2}\hat{i} \mu_0 A_0$

A particle of mass m is confined in a three-dimensional box by the potential 34.

$$V(x, y, z) = \begin{cases} 0, & 0 \le x, y, z \le a \\ \infty, & \text{otherwise} \end{cases}$$

The number of eigenstates of Hamiltonian with energy $\frac{9\hbar^2\pi^2}{2ma^2}$ is

- (a) 1
- (b) 6
- (c) 3
- (d) 4

The Hamiltonian of a spin- $\frac{1}{2}$ particle in a magnetic field \vec{B} is given by $H = -\mu \vec{B} \cdot \vec{\sigma}$, where μ is a 35. real constant and $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli spin matrices. If $\vec{B} = (B_0, B_0, 0)$ and the spin state at time t = 0 is an eigenstate of σ_x , then of the expectation values $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$ and $\langle \sigma_z \rangle$

- (a) Only $\langle \sigma_x \rangle$ changes with time
- (b) Only $\langle \sigma_{v} \rangle$ changes with time
- (c) Only $\langle \sigma_z \rangle$ changes with time
- (d) All three change with time

36. Two Stern-Gerlach apparatus S_1 and S_2 are kept in a line (x-axis). The directions of their magnetic fields are along the positive z- and y-axes, respectively. Each apparatus only transmits particles with spins aligned in the direction of its magnetic field. If an initially unpolarized beam of spin- $\frac{1}{2}$ particles passes through this configuration, the ratio of intensities I_0 : I_f of the initial and final beams,

- (a) 16:1

37. A particle of mass m is constrained to move in a circular ring to radius R. When a perturbation

$$V' = \frac{a}{R^2} \cos^2 \phi$$

(where a is a real constant) is added, the shift in energy of the ground state, to first order in a, is

- (a) a/R^2
- (b) $2a/R^2$ (c) $a/(2R^2)$ (d) $a/(\pi R^2)$

38. Which of the following statements concerning the coefficient of volume expansion α and the isothermal compressibility κ of a solid is true?

- (a) α and κ are both intensive variables.
- (b) α is an intensive and κ is an extensive variable.
- (c) α is an extensive and κ is an intensive variable.
- (d) α and κ are both extensive variables.

The van der Waals equation for one mole of a gas is $\left(p + \frac{a}{V^2}\right)(V - b) = RT$. The corresponding 39. equation of state for n moles of this gas at pressure p, volume V and temperature T, is

(a)
$$\left(p + \frac{an^2}{V^2}\right) \left(V - nb\right) = nRT$$

(b)
$$\left(p + \frac{a}{V^2}\right) \left(V - nb\right) = nRT$$

(c)
$$\left(p + \frac{an^2}{V^2}\right) (V - nb) = RT$$

(d)
$$\left(p + \frac{a}{V^2}\right) \left(V - nb\right) = RT$$

- 40. The number of ways of distributing 11 indistinguishable bosons in 3 different energy levels is
 - (a) 3^{11}
- (b) 11^3
- (c) $\frac{(13)!}{2!(11)!}$
- (d) $\frac{(11)!}{3!8!}$
- 41. In a system of N distinguishable particles, each particle can be in one of two states with energies 0 and -E, respectively. The mean energy of the system at temperature T, is
 - (a) $-\frac{1}{2}N(1+e^{E/k_BT})$ (b) $-\frac{NE}{(1+e^{E/k_BT})}$ (c) $-\frac{1}{2}NE$ (d) $-\frac{NE}{(1+e^{-E/k_BT})}$
- In the following JK flip-flop circuit, J and K inputs are tied together to $+V_{CC}$. If the input is a clock 42. signal of frequency f, the frequency of the output Q is

- (a) *f*
- (b) 2f
- (c) 4 f
- (d) f/2
- 43. Which of the following gates can be used as a parity checker?
 - (a) an OR gate

- (b) a NOR gate
- (c) an exclusive OR (XOR) gate
- (d) an AND gate
- 44. A sinusoidal signal with a peak voltage V_p and average value zero, is an input to the following circuit.

