## PAPER : CSIR-UGC-NET/JRF JUNE 2022 CHEMICAL SCIENCES

## PART-B

21. What is the order of decreasing carbonyl stretching frequencies in the following species (A-D)?
(A) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
(B) $\left[\mathrm{Os}(\mathrm{CO})_{6}\right]^{2+}$
(C) $\left[\operatorname{Ir}(\mathrm{CO})_{6}\right]^{3+}$
(D) Free CO
(a) B $>$ A $>$ C $>$ D
(b) D $>$ C $>$ B $>$ A
(c) A $>$ B $>$ C $>$ D
(d) C $>$ B $>$ D $>$ A
22. An octahedral $d^{6}$ complex has a single spin-allowed absorption band. The spin-only magnetic moment (B.M.) and the electronic transition for this complex, respectively, are
(a) 0 and ${ }^{1} \mathrm{~T}_{1 \mathrm{~g}} \leftarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$
(b) 4.9 and ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \leftarrow{ }^{5} \mathrm{E}_{\mathrm{g}}$
(c) 4.9 and ${ }^{5} \mathrm{E}_{\mathrm{g}} \leftarrow{ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$
(d) 0 and ${ }^{1} \mathrm{~T}_{2 \mathrm{~g}} \leftarrow{ }^{1} \mathrm{~A}_{\mathrm{lg}}$
23. In the solid state, the stable structure of the metal cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is
(a)


(b)

(c)

(d)

24. In the stratosphere, the radical $\mathrm{Cl}^{\bullet}$ produced from chlorofluorocarbons reacts with $\mathrm{O}_{3}$ as follows.
$\mathrm{Cl}^{-}+\mathrm{O}_{3} \longrightarrow \mathrm{X}+$ colourless gas

$$
\begin{aligned}
& 2 \mathrm{X} \longrightarrow \mathrm{X}_{2} \\
& \mathrm{X}_{2} \longrightarrow \mathrm{Cl}^{+}+\mathrm{Y}
\end{aligned}
$$

$\mathrm{X}, \mathrm{Y}$ are, respectively.
(a)

(b) $\mathrm{ClO}, \mathrm{Cl}-\mathrm{O}-\dot{\mathrm{O}}$
(c) $\mathrm{Cl}-\mathrm{O}-\dot{\mathrm{O}}, \mathrm{O}_{2}$
(d) $\mathrm{ClO}^{\circ}, \mathrm{O}_{2}$
25. For the following nuclear decay series segment,

$$
{ }_{90}^{234} \mathrm{Th} \longrightarrow \longrightarrow{ }_{90}^{230} \mathrm{Th}
$$

the overall emitted particles are
(a) one $\beta$, one $\alpha$ and one neutron
(b) two $\beta$ and one $\alpha$
(c) three $\beta$
(d) two $\beta$ and one neutron
26. The known oxidation state(s) of Eu in aqueous solution is/are
(a) +2 and +3
(b) +3 and +4
( $\mathrm{c}+2,+3$ and +4
(d) +3 only
27. Among $\mathrm{Si}_{3} \mathrm{~N}_{4}, \alpha-\mathrm{BN}, \mathrm{A} / \mathrm{N}$ and $(\mathrm{SN})_{\mathrm{X}}$, the compound with the highest conductivity is
(a) $\mathrm{Si}_{3} \mathrm{~N}_{4}$
(b) $\alpha-\mathrm{BN}$
(c) $A / N$
(d) $(\mathrm{SN})_{x}$
28. Consider the following statements about Infrared (IR) spectroscopy.
A. It is used to determine the band gap, the band structure and the charge carrier concentration of a compound.
B. It is used to identify functional group(s) of a compound.
C. It is used to characterize different stretching and bending modes of vibration in molecules.
D. Heteronuclear diatomic molecules are IR active.

