PAPER : CSIR-UGC-NET/JRF DEC. 2023

CHEMICAL SCIENCES

PART-B

1. The thermodynamic variable ' X ' in the equation

$$
\left(\frac{\partial S}{\partial P}\right)_{T}=\frac{1}{T}\left[X+\left(\frac{\partial H}{\partial P}\right)_{T}\right] \text { is }
$$

(a) V
(b) S
(c) $-V$
(d) C_{p}
2. The difference in the second ionization energies of $\mathrm{Li} / \mathrm{Na}, \mathrm{Be} / \mathrm{Mg}, \mathrm{B} / \mathrm{Al}$ and N / P are $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ and X_{4} respectively. The correct order of the difference in the second ionization energies is
(a) $X_{1}>X_{4}>X_{3}>X_{2}$
(b) $X_{1}>X_{2}>X_{3}>X_{4}$
(c) $\mathrm{X}_{4}>\mathrm{X}_{3}>\mathrm{X}_{1}>\mathrm{X}_{2}$
(d) $X_{1}>X_{3}>X_{4}>X_{2}$
3. The option showing the correct match of metal complexes in Column-I with the corresponding $\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$ values in Column-II is

Column - I		Column - II	
A	$\left[\mathrm{TiF}_{6}\right]^{3-}$	P	21800
B	$\left.[\mathrm{MnF}]_{6}\right]^{2-}$	Q	17000
C	$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$	R	9400
D	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	S	24000

(a) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{R}$
(b) $\mathrm{A} \rightarrow \mathrm{R}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{Q}$
(c) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{R}, \mathrm{D} \rightarrow \mathrm{S}$
(d) $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{B} \rightarrow \mathrm{S}, \mathrm{C} \rightarrow \mathrm{R}, \mathrm{D} \rightarrow \mathrm{Q}$
4. The correct match for the protons of ethyl acrylate given in Column P with chemical shifts (σ ppm) given in Column Q is

	Column P		Column \mathbf{Q}
A.	H_{a}	i.	$6.11(\mathrm{dd}, J=16,10 \mathrm{~Hz})$
B.	H_{b}	ii.	$6.4(\mathrm{dd}, J=16,4 \mathrm{~Hz})$
C.	H_{c}	iii.	$5.8(\mathrm{dd}, J=10,4 \mathrm{~Hz})$

(a) A-i, B-ii, C-iii
(b) A-iii, B-ii, C-i
(c) A-iii, B-i, C-ii
(d) A-ii, B-iii, C-i
5. The structure that corresponds to the following compound is

(a)

(b)

(c)

(d)

6. The calculated magnetic moment of $\mathrm{Eu}^{3+}\left(44^{6}\right)$ is 0 (zero) BM. The experimental value is $3.4-$ 3.6 BM at 298 K . The deviation is due to the
(a) mixing of 4 f and 4 d orbitals
(b) large spin-orbit coupling constant (λ)
(c) large orbital angular momentum
(d) populated ground and the excited states
7. If $H=\frac{p_{x}^{2}}{2 m}+V(x)$, then $\left[H, p_{x}\right]$ is
(a) $i \hbar \frac{d V}{d x}$
(b) 0
(c) $-i \hbar$
(d) $-\frac{i \hbar p_{x}}{m}$
8. In a flame photometric analysis of a blood serum sample for K^{+}ion, a band is obtained at 766 nm . This band is due to
(a) absorption by K^{+}ion only
(b) absorption by K atom only
(c) emission by K^{+}ion only
(d) emission by K atom only
9. The correct option for the oxidation state(s) of Nb in the cluster $\mathrm{Na}_{4}\left[\mathrm{Nb}_{6} \mathrm{Cl}_{18}\right]$ is
(a) two are in +3 state and four are in +2 state
(b) all are in +2 state
(c) all are in +3 state
(d) three are in +2 state and three are in +3 state
10. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ on reaction with $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{I}$ gives Y with the elimination of two molecules of CO. Consider the following statements
A. Y obeys the 18 -electron rule
B. The reaction is an example of oxidative addition
C. Allyl moiety shows η^{1} coordination in Y
D. Y adopts pentagonal bipyramidal geometry

The correct option is
(a) A, B and C only
(b) A and B only
(c) A, B and D only
(d) B and D only
11. Of the following atomic transitions, the allowed one is
(a) ${ }^{1} \mathrm{~S} \rightarrow{ }^{5} \mathrm{~S}$
(b) ${ }^{3} \mathrm{P} \rightarrow{ }^{1} \mathrm{D}$
(c) ${ }^{1} \mathrm{~S} \rightarrow{ }^{1} \mathrm{D}$
(d) ${ }^{3} \mathrm{D} \rightarrow{ }^{3} \mathrm{P}$
12. The following two molecules are

(a) Enantiomers
(b) Diastereomers
(c) Homomers (Identical)
(d) Constitutional isomers
13. Molecule B is twice as heavy as molecule A. The ratio of the thermal de-Broglie wavelength of the molecule A to that of the molecule B is
(a) $\sqrt{2}: 1$
(b) $2: 1$
(c) $1: 2$
(d) $1: \sqrt{2}$
14. The given steroid molecule undergoes facile monodecarboxylation on heating. The carboxylic acid group lost is at