Assuming ideal diodes, the peak value of the output voltage across the load resistor R_L , is

- (a) V_P
- (b) $V_{P}/2$
- (c) $2V_p$
- (d) $\sqrt{2}V_{\rm p}$
- 45. In the following circuit, the value of the common-emitter forward current amplification factor β for the transistor is 100 and V_{BE} is 0.7 V.

The base current I_B is

- (a) $40 \mu A$
- (b) $30 \mu A$
- (c) $44 \mu A$
- (d) 33 μ A

PART - C

- In the function $P_n(x)e^{-x^2}$ of a real variable x, $P_n(x)$ is a polynomial of degree n. The maximum 46. number of extrema that this function can have is
 - (a) n+2
- (b) n-1
- (c) n+1
- (d) n
- The Green's function G(x, x') for the equation $\frac{d^2y(x)}{dx^2} + y(x) = f(x)$, with the boundary values 47.

$$y(0) = y\left(\frac{\pi}{2}\right) = 0$$
, is

- (a) $G(x, x') = \begin{cases} x\left(x' \frac{\pi}{2}\right), & 0 < x < x' < \frac{\pi}{2} \\ \left(x \frac{\pi}{2}\right), & 0 < x' < x < \frac{\pi}{2} \end{cases}$ (b) $G(x, x') = \begin{cases} -\cos x' \sin x, & 0 < x < x' < \frac{\pi}{2} \\ -\sin x' \cos x, & 0 < x' < x < \frac{\pi}{2} \end{cases}$
- (c) $G(x, x') = \begin{cases} \cos x' \sin x, & 0 < x < x' < \frac{\pi}{2} \\ \sin x' \cos x, & 0 < x' < x < \frac{\pi}{2} \end{cases}$ (d) $G(x, x') = \begin{cases} x\left(\frac{\pi}{2} x'\right), & 0 < x < x' < \frac{\pi}{2} \\ x'\left(\frac{\pi}{2} x\right), & 0 < x' < x < \frac{\pi}{2} \end{cases}$
- The fractional error in estimating the integral $\int_0^1 x dx$ using Simpson's $\frac{1}{3}$ -rule, using a step size 0.1, 48. is nearest to
 - (a) 10^{-4}
- (b) 0
- (c) 10^{-2}
- (d) 3×10^{-4}
- Which of the following statements is true for a 3×3 real orthogonal matrix with determinant +1? 49.
 - (a) the modulus of each of its eigenvalues need not be 1, but their product must be 1.
 - (b) at least one of its eigenvalues is +1.

 - (c) all of its eigenvalues must be real.(d) none of its eigenvalues need be real.
- A particle of mass m moves in a central potential $V(r) = -\frac{k}{r}$ in an elliptic orbit $r(\theta) = \frac{a(1-e^2)}{1+a\cos\theta}$, 50.

where $0 \le \theta \le 2\pi$ and a and e denote the semi-major axis and eccentricity, respectively. If its total energy is $E = -\frac{k}{2a}$, the maximum kinetic energy is

- (a) $E(1-e^2)$

- (b) $E \frac{(e+1)}{(e-1)}$ (c) $\frac{E}{(1-e^2)}$ (d) $E \frac{(1-e)}{(1+e)}$
- The Hamiltonian of a one-dimensional system is $H = \frac{xp^2}{2m} + \frac{1}{2}kx$, where m and k are positive con-51. stants. The corresponding Euler-Lagrange equation for the system is
 - (a) $m\ddot{x} + k = 0$

(b) $m\ddot{x} + 2\dot{x} + kx^2 = 0$

(c) $2mx\ddot{x} - m\dot{x}^2 + kx^2 = 0$

(d) $mx\ddot{x} - 2m\dot{x}^2 + kx^2 = 0$

52. An inertial frame K' moves with a constant speed v with respect to another inertial frame K along their common x-axis in the positive x-direction. Let (x, ct) and (x', ct') denote the space-time coordinates in the frame K and K', respectively. Which of the following space-time diagrams correctly describes the t'-axis (x' = 0 line) and the x'-axis (t' = 0 line) in the x - ct plane? (In the following figures $\tan \varphi = v/c$).