The correct statements are
(a) A, B, C and D
(b) B, C and D only
(c) A, B and C only
(d) B and C only
29. The geometry around Te in the symmetrical trimeric species of $\left[\mathrm{TeO}_{2} \mathrm{~F}\right]^{-}$is
(a) Square planar
(b) Tetrahedral
(c) Trigonal bipyramidal
(d) Octahedral
30. The base ionization constant, $\mathrm{K}_{\mathrm{b}}$, of ammonia in water is $1.8 \times 10^{-5}$. The value of acid ionization constant, $\mathrm{K}_{\mathrm{a}}$, of the conjugate acid is closest to
(a) $5.6 \times 10^{-10}$
(b) $1.8 \times 10^{9}$
(c) $7.0 \times 10^{-7}$
(d) $5.6 \times 10^{4}$
31. The ionization energies $\left(\mathrm{IE}_{1}\right.$ to $\mathrm{IE}_{5}$ ) of ' s ' and/or ' p ' block elements ( $\mathrm{X}, \mathrm{Y}$ and Z ) are given below.

|  | $\mathrm{IE}_{1}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | $\mathrm{IE}_{2}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | $\mathrm{IE}_{3}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | $\mathrm{IE}_{4}\left(\mathrm{kJmol}^{-1}\right)$ | $\mathrm{IE}_{5}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | 1086 | 2353 | 4620 | 6223 | 37830 |
| Y | 800 | 2427 | 3060 | 25030 | 32830 |
| Z | 496 | 4562 | 6910 | 9543 | 13350 |

The number of valence electrons in $\mathrm{X}, \mathrm{Y}$ and Z are
(a) $\mathrm{X}=2 ; \mathrm{Y}=3, \mathrm{Z}=4$
(b) $\mathrm{X}=4 ; \mathrm{Y}=1 ; \mathrm{Z}=1$
(c) $\mathrm{X}=4 ; \mathrm{Y}=3 ; \mathrm{Z}=1$
(d) $\mathrm{X}=1 ; \mathrm{Y}=3 ; \mathrm{Z}=4$
32. The ${ }^{1} \mathrm{H}$-NMR spectrum of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ exhibits two peaks of equal intensity at room temperature, but four resonances of relative intensities 5:2:2:1 at lower temperature. The hapticities of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$are
(a) $\eta^{5}$ and $\eta^{1}$
(b) $\eta^{5}$ and $\eta^{3}$
(c) $\eta^{3}$ and $\eta^{1}$
(d) $\eta^{3}$ and $\eta^{3}$
33. The number of moles of Mg -ATP needed for the reduction of one mole of nitrogen by nitrogenase enzyme is
(a) 8
(b) 16
(c) 6
(d) 2
34. The following reaction involves a

(a) photochemical $10 \pi$-electrocyclic ring closure
(b) thermal $6 \pi$-electrocyclic ring closure
(c) thermal $10 \pi$-electrocyclic ring closure
(d) photochemical $6 \pi$-electrocyclic ring closure
35. The pair of reactions depicted below are


(a) enantioselective reactions
(b) diastereospecific reactions
(c) diastereoselective reactions
(d) enantiospecific reactions
36. The products of the following reaction of a sample of 2-butanol (ee $=\mathrm{X} \%$ ) show two doublets in ${ }^{1} \mathrm{H}$ NMR spectrum in the ratio of $3: 2$. The value of $X$ is $\qquad$

(a) 40
(b) 60
(c) 20
(d) 80
37. The correct order for the magnitude of heats of formation of the following structural isomers is

(A)

(B)

(C)
(a) A $>$ B $>$ C
(b) B $>$ A $>\mathrm{C}$
(b) $\mathrm{C}>\mathrm{A}>\mathrm{B}$
(d) A $>$ C $>$ B
38. The intermediate involved in the given transformation are


(A)

(B)

(C)

(D)
(a) A and D
(b) A and B
(c) C and D
(c) C and B
39. The following reaction sequence is an example of

C

D
TM (Target Molecule)
(a) convergent synthesis
(b) linear synthesis
(c) diverted synthesis
(d) divergent synthesis
40. The number of signals observed in the proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of the following compound is

(a) 4
(b) 2
(c) 3
(d) 5
41. Which of the following species is/are aromatic?