(a) C 15
(b) C 13
(c) C 5
(d) C 2
15. For 0.001 M aqueous solutions of $\mathrm{AlCl}_{3}, \mathrm{CaCl}_{2}$ and KCl at $25^{\circ} \mathrm{C}$, the correct order of Debye length is
(a) $\mathrm{AlCl}_{3}<\mathrm{CaCl}_{2}<\mathrm{KCl}$
(b) $\mathrm{KCl}<\mathrm{CaCl}_{2}<\mathrm{AlCl}_{3}$
(c) $\mathrm{CaCl}_{2}<\mathrm{KCl}<\mathrm{AlCl}_{3}$
(d) $\mathrm{AlCl}_{3}<\mathrm{KCl}<\mathrm{CaCl}_{2}$
16. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

17. The following statements are give \mathbb{R}^{r} with respect to the copper-containing nitrite reductase.
A. It contains both Type - II and Type - III copper proteins
B. Type - I copper protein is involved in the electron transfer process
C. Nitrite ion is reduced to NO
D. Nitrite ion is reduced to NH_{3}

The option with correct statements is:
(a) A and B only
(b) B and C only
(c) A and C only
(d) A and D only
18. The number of skeletal electron pairs (SEP) and the cluster type for $\left[\mathrm{B}_{10} \mathrm{H}_{10}\right]^{2-}$ and $\left[\mathrm{B}_{6} \mathrm{H}_{9}\right]^{-}$, respectively, are
(a) 11, closo and 8, nido
(b) 11, nido and 8, nido
(c) 10, closo and 6, arachno
(d) 10 , closo and 8 , nido
19. According to VSEPR theory, the geometries of FCIO and $\mathrm{F}_{5} \mathrm{IO}$, respectively, are
(a) linear and octahedral
(b) tetrahedral and octahedral
(c) tetrahedral and capped octahedral
(d) trigonal bipyramidal and capped octahedral
20. $e^{i k x}$ is an eigenfunction of the linear momentum operator, \hat{p}_{x}, with the eigenvalue of
(a) $\hbar^{2} k$
(b) $\hbar k$
(c) $\hbar k^{2}$
(d) $\hbar^{2} k^{2}$
21. For face centered cubic (FCC) packing of a monoatomic solid, the number of tetrahedral and octahedral holes within the unit cell, respectively, are
(a) 8 and 4
(b) 4 and 2
(c) 16 and 16
(d) 6 and 6
22. The correct order of reactivity for the following dienes with maleic anhydride is

(a) $\mathrm{M}>\mathrm{N}>\mathrm{O}$
(b) $\mathrm{N}>\mathrm{M}>\mathrm{O}$
(c) $\mathrm{N}>\mathrm{O}>\mathrm{M}$
(d) $\mathrm{O}>\mathrm{N}>\mathrm{M}$
23. For a proton, the gyromagnetic ratio is $26.752 \times 10^{7} \mathrm{rad} \mathrm{T}^{-1} \mathrm{~s}$. The Larmor frequency for a proton (in MHz) in a 21.1 T magnetic field is, approximately
(a) 400
(b) 500
(c) 600
(d) 900
24. The following reaction is the fastest when

(a) $\mathrm{X}=\mathrm{m}-\mathrm{NO}_{2}$
(b) $\mathrm{X}=\mathrm{p}-\mathrm{OMe}$
(c) $\mathrm{X}=\mathrm{p}-\mathrm{NO}_{2}$
(d) $\mathrm{X}=\mathrm{m}-\mathrm{OMe}$
25. The option showing the correct match for the reactants in Column-I with the second-order rate constants ($1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$) in Column-II for the outer-sphere reactions in water at $25^{\circ} \mathrm{C}$ is

Column I		Column II	
A.	$\left[\mathrm{Fe}(\mathrm{CN})_{6} 4^{4-}\right.$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	i.	10^{5}
B.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	ii.	3
C.	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	iii.	10^{-6}
D.	$\left[\mathrm{Co}(\text { en })_{3}\right]^{2+}$ and $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$	iv.	10^{-4}

(a) A-(i), B-(ii), C-(iii), D-(iv)
(b) A-(iv), B-(iii), C-(ii), D-(i)
(c) A-(i), B-(ii), C-(iv), D-(iii)
(d) A-(iv), B-(ii), C-(iii), D-(i)
26. The reaction of $\mathrm{V}_{2} \mathrm{O}_{5}$ with an ethanolic HCl produces a species X , which gives an EPR spectrum with an eight-line ${ }^{51} \mathrm{~V}$ hyperfine coupling (${ }^{51} \mathrm{~V}: \mathrm{I}=7 / 2$) and a strong infra-red absorption in the region of $950-1035 \mathrm{~cm}^{-1}$. X contains a
(a) $\left[\mathrm{V}-(\mathrm{O})_{2}-\mathrm{V}\right]^{6+}$ unit
(b) $[\mathrm{VO}]^{2+}$ unit
(c) $\left[\mathrm{V}(\mathrm{O})\left(\mathrm{O}_{2}\right)\right]^{+}$unit
(d) $[(\mathrm{O}) \mathrm{V}-\mathrm{O}-\mathrm{V}(\mathrm{O})]^{4+}$ unit
27. The most effective pharmacophore that confers antibiotic activity to penicillin G is

(a) phenylacetamide
(b) thiazolidine ring
(c) carboxylic acid
(d) β-lactam
28. The number of unpaired electrons in B_{2} is
(a) 0
(b) 1
(c) 2
(d) 3
29. Magnetic moment of $\mathrm{Yb}^{3+}\left(\mathrm{f}^{13}\right)$ is
(a) 4.54 BM
(b) 1.73 BM
(c) 2.83 BM
(d) 3.87 BM
30. The following molecular orbital corresponds to