53. The loop shown in the figure below carries a steady current *I*.

The magnitude of the magnetic field at the point O is

- (a) $\frac{\mu_0 I}{2\pi}$
- (b) $\frac{\mu_0 I}{6a}$
- (c) $\frac{\mu_0 I}{4a}$
- (d) $\frac{\mu_0 I}{3a}$

54. In the region far from a source, the time dependent electric field at a point (r, θ, ϕ) is

$$\vec{E}(r, \theta, \phi) = \hat{\phi} E_0 \omega^2 \left(\frac{\sin \theta}{r} \right) \cos \left[\omega \left(t - \frac{r}{c} \right) \right]$$

where ω is angular frequency of the source. The total power radiated (average over a cycle) is

- (a) $\frac{2\pi}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$ (b) $\frac{4\pi}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$ (c) $\frac{4}{3\pi} \frac{E_0^2 \omega^4}{\mu_0 c}$ (d) $\frac{2}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$

- 55. A hollow waveguide supports transverse electric (TE) modes with the dispersion relation $k = \frac{1}{c} \sqrt{\omega^2 - \omega_{mn}^2}$, where ω_{mn} is the mode frequency. The speed of flow of electromagnetic energy at the mode frequency is
 - (a) c
- (b) ω_{mn}/k
- (c) 0
- (d) ∞

- The energy of a free relativistic particle is $E = \sqrt{|\vec{p}|^2} c^2 + m^2 c^4$, where *m* is its rest mass, \vec{p} is its 56. momentum and c is the speed of light in vacuum. The ratio v_g / v_p of the group velocity v_g of a quantum mechanical wave packet (describing this particle) to the phase velocity \boldsymbol{v}_p is
 - (a) $|\vec{p}|c/E$

146

- (b) $|\vec{p}|mc^3/E^2$ (c) $|\vec{p}|^2c^2/E^2$ (d) $|\vec{p}|c/2E$

- The *n*-th energy eigenvalue E_n of a one-dimensional Hamiltonian $H = \frac{p^2}{2m} + \lambda x^4$, (where $\lambda > 0$ is 57. a constant) in the WKB approximation, is proportional to
- (a) $\left(n + \frac{1}{2}\right)^{4/3} \lambda^{1/3}$ (b) $\left(n + \frac{1}{2}\right)^{4/3} \lambda^{2/3}$ (c) $\left(n + \frac{1}{2}\right)^{5/3} \lambda^{1/3}$ (d) $\left(n + \frac{1}{2}\right)^{5/3} \lambda^{2/3}$
- The differential scattering cross section $d\sigma/d\Omega$ for the central potential $V(r) = \frac{\beta}{r} e^{-\mu r}$, where β 58. and μ are positive constants, is calculated in the first Born approximation. Its dependence on the scattering angle θ is proportional to (A is a constant below).
- (a) $\left(A^2 + \sin^2\frac{\theta}{2}\right)$ (b) $\left(A^2 + \sin^2\frac{\theta}{2}\right)^{-1}$ (c) $\left(A^2 + \sin^2\frac{\theta}{2}\right)^{-2}$ (d) $\left(A^2 + \sin^2\frac{\theta}{2}\right)^{-2}$
- At t = 0, the wavefunction of an otherwise free particle confined between two infinite walls at x = 059. and x = L is

$$\psi(x, t = 0) = \sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} - \sin \frac{3\pi x}{L} \right).$$