(A)

(B)

(C)
(a) only A
(b) only B
(c) only B and C
(d) only A and B
42. Biosynthetic precursors of the following natural product are

(a) phenylalanine
(b) alanine
(c) acetyl CoA
(d) geranyl CoA
43. The major product formed in the following reaction is

44. The correct IUPAC name of the following compound is

(a) (E)-3-(chloromethyl)pent-3-en-2-one
(b) (Z)-3-(chloromethyl)pent-2-en-4-one
(c) (E)-3-(chloromethyl)pent-2-en-4-one
(d) (Z)-3-(chloromethyl)pent-3-en-2-one
45. The structure that corresponds to the following 1H NMR spectral data is
${ }^{1} \mathrm{H}$ NMR : $\delta 3.64(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{dd}, 2 \mathrm{H}), 1.62(\mathrm{td}, 1 \mathrm{H}), 1.20(\mathrm{td}, 1 \mathrm{H})$
(a)

(b)

(c)

(d)

46. The major product formed in the following reaction is
$\mathrm{PhSO}_{2} \stackrel{\ominus}{\mathrm{Na}}+$
(a)

(c)


(b)

(d)

47. The energy of an electron in a hydrogenetic atom is $-13.6 \mathrm{Z}^{2} / \mathrm{n}^{2} \mathrm{eV}$, where Z is the atomic number and $n$ is the principal quantum number. Neglecting inter-electronic repulsion, the energy of the first excited state of the He atom is
(a) -68.0 eV
(b) -13.6 eV
(c) -27.2 eV
(d) -108.8 eV
48. The eigenfunctions of a particle in a cubic box with potential $\mathrm{V}=0$ in the region $0 \leq x \leq L, 0 \leq y \leq L$ and $0 \leq z \leq L$ and $V=\infty$ outside are denoted as $\psi_{n_{x}, n_{z}}$. Which of the following is also an eigenfunction of the Hamiltonian?
(a) $\phi_{1}=\psi_{123}-\psi_{312}$
(b) $\phi_{2}=\psi_{111}+\psi_{222}$
(c) $\phi_{3}=\psi_{121}-\psi_{122}$
(d) $\phi_{4}=\psi_{212}+\psi_{113}$
49. Given that the commutator $\left[\hat{A}^{2}, \hat{B}\right]=[\hat{A}, \hat{B}] \hat{A}+\hat{A}[\hat{A}, \hat{B}]$, the value of $\left[x,\left[\hat{p}_{x}^{2}, x\right]\right]$ is
(a) $2 i \hbar^{2}$
(b) $2 \hbar^{2}$
(c) $-2 \hbar^{2}$
(d) $-2 i \hbar^{2}$
50. For a zero-order reaction $A \xrightarrow{k} P$, if the initial concentration of A is $[\mathrm{A}]_{0}$, the time required to consume all the reactant is
(a) $2[A]_{0} / k$
(b) $[A]_{0} / k$
(c) $[A]-[A]_{0} / k$
(d) $k[A]_{0}$
51. For a system of two fermionic particles that can be in any one of three possible quantum states each, the ratio of the probability that two particles are in the same state to that when the two particles are in different states is
(a) 1
(b) $1 / 2$
(c) 0
(d) $1 / 3$
52. Two schematic potential energy surfaces for bond bending motions are indicated as A and B in the accompanying diagram


The out-of-plane C-H wags in iodoform and chloroform would respectively correspond to the potential energy surfaces.
(a) A and B
(b) A and A
(c) B and A
(d) B and B
53. During the phase transition, at constant temperature, of a solid from one form to another, the change in molar volume, $\Delta V_{m}=1.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ is independent of pressure. The change in molar Gibbs free energy, in units of $\mathrm{J} \mathrm{mol}^{-1}$, when the pressure is increased from 1 bar to 3 bars is
(a) $4 \times 10^{-1}$
(b) $3 \times 10^{-1}$
(c) $2 \times 10^{-1}$
(d) $1 \times 10^{-1}$
54. The effective activation energy for the reaction:

$$
A+B \underset{k_{a^{\prime}}}{\stackrel{k_{a}}{\rightleftharpoons}} I \xrightarrow{k_{b}} P
$$

with the following potential energy versus reaction coordinate plot is

(a) $E_{a}-E_{a^{\prime}}-E_{b}$
(b) $E_{a}+E_{b}-E_{a}$
(c) $-E_{a}+E_{a^{\prime}}-E_{b}$
(d) $E_{a}+E_{a^{\prime}}-E_{b}$
55. The correct match of the following fine chemicals in Column $\mathbf{P}$ with their sustainable feedstocks in