(a) HOMO of pentadienyl cation
(b) HOMO of pentadienyl anion
(c) LUMO of pentadienyl cation
(d) LUMO of pentadienyl anion
31. The reaction of the given compound with MeI produces

(a)

(b)

(c)

(d)

32. 2-Methylbut-2-ene is used in Pinnick oxidation
[$\mathrm{R}-\mathrm{CHO} \rightarrow \mathrm{R}-\mathrm{CO}_{2} \mathrm{H}$ using $\mathrm{NaClO}_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$, in $\mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$] to scavenge
(a) HCl
(b) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) HClO_{2}
(d) HOCl
33. The total number of six membered rings in the polycyclic compounds $\mathrm{P}_{4}(\mathrm{NMe})_{6}$ and $\mathrm{P}_{2}\left(\mathrm{~N}_{2} \mathrm{Me}_{2}\right)_{3}$ is
(a) 7
(b) 6
(c) 5
(d) 4
34. Based on Hückel rule, the following species is

(a) aromatic
(b) antiaromatic
(c) nonaromatic
(d) homoaromatic
35. Consider the following statements,
I. Micelles form above the critical micelle concentration
II. Micelles form above the Krafft temperature

The correct option is
(a) Only I is true
(b) Only II is true
(c) Both I and II are true
(d) Both I and II are false
36. According to Arrhenius equation, the plot that correctly describes the temperature (T) dependence of the rate constant (k) is
(a)

(b) ${ }^{k}$

(c)

(d)

37. The correct absolute configuration for the structure shown below is

(a) $1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S}$
(b) $1 \mathrm{~S}, 2 \mathrm{R}, 4 \mathrm{R}$
(c) $1 \mathrm{R}, 2 \mathrm{R}, 4 \mathrm{~S}$
(d) $1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{R}$
38. The molecule MX_{5} belongs to the point group $\mathrm{D}_{3 \mathrm{~h}}$. Elongation of both the axial $\mathrm{M}-\mathrm{X}$ bonds yields A and elongation of one of the $\mathrm{M}-\mathrm{X}$ equatorial bonds yields B .

The point groups of A and B , respectively, are
(a) $\mathrm{C}_{3 \mathrm{v}}$ and $\mathrm{D}_{3 \mathrm{~h}}$
(b) $\mathrm{D}_{3 \mathrm{~h}}$ and $\mathrm{C}_{3 \mathrm{v}}$
(c) $\mathrm{C}_{3 \mathrm{v}}$ and $\mathrm{C}_{2 \mathrm{v}}$
(d) $\mathrm{D}_{3 \mathrm{~h}}$ and $\mathrm{C}_{2 \mathrm{v}}$
39. Among the following, the examples of chemoselective reactions are
A.

B.

C.

D.

(a) A and B
(b) B and C
(c) A and D
(d) C and D
40. For step-wise polymerization, the correct plot of chain length $(\langle N\rangle)$ against degree of polymerization (p) is
(a)

(b)

(c) \hat{z}

(d)

PART-C

61. The total work done by the system in the cyclic process depicted above is

(a) $6 \mathrm{P}_{1} \mathrm{~V}_{1}$
(b) 0
(c) $-14 \mathrm{P}_{1} \mathrm{~V}_{1}$
(d) $12 \mathrm{P}_{1} \mathrm{~V}_{1}$
62. The d-orbitals of a hydrogenic atom with $n=3, l=2$, and $m= \pm 2$ are given by

$$
\psi_{3,2, \pm 2}=N \cdot R(r) \sin ^{2} \theta e^{ \pm 2 i \phi}
$$

where, N is the normalization constant and $R(r)$ is the radial part of the wavefunction. An appropriate linear combination of these two wavefunctions yields the real orbitals
(a) $d_{z^{2}}$
(b) $d_{x y}$
(c) $d_{y z}$
(d) $d_{z x}$
63. A molecule shows two absorption at 896 and 960 MHz in its ${ }^{13} \mathrm{C}$ NMR spectrum in a magnetic field of 3 T . The corresponding chemical shifts in ppm are $\left({ }^{13} \mathrm{C}\right.$ magnetogyric ratio $\gamma=6.72 \times 10^{7} \mathrm{radT}^{-1} \mathrm{~s}^{-1} ; I=\frac{1}{2}$)
(a) 12.8 and 13.7
(b) 14 and 15
(c) 32 and 34
(d) 28 and 30
64. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

65. Consider the following data with respect to J-J coupled states in $\mathrm{Nd}^{3+}($ atomic number $=60)$ ion

	Lowest	Highest
A	${ }^{4} I_{9 / 2}$	${ }^{4} I_{15 / 2}$
B	${ }^{4} I_{7 / 2}$	${ }^{4} I_{9 / 2}$
C	${ }^{4} H_{9 / 2}$	${ }^{4} H_{9 / 2}$
D	${ }^{4} H_{9 / 2}$	${ }^{4} H_{13 / 2}$