Its wavefunction at a later time $t = \frac{mL^2}{4\pi\hbar}$ is

- (a) $\sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} \sin \frac{2\pi x}{L} \right) e^{-i\pi/6}$
 - (b) $\sqrt{\frac{2}{I}} \left(\sin \frac{\pi x}{I} + \sin \frac{3\pi x}{I} \right) e^{-i\pi/6}$
- (c) $\sqrt{\frac{2}{I}} \left(\sin \frac{\pi x}{I} \sin \frac{3\pi x}{I} \right) e^{-i\pi/8}$ (d) $\sqrt{\frac{2}{I}} \left(\sin \frac{\pi x}{I} + \sin \frac{3\pi x}{I} \right) e^{-i\pi/8}$
- 60. The pressure P of a system of N particles contained in a volume V at a temperature T is given by

$$P = nk_B T - \frac{1}{2}an^2 + \frac{1}{6}bn^3$$

where n is the number density and a and b are temperature independent constants. If the system exhibits a gas-liquid transition, the critical temperature is

- (a) $\frac{a}{b k_R}$
- (b) $\frac{a}{2h^2 k}$
- (c) $\frac{a^2}{2hk_p}$
- (d) $\frac{a^2}{b^2 k_R}$

- 61. Consider a particle diffusing in a liquid contained in a large box. The diffusion constant of the particle in the liquid is 1.0×10^{-2} cm²/s. The minimum time after which the root-mean-squared displacement becomes more than 6 cm is
 - (a) 10 min
- (b) 6 min
- (c) 30 min
- (d) $\sqrt{6}$ min
- 62. A thermally insulated chamber of dimensions (L, L, 2L) is partitioned in the middle. One side of the chamber is filled with n moles of an ideal gas at a pressure P and temperature T, while the other side is empty. At t = 0, the partition is removed and the gas is allowed to expand freely. The time to reach equilibrium varies as

- (a) $n^{1/3}L^{-1}T^{1/2}$
- (b) $n^{2/3}LT^{-1/2}$
- (c) $n^0 L T^{-1/2}$
- (d) $nL^{-1}T^{1/2}$
- 63. The maximum intensity of solar radiation is at the wavelength of $\lambda_{\text{sun}} \sim 5000$ Å and corresponds to its surface temperature $T_{\text{sun}} \sim 10^4$ K. If the wavelength of the maximum intensity of an X-ray star is 5 Å, its surface temperature is of the order of
 - (a) 10¹⁶ K
- (b) 10^{14} K
- (c) 10^{10} K
- (d) 10^7 K
- 64. The full scale of a 3-bit digital-to-analog (DAC) converter is 7 V. Which of the following tables represents the output voltage of this 3-bit DAC for the given set of input bits?

Input bits	Output voltag	
000	0	
001	1	
010	2	
011	3	
	000 001 010	001 1 010 2

(b)	Input bits	Output voltage
	000	0
RE	001	P 1.25
	010	2.5
	011	3.75

- Input bits
 Output voltage

 000
 1.25

 001
 2.5

 010
 3.75

 011
 5
- Input bits
 Output voltage

 000
 1

 001
 2

 010
 3

 011
 4

65. The input V_i to the following circuit is a square wave as shown in the following figure:

Which of the waveforms V_o best describes the output?

- Two signals $A_1 \sin(\omega t)$ and $A_2 \cos(\omega t)$ are fed into the input and the reference channels, respec-66. tively, of a lock-in amplifier. The amplitude of each signal is 1V. The time constant of the lock-in amplifier is such that any signal of frequency larger than ω is filtered out. The output of the lock-in amplifier is
 - (a) 2V
- (c) 0.5V
- (d) 0V
- A photon energy 115.62 keV ionizes a K-shell electron of a Be atom. One L-shell electron jumps to 67. the K-shell to fill this vacancy and emits a photon of energy 109.2 keV in the process. If the ionization potential for the L-shell is 6.4 keV, the kinetic energy of the ionized electron is
 - (a) 6.42 keV
- (b) 12.82 keV = (c) 20 eV
- 68. The value of the Lande g-factor for a fine structure level defined by the quantum numbers L=1 and J = 2 and S = 1, is
 - (a) 11/6
- (b) 4/3
- (c) 8/3
- (d) 3/2
- 69. The electronic energy level diagram of a molecule is shown in the following figure.