Column $\mathbf{Q}$ is
Column-P
(A)

(B)

(II) Xylose
(C)

(III) Vegetable oil
(a) A-I, B-III, C-II
(b) A-II, B-III, C-I
(c) A-II, B-I, C-III
(d) A-III, B-II, C-I
56. Given that at $298.15 \mathrm{~K}, E_{F^{+3} / F e}^{0}=-0.04 \mathrm{~V} ; E_{F^{+2} / F e}^{0}=-0.44 \mathrm{~V}$. At this temperature, the value of $E_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{0}$ is
(a) 1.24 V
(b) 1.00 V
(c) 0.40 V
(d) 0.76 V
57. In the process of polyesterification, the average length of polymer formed by a stepwise process grows linearly with time. The fraction condensed (extent of reaction) and the degree of polymerization at time $t=1.0$ hour, of a polymer formed with $k_{r}=1.80 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and initial monomer concentration of $3.00 \times 10^{-2} \mathrm{moldm}^{-3}$, are respectively.
(a) 0.66 and 2.94
(b) 0.33 and 1.50
(c) 0.16 and 1.19
(d) 0.33 and 2.94
58. The limiting molar conductivities, at $25^{\circ} \mathrm{C}$, of few ionic compounds are given in the table below. The limiting molar conductivity of AgI, in units of milli-Siemens (metre) ${ }^{2} \mathrm{~mol}^{-1}$, at $25^{\circ} \mathrm{C}$ is

| Ionic Compound | Molar conductivity <br> (milli-Siemens (metre) $\left.{ }^{2} \mathrm{~mol}^{-1}\right)$ |
| :---: | :---: |
| NaI | 12.69 |
| $\mathrm{NaNO}_{3}$ | 12.16 |
| $\mathrm{AgNO}_{3}$ | 13.34 |

(a) 13.87
(b) 12.73
(c) 11.63
(d) 10.78
59. The rotational absorption spectum of $\mathrm{H}^{35} \mathrm{Cl}$ shows the following lines


Neglecting centrifugal distortion, the value of the rotational constant in units of $\mathrm{cm}^{-1}$ is estimated as
(a) 3
(b) 5
(c) 10
(d) 20
60. For the formaldehyde molecule $\mathrm{H}_{2} \mathrm{CO}$ having $\mathrm{C}_{2 v}$ symmetry with the character table as given below,

| $C_{2 v}$ | $E$ | $C_{2}$ | $\sigma_{v}(x z)$ | $\sigma_{v}^{\prime}(y z)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| $A_{1}$ | 1 | 1 | 1 | 1 | $z$ | $x^{2}, y^{2}, z^{2}$ |
| $A_{2}$ | 1 | 1 | -1 | -1 | $R_{z}$ | $x y$ |
| $B_{1}$ | 1 | -1 | 1 | -1 | $x, R_{y}$ | $x z$ |
| $B_{2}$ | 1 | -1 | -1 | 1 | $y, R_{x}$ | $y z$ |

the reducible representation $\Gamma_{3 N}$ ( or $\Gamma_{\text {tot }}$ ) is $\Gamma_{3 N}=4 A_{1}+A_{2}+4 B_{1}+3 B_{2}$. The reducible representation for the vibrational modes alone, namely $\Gamma_{v i b}$ will be
(a) $4 A_{1}+2 B_{2}$
(b) $3 A_{1}+2 B_{1}+B_{2}$
(c) $3 A_{1}+B_{1}+2 B_{2}$
(d) $4 A_{1}+B_{1}+B_{2}$

## PART-C

61. Consider the following pairs of compounds.
(i) $\mathrm{NH}_{4} \mathrm{Cl}$ and FeO
(ii) $\mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{BF}_{3}$ and $\mathrm{BCl}_{3}$
(iii) $\mathrm{HSO}_{3} \mathrm{~F}$ and HF