The option showing the correct lowest and highest states of Nd^{3+}, is
(a) A
(b) B
(c) C
(d) D
66. Complete hydrolysis of XeF_{6} gives \mathbf{P}, whereas alkaline hydrolysis of XeF_{6} gives \mathbf{Q} and \mathbf{R} as the major products. \mathbf{P}, \mathbf{Q} and \mathbf{R}, respectively, are
(a) $\mathrm{XeO}_{3}, \mathrm{XeO}_{6}^{4-}$, and Xe
(b) $\mathrm{XeO}_{4}, \mathrm{HXeO}_{6}^{4-}$ and Xe
(c) $\mathrm{XeO}_{4}, \mathrm{Xe}$ and XeO_{6}^{4-}
(d) $\mathrm{HXeO}_{4}^{-}, \mathrm{XeO}_{3}$ and XeO_{6}^{4-}
67. The ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[\mathrm{XeF}_{5}\right]^{-}$ion shows, $\left[{ }^{129} \mathrm{Xe}, \mathrm{I}=1 / 2,26.5 \%\right.$ abundance $]$
(a) a doublet with satellite peaks
(b) a triplet and a quartet with satellite peaks for both
(c) a doublet and a quintet with satellite peaks for both
(d) a singlet with satellite peaks
68. A particle of mass m is confined in a rectangular box with $L_{x}=2 \mathrm{~L}_{\mathrm{y}}$. The state with the energy $\frac{10 h^{2}}{8 \mathrm{~mL}_{\mathrm{y}}^{2}}$ has a degeneracy of
(a) 1
(b) 2
(c) 3
(d) 4
69. For a diatomic molecule, which is an anharmonic oscillator, \bar{v}_{e} (vibrational wavenumber) $=536.2$ cm^{-1}. The observed ($\overline{\mathrm{v}}_{\text {obs }}$) value of fundamental frequency is $529.4 \mathrm{~cm}^{-1}$. The magnitude of $\bar{v}_{\text {obs }}\left(\right.$ in $\left.\mathrm{cm}^{-1}\right)$ for $3^{\text {rd }}$ overtone is closest to
(a) 2076.8
(b) 1588.2
(c) 1567.8
(d) 2117.2
70. The oxy-hemocyanin exhibits a resonance Raman signal at $744 \mathrm{~cm}^{-1}$ for ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ stretch, following its excitation at 575 nm . The value of the ${ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}$ stretch for an ${ }^{18} \mathrm{O}_{2}$ substituted oxy-hemocyanin, and the origin of the absorption band, are
(a) $702 \mathrm{~cm}^{-1}$ and $\mathrm{O}_{2}^{-} \rightarrow \mathrm{Cu}(\mathrm{II})$ charge transfer
(b) $702 \mathrm{~cm}^{-1}$ and $\mathrm{O}_{2}^{2-} \rightarrow \mathrm{Cu}(\mathrm{II})$ charge transfer
(c) $664 \mathrm{~cm}^{-1}$ and $\mathrm{O}_{2}^{-} \rightarrow \mathrm{Cu}(\mathrm{II})$ charge transfer
(d) $792 \mathrm{~cm}^{-1}$ and $\mathrm{O}_{2}^{2-} \rightarrow \mathrm{Cu}(\mathrm{II})$ charge transfer
71. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{X})\right] \mathrm{Cl}_{2}(\mathbf{1})$ on reaction with aqueous NH_{3} followed by the addition of $\mathrm{NaNO}_{2} /$ conc. HCl yields $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{Y})\right] \mathrm{Cl}_{2}$ (2). Reaction of 1 with NaNO_{2} results in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{Z})\right] \mathrm{Cl}_{2}(\mathbf{3})$. Complex 2 shows two IR spectral bands at 1310 and $1430 \mathrm{~cm}^{-1}$, whereas complex 3 shows the same at 1065 and $1470 \mathrm{~cm}^{-1} . \mathrm{X}, \mathrm{Y}$ and Z , respectively are
(a) $\mathrm{X}=\mathrm{Cl} ; \mathrm{Y}=\mathrm{NO}_{2} ; \mathrm{Z}=\mathrm{ONO}$
(b) $\mathrm{X}=\mathrm{H}_{2} \mathrm{O} ; \mathrm{Y}=\mathrm{NO}_{2} ; \mathrm{Z}=\mathrm{ONO}$
(c) $\mathrm{X}=\mathrm{Cl} ; \mathrm{Y}=\mathrm{ONO} ; \mathrm{Z}=\mathrm{NO}_{2}$
(d) $\mathrm{X}=\mathrm{H}_{2} \mathrm{O} ; \mathrm{Y}=\mathrm{ONO} ; \mathrm{Z}=\mathrm{NO}_{2}$
72. 1 and 2 are the labels of two electrons. If $\phi_{1 \mathrm{~s}}$ and $\phi_{2 \mathrm{~s}}$ are the 1 s and 2 s wavefunctions of He atom and α and β are the spin wavefunction of an electron. The Slater determinant that correctly describes one of the symmetry-adapted excited states of He atom is
(a) $\left|\begin{array}{ll}\phi_{1 \mathrm{~s}}(1) \alpha(1) & \phi_{1 \mathrm{~s}}(2) \alpha(2) \\ \phi_{\mathrm{Is}}(1) \beta(1) & \phi_{1 \mathrm{~s}}(2) \beta(2)\end{array}\right|$
(b) $\left|\begin{array}{ll}\phi_{1 \mathrm{~s}}(1) \alpha(1) & \phi_{1 \mathrm{~s}}(2) \alpha(2) \\ \phi_{2 \mathrm{~s}}(1) \beta(1) & \phi_{2 \mathrm{~s}}(2) \beta(2)\end{array}\right|$
(c) $\left|\begin{array}{ll}\phi_{1 \mathrm{~s}}(1) \alpha(1) & \phi_{1 \mathrm{~s}}(2) \beta(2) \\ \phi_{2 \mathrm{~s}}(1) \alpha(1) & \phi_{2 \mathrm{~s}}(2) \alpha(2)\end{array}\right|$
(d) $\left|\begin{array}{ll}\phi_{1 \mathrm{~s}}(1) \beta(1) & \phi_{1 \mathrm{~s}}(2) \beta(2) \\ \phi_{2 \mathrm{~s}}(1) \alpha(1) & \phi_{2 \mathrm{~s}}(2) \alpha(2)\end{array}\right|$
73. The following statements are given with respect to the symmetry operations and symmetry elements.
(A) BF_{3} possesses S_{3} axis
(B) $\mathrm{C}_{2} \mathrm{H}_{6}$ in a staggered conformation possesses an S_{6} axis.
(C) Benzene molecule possesses three σ_{v}-planes
(D) Water molecule possesses C_{2} axis and σ_{h}-plane