Let Γ_{ij} denote the decay rate for a transition from the level i and j. The molecules are optically pumped from level 1 to 2. For the transition from level 3 to level 4 to be a lasing transition, the decay rates have to satisfy

(a) $\Gamma_{21} > \Gamma_{23} > \Gamma_{41} > \Gamma_{34}$

(b) $\Gamma_{21} > \Gamma_{41} > \Gamma_{23} > \Gamma_{34}$

(c) $\Gamma_{41} > \Gamma_{23} > \Gamma_{21} > \Gamma_{34}$

(d) $\Gamma_{41} > \Gamma_{21} > \Gamma_{34} > \Gamma_{23}$

Miller indices given below will not give rise to Bragg reflection of X-rays?

Sodium Chloride (NaCl) crystal is a face centred cubic lattice, with a basis consisting of Na⁺ and Cl⁻

ions separated by half the body diagonal of a unit cube. Which of the planes corresponding to the

70.

	(a) (2 2 0)	(b) (2 4 2)	(c) (2 2 1)	(d) (3 1 1)			
71.	The dispersion relation	on for the electrons in	the conduction band	of a semiconductor is given by			
	$E = E_0 + \alpha k^2$, where	α and E_0 are constant	nts. If ω_c is the cyclo	tron resonance frequency of the			
	conduction band electrons in a magnetic field B , the value of α is						
	(a) $\frac{\hbar^2 \omega_c}{4eB}$	(b) $\frac{2\hbar^2\omega_c}{eB}$	(c) $\frac{\hbar^2 \omega_c}{eB}$	(d) $\frac{\hbar^2 \omega_c}{2eB}$			
72.	Hard discs of radius R are arranged in a two-dimensional triangular lattice. What is the fractional area occupied by the discs in the closests possible packing?						
	(a) $\frac{\pi\sqrt{3}}{6}$	(b) $\frac{\pi}{3\sqrt{2}}$	(c) $\frac{\pi\sqrt{2}}{5}$	(d) $\frac{2\pi}{7}$			
73.	Which of the following elementary particle processes does not conserve strangeness?						
	(a) $\pi^0 + p \rightarrow K^+ + M$	\mathbf{V}_0	(b) $\pi^- + p \to K^0 + K^0$	Λ^0			
	(c) $\Delta^0 \to \pi^0 + n$		(d) $K^0 \to \pi^+ + \pi^-$				
74.	A deutron d captures	a charged pion π^- in	the $l = 1$ state, and su	bsequently decays into a pair of			
	neutrons (n) via strong interaction. Given that the intrinsic parities of π^- , d and n are -1 , $+1$ and $+1$ respectively, the spin-wavefunction of the final state neutrons is a (a) linear combination of a singlet and a triplet (b) singlet (c) triplet (d) doublet						
75.	The reaction ⁶³ Cu ₂₉	$+p \rightarrow {}^{63}\text{Zn}_{30} + n$ is fo	llowed by a prompt β	- decay of zinc			
	$^{63}\mathrm{Zn_{30}} \rightarrow ^{63}\mathrm{Cu_{29}} + e^+ + \nu_e$. If the maximum energy of the position is 2.4 MeV, the <i>Q</i> -value of the original reaction in MeV is nearest to EXECUTE [Take the masses of electrons, proton and neutron to be 0.5 MeV/ c^2 , 938 MeV/ c^2 and 939.5 MeV/ c^2 , respectively].						
	(a) -4.4	(b) -2.4	(c) -4.8	(d) -3.4			