The more acidic species in (i), (ii) and (iii) are, respectively
(a) $\mathrm{FeO}, \mathrm{BCl}_{3}$ and HF
(b) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{BF}_{3}$ and HF
(c) $\mathrm{FeO}, \mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{BF}_{3}$ and $\mathrm{HSO}_{3} \mathrm{~F}$
(d) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{BCl}_{3}$ and $\mathrm{HSO}_{3} \mathrm{~F}$
62. Consider the statements about the following species, $\mathrm{ClF},\left[\mathrm{ClF}_{2}\right]^{+}, \mathrm{ClF}_{3},\left[\mathrm{ClF}_{4}\right]^{+}$and $\mathrm{ClF}_{5}$.
(A) There are 9 lone pairs of electrons on the chlorine atoms in the five species.
(B) The species $\left[\mathrm{ClF}_{4}\right]^{+}$has a tetrahedral shape
(C) The compound $\mathrm{ClF}_{3}$ is a very strong fluorinating agent.

The correct statements are
(a) B and C only
(b) A and C only
(c) A and B only
(d) A, B and C
63. Identify the series showing isolobal analogy.
(A) $\mathrm{CH}_{3},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]^{+}$
(B) $\mathrm{CH}_{3}^{+},\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{-}$
(C) $\mathrm{CH}_{3}^{+}, \mathrm{Ni}(\mathrm{CO})_{3}$
(D) $\mathrm{CH}^{+}, \mathrm{CpCo}$
(a) A and B only
(b) A, C and D only
(c) B and C only
(d) A and D only
64. The second order rate constants for the outer sphere self-exchange electron transfer reactions for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} /\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} /\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are $9.2 \times 10^{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ and $\leq 10^{-9} \mathrm{M}^{-1} \mathrm{sec}^{-1}$, respectively. The correct rationale for the above data is
(a) The change in the number of $\sigma^{*}$-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{III})$ system.
(b) The change in the number of $\pi^{*}$-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{III})$ system.
(c) The change in the number of both $\sigma^{*}$ and $\pi^{*}$-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{III})$ system
(d) The change in the number of $\sigma^{*}$-electrons in $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ system
65. Consider the following molecules/ions
(A) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\mathrm{VCl}_{4}$

The Jahn-Teller effect is expected for
(a) A and C only
(b) A only
(c) C only
(d) A and B only
66. The electronic spectrum of an aqueous solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ shows three distinct bands:
(A) (~400 nm)
(B) $(\sim 690 \mathrm{~nm})$ and
(C) $(\sim 1070 \mathrm{~nm})$

The transitions assigned to $\mathrm{A}, \mathrm{B}$ and C , respectively, are
(a) $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}, \mathrm{~T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$
(b) $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}, \mathrm{~T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$
(c) $\mathrm{T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}, \mathrm{~T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$ and $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}$
(d) $\mathrm{T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}, \mathrm{~T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$ and $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}$
67. The statement(s) that correctly describe(s) the molecular orbital (MO) diagram of $\mathrm{HO}^{*}$ (hydroxyl radical) is/are (consider the $\mathrm{O}-\mathrm{H}$ bond to be along the x -axis).
(A) The highest Occupied Molecular Orbital (HOMO) is a non-bonded MO that is predominantly formed with $2 \mathrm{p}_{z}$ and $2 \mathrm{p}_{\mathrm{y}}$ atomic orbitals (AOs) of O -atom.
(B) The HOMO is a $\sigma$ - bonded MO that is predominantly formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}(2 \mathrm{~s}) \mathrm{AOs}$.
(C) The $\sigma$ - bonding MO is formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}\left(2 \mathrm{p}_{z}\right)$ AOs.
(D) The $\sigma$ - bonding MO is formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}\left(2 \mathrm{p}_{\mathrm{x}}\right)$ AOs.
(a) A and C only
(b) A and D only
(c) B only
(d) D only
68. A solute S has partition coefficient ( $K D$ ) of 5.0 between water and chloroform. A 50 mL sample of a 0.050 M aqueous solution of the solute is extracted with 15 mL of chloroform. The extraction efficiency for the separation is
(a) $50 \%$
(b) $60 \%$
(c) $30 \%$
(d) $40 \%$
69. Consider the following statements about nanoparticles.
A. The energy gap between the valence and conduction bands is greater for semiconductor nanoparticles than that in metal nanoparticles.
B. Metal nanoparticles exhibit surface plasmon resonance.
C. Top-down and bottom-up synthetic methods are used to prepare nanoparticles.