The option giving the correct statements, is
(a) B, C and D only
(b) A, B and C only
(c) A, B and D only
(d) A, B, C and D
74. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

75. The mechanism of the following reaction involves

(A) 4 electron conrotatory electrocyclic reaction
(B) $[2+2]$ cycloreversion
(C) 6 electron disrotatory electrocyclic reaction
(D) $[4+2]$ cycloaddition
(a) A and B
(b) A and C
(c) B and D
(d) C and D
76. The major products A and B formed in the following transformations are

(a) $\mathrm{A}=\mathrm{B}=\mathrm{TBSO} \underbrace{\text { CH}}$
(b) $\mathrm{A}=\mathrm{B}=$ TBSO

(c) $\mathrm{A}=\mathrm{TBSO}$
 and $\mathrm{B}=\mathrm{TBSO}$

(d) $\mathrm{A}=\mathrm{TBSO}$
 and $\mathrm{B}=\mathrm{TBSO}$
$\stackrel{\mathrm{OH}}{\mathrm{H}}$
77. A schematic rotational-vibrational spectrum is depicted below and four lines of this spectrum for two diatomic molecules $\left(\mathrm{M}_{1}\right.$ and $\left.\mathrm{M}_{2}\right)$ are tabulated.

	$\mathrm{a}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{b}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{c}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{d}\left(\mathrm{cm}^{-1}\right)$
M_{1}	1540	1564	1636	1660
M_{2}	1644	1676	1772	1804

Wavenumber $\left(\mathrm{cm}^{-1}\right)$
If the reduced mass of M_{1} is 3-times that of M_{2}, the ratio of bond length of M_{1} to that of M_{2} is
(a) $2 / 3$
(b) $3 / 2$
(c) $4 / 9$
(d) $9 / 4$
78. Upon catalysis by hinesene synthase, eudesmyl cation shown below undergoes a sequential hydride shift, ring contraction and loss of proton to form (-)-hinesene. The correct structure of (-)hinesene is

(a)

(b)

(c)

(d)

eudesmyl cation
79. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

80. Reaction of an aqueous solution of X with NaOH forms a white gelatinous precipitate. Dissolution of this precipitate in excess NaOH gives Y . Bubbling $\mathrm{H}_{2} \mathrm{~S}$ gas into Y results in the formation of a white precipitate Z . Reaction of Z with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives X . The X, Y and Z , respectively are
(a) $\mathrm{X}=\mathrm{PbSO}_{4}, \mathrm{Y}=\mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{Z}=\mathrm{PbS}$
(b) $\mathrm{X}=\mathrm{ZnSO}_{4}, \mathrm{Y}=\mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Z}=\mathrm{ZnS}$
(c) $\mathrm{X}=\mathrm{MnSO}_{4}, \mathrm{Y}=\mathrm{Mn}(\mathrm{OH})_{2}, \mathrm{Z}=\mathrm{MnS}$
(d) $\mathrm{X}=\mathrm{CoSO}_{4}, \mathrm{Y}=\mathrm{Co}(\mathrm{OH})_{2}, \mathrm{Z}=\mathrm{CoS}$
81. σ_{g} and σ_{u} are respectively the bonding and anti-bonding molecule orbitals formed by linear combination of two 1 s atomic orbitals of H -atom. The spatial part of a purely covalent wavefunction for H_{2} molecule obtained according to molecular orbital theory is
(a) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2)+\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{u}}(2)$
(b) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2)-\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{u}}(2)$
(c) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2)+\sigma_{\mathrm{u}}(1) \sigma_{\mathrm{u}}(2)$
(d) $\sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2)-\sigma_{\mathrm{u}}(1) \sigma_{\mathrm{u}}(2)$
82. The percentage error in the measurements of mass and linear velocity of a particle, respectively, are 3% and 4%. The maximum percentage error in the kinetic energy of the particle is
(a) 5%
(b) 7%
(c) 11%
(d) 24%
83. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

84. The transition state (TS) structure that would lead to the product in the following reaction is

(a)

(b)

(c)

(d)

85. Consider the following compound where ${ }^{3} \mathrm{~J}_{\mathrm{ab}}$ and ${ }^{3} \mathrm{~J}_{\mathrm{bc}}$ represent three bond coupling between H_{a} and H_{b} and H_{b} and H_{c} protons, respectively.

in two different scenarios, (I) ${ }^{3} \mathbf{J}_{\mathrm{ab}}<{ }^{3} \mathrm{~J}_{\mathrm{bc}}$ and (II) ${ }^{3} \mathrm{~J}_{\mathrm{ab}}={ }^{3} \mathrm{~J}_{\mathrm{bc}}$
the multiplicity of H_{b} proton, respectively, will be
(a) $\mathrm{I}=$ quintet ; $\mathrm{II}=$ quartet of doublets
(b) I = quartet of doublets; II = quintet
(c) $\mathrm{I}=$ triplet of triplets; $\mathrm{II}=$ quartet of doublets
(d) $\mathrm{I}=$ triplet of triplets $; \mathrm{II}=$ quintet
86. The correct order of relative rates of the following reaction is

(a) $\mathrm{k}_{\mathrm{b}} \gg \mathrm{k}_{\mathrm{a}} ; \mathrm{k}_{\mathrm{c}} \gg \mathrm{k}_{\mathrm{d}}$
(b) $\mathrm{k}_{\mathrm{b}} \gg \mathrm{k}_{\mathrm{a}} ; \mathrm{k}_{\mathrm{d}} \gg \mathrm{k}_{\mathrm{c}}$
(c) $\mathrm{k}_{\mathrm{a}} \gg \mathrm{k}_{\mathrm{b}} ; \mathrm{k}_{\mathrm{d}} \gg \mathrm{k}_{\mathrm{c}}$
(d) $\mathrm{k}_{\mathrm{a}} \gg \mathrm{k}_{\mathrm{b}} ; \mathrm{k}_{\mathrm{c}} \gg \mathrm{k}_{\mathrm{d}}$
87. The option showing both the complexes obeying the 18 electron rule is
(a) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}\right]$
(b) $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$
(c) $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{PF}_{3}\right)\right]^{+}$and $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(d) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\right]$ and $\left[\left(\eta^{3}-\right.\right.$ allyl $\left.) \mathrm{Mn}(\mathrm{CO})_{4}\right]$
88. In the oxidative addition of trans- $\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with H_{2} (path A) and with $\mathrm{CH}_{3} \mathrm{I}$ (path B), the d-orbitals involved in the electron transfer from iridium to H_{2} and $\mathrm{CH}_{3} \mathrm{I}$, respectively are

(a) $d_{x^{2}-y^{2}}(\ln A) ; d_{z^{2}}(\ln B)$
(b) $d_{z^{2}}(\ln A) ; d_{x y}$ or $d_{x z}$ or $d_{y z}(\ln B)$
(c) $d_{x y}$ or $d_{x z}$ or $d_{y z}(\ln A) ; d_{z^{2}}(\ln B)$
(d) $d_{z^{2}}(\ln A) ; d_{x^{2}-y^{2}}(\ln B)$
89. Some reagents and their applications are given in the table below:

Reagents \rightarrow	Fricke Solution	CuSO_{4} in basic solution	MnSO_{4} in basic Kl Solution	Ammonium $\mathrm{Ce}(\mathrm{IV})$ sulfate solution
A	$[\mathrm{OH}]$ concentration measurement	Free glucose measurement	dissolved oxygen measurement	Fe^{2+} estimate in potable water
B	Fe^{2+} estimate in potable water	Free glucose measurement	$[\mathrm{OH}]$ concentration measurement	dissolved oxygen measurement
C	dissolved oxygen measurement	Fe^{2+} estimate in potable water	Free glucose measurement	$[\mathrm{OH}]$ concentration measurement
D	$[\mathrm{OH}]$ concentration measurement	dissolved oxygen measurement	Free glucose measurement	Fe^{2+} estimate in potable water

The option showing the correct match of reagents and their application, is
(a) A
(b) B
(c) C
(d) D
90. The major product formed in the following reaction sequene is

(a)

(b)

(c)

(d)

91. In solids, the filled molecular orbitals contribute to the
(a) Rydberg states
(b) Valence band
(c) Conduction band
(d) Frenkel Exciton
92. According to VSEPR theory, the shapes and geometries of SeF_{4} and $\left[\mathrm{BrF}_{4}\right]^{-}$, respectively, are
(a) see-saw and trigonal bipyramidal; see-saw and trigonal bipyramidal
(b) square planar and octahedral; square planar and pentagonal pyramidal
(c) see-saw and trigonal bipyramidal; square planar and octahedral
(d) square planar and square bipyramidal; square planar and octahedral
93. If E^{0} for $\mathrm{OCl}^{-}(\mathrm{aq}) \mid \mathrm{Cl}^{-}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq}) \left\lvert\, \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})\right.$ half-cells, respectively, are 0.94 V and -1.36 V , then E^{0} (in V) for the $\mathrm{OCl}^{-}(\mathrm{aq}) \mid 1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$ half cell is
(a) -0.42
(b) -2.20
(c) 0.52
(d) 1.04
94. The correct set of reagents that can affect the following conversion is

(a) (i) m-CPBA ; (ii) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$
(b) (i) $\mathrm{OsO}_{4}, \mathrm{NMO}$; (ii) TsCl , pyridine; (iii) LiAlH_{4}
(c) (i) m-CPBA; (ii) LiAlH_{4}
(d) $\mathrm{OsO}_{4}, \mathrm{NMO}$; (ii) $\mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PPh}_{3}$, DEAD
95. Two reactions have same pre-exponential factor, but E_{a} (activation energy) of the first reaction is lower than that of the second reaction by $5 \mathrm{kcal} \mathrm{mol}^{-1}$. Given $\mathrm{R}=1.987 \times 10^{-3} \mathrm{kcalmol}^{-1} \mathrm{~K}^{-1}$. The ratio of the rate constants of the first and second reactions at 298 K is closest to
(a) 4650
(b) 22025
(c) 5
(d) 150
96. The correct set of isolobal species is
(I)

(II) $\mathrm{CH}_{3} \longleftrightarrow \underset{\mathrm{O}}{\longrightarrow}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \underset{\mathrm{O}}{\longleftrightarrow}\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]$

(IV) $\mathrm{BH}_{4}^{-} \underset{\mathrm{O}}{\longleftrightarrow}[\mathrm{Co}(\mathrm{Cp})]^{-} \underset{\mathrm{O}}{\longleftrightarrow}[\mathrm{Fe}(\mathrm{Cp})]^{-}$
(a) I
(b) II
(c) III
(d) IV
97. The isomerization of cyclopropane to propene follows Lindemann mechanism and is carried out in the high-pressure limit. The ratio of the rate constants of activation to deactivation steps is 10 , and that of product formation to deactivation step is 15 . Given the effective rate constant as 150 s^{-1}, the rate constant (in s^{-1}) for the deactivation step is
(a) 1.5
(b) 1.0
(c) 10.0
(d) 7.0
98. A linear variation is performed using two orthogonal basis functions ϕ_{1} and ϕ_{2} to generate two optimised energies ε_{1} and $\varepsilon_{2}\left(\varepsilon_{1} \leq \varepsilon_{2}\right)$. If the exact ground and the first excited state energies are E_{1} and E_{2}, respectively, the correct statement is
(a) Both ε_{1} and ε_{2} are lower than E_{1}
(b) ε_{1} lies between E1 and E2
(c) $\varepsilon_{1}>\mathrm{E}_{2}$
(d) $\varepsilon_{2}>E_{2}$
99. The rate of a surface catalyzed reaction between $\mathrm{CO}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ follows Langmuir-Hinshelwood mechanism. If O_{2} gets dissociated during adsoption, the rate of the reaction is [where, p represents the partial pressure and K represents the surface binding constant on the species, k is a proportionality constant]
(a) $\frac{k \cdot K_{C O} p_{C O} \cdot K_{O_{2}}^{1 / 2} p_{O_{2}}^{1 / 2}}{\left(1+K_{C O} p_{C O}+\mathrm{K}_{O_{2}}^{1 / 2} p_{O_{2}}^{1 / 2}\right)^{2}}$
(b) $\frac{k \cdot K_{\mathrm{CO}} p_{\mathrm{CO}} \cdot K_{\mathrm{O}_{2}} p_{\mathrm{O}_{2}}}{\left(1+K_{\mathrm{CO}} p_{\mathrm{CO}}+\mathrm{K}_{\mathrm{O}_{2}} p_{\mathrm{O}_{2}}\right)}$
(c) $\frac{k \cdot p_{\mathrm{CO}} \cdot K_{O_{2}} p_{O_{2}}}{1+K_{2} p_{O_{2}}}$
(d) $\frac{k \cdot K_{C O} p_{C O} \cdot K_{O_{2}} p_{O_{2}}}{\left(1+K_{C O} p_{C O}+\mathrm{K}_{O_{2}} p_{O_{2}}\right)^{2}}$
100. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

101. Identify A, B and C in the following stress-strain plot of a polymer.

(a) A: yield region, B : elastic point, C : plastic region
(b) A: plastic region, B : yield point, C : elastic region
(c) A : elastic region, B : yield point, C : plastic region
(d) A : elastic region, B : plastic point, C : yield region
102. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{P}_{4} \mathrm{~S}_{3}$ consists of $\left({ }^{31} \mathrm{P}, \quad \mathrm{I}=1 / 2,100 \%\right.$ abundance $)$
(a) two doublets or triplets
(b) triplet of triplets
(c) two triplets of equal intensity
(d) a doublet and a quartet
103. The correct option with respect to the metal-metal distance (d) and the magnetic property of $\left[\mathrm{Cr}_{2} \mathrm{Cl}_{9}\right]^{3-}(\mathbf{A})$ and $\left[\mathrm{W}_{2} \mathrm{Cl}_{9}\right]^{3-}(\mathbf{B})$ is
(a) $d_{C r \ldots C r}>d_{W \ldots W}$; A is paramagnetic and B is diamagnetic
(b) $d_{C r \ldots C r}>d_{W \ldots W} ; \mathrm{A}$ is diamagnetic and B is paramagnetic
(c) $d_{W \ldots W}>d_{C r \ldots C r} ; \mathrm{A}$ is diamagnetic and B is paramagnetic
(d) $d_{W \ldots W}>d_{C_{r \ldots C r}}$; A is paramagnetic and B is diamagnetic
104. The application of Euler's reciprocity relation (cross-derivative rule) to the volume of 1 mole of an ideal gas results in mixed second derivative of V equal to
(a) $-\frac{R}{P^{2}}$
(b) $-\frac{R T}{P^{2}}$
(c) $\frac{R}{P}$
(d) $\frac{2 R T}{P^{3}}$
105. The correct plot of $\log K$ vs $x(\mathrm{~K}=$ stepwise stability constant) for the complex

$$
\left[A l\left(O H_{2}\right)_{6-x} F_{x}\right]^{(3-x)^{+}} \quad(x=1-6) \text { is }
$$

(a)

(b)

(c)

(d)

106. The absorption spectrum of Ln^{3+} is normally sharp and weak in intensity. However, $\mathrm{Sm}^{3+}\left(4 \mathrm{f}^{5}\right)$ in dil. acidic solution shows a broad and moderately intense transition at 495 nm . The transition is
(a) ${ }^{6} H_{5 / 2} \longrightarrow{ }^{6} H_{7 / 2}$
(b) ${ }^{6} H_{5 / 2} \longrightarrow{ }^{4} G_{5 / 2}$
(c) ${ }^{6} H_{5 / 2} \longrightarrow{ }^{6} H_{9 / 2}$
(d) ${ }^{4} G_{5 / 2} \longrightarrow{ }^{4} G_{7 / 2}$
107. The correct statement about the following reaction is

(a)
 is formed through anti elimination
(b)

(c)

(d)
 is formed through syn elimination
108. The character table for a particular point group is given below. The characters in the irreducible representation Γ_{4} and Γ_{5}, respectively are

	E	$2 \hat{R}_{1}$	\hat{R}_{2}	$2 \hat{R}_{3}$	$2 \hat{R}_{4}$
Γ_{1}	1	1	1	1	1
Γ_{2}	1	1	1	-1	-1
Γ_{3}	1	-1	1	-1	1
Γ_{4}					
Γ_{5}					

(a) $\{1,1,-1,1,-1\}$ and $\{2,-2,1,0,0\}$
(b) $\{1,-1,1,1,-1\}$ and $\{2,0,-2,0,0\}$
(c) $\{1,2,0,-2,1\}$ and $\{1,1,1,1,-1\}$
(d) $\{2,0,-2,0,0\}$ and $\{2,1,-1,1,-1\}$
109. The major product formed in the following reaction is

(a)

(b)

(d)

110. The temperature dependent standard electrode potential of $\operatorname{Ag}(\mathrm{s})|\operatorname{AgBr}(\mathrm{s})| \mathrm{Br}^{-}$(aq) fits the expression

$$
E^{0}(V)=0.0713-4.99 \times 10^{-4}\left(\frac{T}{K}-298\right)-3.45 \times 10^{-6}\left(\frac{T}{K}-298\right)^{2}
$$

At 398 K , the entropy change, ΔS^{0}, $\left(\right.$ in $\left.J K^{-1} \mathrm{~mol}^{-1}\right)$ is
(a) -48.2
(b) -114.7
(c) 48.2
(d) 114.7
111. Consider a matrix representation A of the water molecule in the basis $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$, where \vec{V}_{1} and \vec{V}_{2}, are the bond vectors along the two $\mathrm{O}-\mathrm{H}$ bonds. Consider another matrix representation B of the same molecule in a new basis set $\left\{\vec{U}_{1}, \vec{U}_{2}\right\}$, such that $\vec{U}_{1}=\frac{1}{\sqrt{2}}\left(\vec{V}_{1}+\vec{V}_{2}\right), \vec{U}_{2}=\frac{1}{\sqrt{2}}\left(\vec{V}_{1}-\vec{V}_{2}\right)$. The character table for $C_{2 v}$ point group is given below:

	E	C_{2}	$\sigma_{v}(x, z)$	$\sigma_{v}(y, z)$
A_{1}	1	1	1	1
A_{2}	1	1	-1	-1
B_{1}	1	-1	1	-1
B_{2}	1	-1	-1	1

(a) A_{1} and B_{1}
(b) A_{1} and B_{2}
(c) A_{2} and B_{1}
(d) A_{1} and A_{2}
112. In the following nuclear reaction, X, Y and Z , respectively are

$$
{ }^{238} U \xrightarrow{X}{ }^{239} U \xrightarrow{Z}{ }^{239} \mathrm{Pu}
$$

(a) $(n),-\beta$, and $+\beta$
(b) $(n, \gamma),+\beta$, and $+\beta$
(c) $(+\beta),(n, \gamma)$, and $-\beta$
(d) $(n, \gamma),-\beta$ and $-\beta$
113. Ozonolysis of a terpene gives equimolar mixture of acetone, α-hydroxyacetaldehyde and 4oxopentanal. The correct structure of terpene is
(a)

(b)

(c)

(d)

114. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

115. Consider the nuclear shape of ${ }^{14} \mathrm{~N}_{7}$ and ${ }^{17} \mathrm{O}_{8}$

	${ }^{14} N_{7}$	${ }^{17} O_{8}$
A	Prolate	Oblate
B	Oblate	Spherical
C	Oblate	Prolate
D	Spherical	Oblate

The option giving the correct shape, is
(a) A
(b) B
(c) C
(d) D
116. The intermediate formed in the following reaction is

(a)

(b)

(c)

(d)

117. Consider a two-level system at thermal equilibrium. The ratios of the excited state population to the ground state population are 0.50 and 0.25 at 600 K and 300 K , respectively. The energy gap between the two levels (in unit of $10^{-21} \mathrm{~J}$) is closest to $\left[\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}\right]$
(a) 1.44
(b) 2.87
(c) 5.74
(d) 11.48
118. The tosylates that on solvolysis will give the mixture of products as shown in the reaction are

(a) A and C
(b) B and D
(c) A and B
(d) C and D
119. The compound shown below is a 48 -electron metal cluster (not counting M-M bonds). The metal M is

(a) V
(b) Fe
(c) Mn
(d) Cr
120. The major product formed in the following reaction is
(a)

(b)

(c)

(d)