The correct statements are
(a) B and C only
(b) A and B only
(c) A and C only
(d) A, B and C
70. Hydrolysis of the purple isomer of the complex $\left[\mathrm{Co}(\operatorname{tren})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}[\operatorname{tren}=\operatorname{Tris}(2-$
aminoethyl)amine] under basic conditions results in two products. The geometry of the intermediate involved in this reaction is
(a) Trigonal bipyramidal
(b) square pyramidal
(c) pentagonal planar
(d) tetrahedral
71. The number of electrons involved in the enzymatic action of cytochrome $c$ oxidase, carbonic anhydrase and photosynthetic oxygen evolving complex, respectively, are
(a) 2, 0, 4
(b) $4,0,4$
(c) $4,1,0$
(d) $2,0,2$
72. The calculated magnetic moment (B.M.) for the ground state of a $f^{5}$ ion is
(a) $\sqrt{35} / 7$
(b) $\sqrt{35}$
(c) $\sqrt{35} / 14$
(d) $35 / 14$
73. Consider the following statements describing the properties of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~B} \cdot \mathrm{CO}$.
(A) The CO stretching frequency in IR is less than $2143 \mathrm{~cm}^{-1}$.
(B) The ${ }^{19} \mathrm{~F}$ NMR spectrum shows one singlet resonance only
(C) The point group of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~B} \cdot \mathrm{CO}$ is $\mathrm{C}_{3 \mathrm{v}}$.
(D) $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~B} \cdot \mathrm{CO}$ reacts with KF to form $\mathrm{K}\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{BC}(\mathrm{O}) \mathrm{F}\right]$

The correct statements are
(a) A, C and D only
(b) C and D only
(c) A, B and C only
(d) A and D only
74. The reaction of HF with SnO produces $\mathbf{P}$ and with $\mathrm{SnCl}_{4}$ produces $\mathbf{Q}$. Reaction of one of them $(\mathbf{P}, \mathbf{Q})$ with NaF yields the species $\mathrm{Na}_{4}\left[\mathrm{Sn}_{3} \mathrm{~F}_{10}\right]$. Among the following
(A) $\left[\operatorname{Sn}_{3} \mathrm{~F}_{10}\right]^{4-}$ is obtained from $\mathbf{P}$.
(B) Int the solid state, $\mathbf{P}$ extibits a ring structure
(C) Stereogenic lone pairs of electron are present in both $\mathbf{P}$ and $\mathbf{Q}$.
(D) $\mathbf{Q}$ is a weaker Lewis acid than $\mathbf{P}$.

Identify the correct statements.
(a) A and B only
(b) C and D only
(c) A, B and C only
(d) B, C and D only
75. The nucleophilic substitution of $R R^{\prime} R^{\prime \prime} \operatorname{SiX}\left(R, R^{\prime}, R^{\prime \prime}=\right.$ alkyl groups $)$ by a nucleophile Y gives the product RR'R"SiY. Among the following.
(A) Silylium cation is formed during the reaction
(B) It is a second order reaction
(C) The cleavage of the $\mathrm{Si}-\mathrm{X}$ bond is not the rate determining step
(D) The product always shows inversion of configuration

Identify the correct statements.
(a) B and C only
(b) A and B only
(c) C and D only
(d) B, C and D only
76. Consider the following statements about the Oxo-process:
A. The reaction is first order with respect to olefin.
B. The rate is faster for terminal olefins compared to internal olefins.
C. The rate is faster for internal olefins compared to terminal olefins.
D. Excess of CO inhibits the reaction.

The correct statements are
(a) A, B and D only
(b) C and D only
(c) A and B only
(d) A and D only
77. The reaction of $\mathrm{MoCl}_{2}$ with $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{Cl}$ in dil. HCl and EtOH produces a dianionic hexanuclear metal cluster.
(A) The cluster is $\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]^{2-}$
(B) The cluster has 136 valence electrons.
(C) Each metal centre has 4 metal-metal bonds

Identify the correct statement(s) about the cluster
(a) B only
(b) A and C only
(c) B and C only
(d) A, B and C
78. The number of allowed EPR lines expected for a metal ion with 3 unpaired electrons and a nuclear $\operatorname{spin}(I)$ of $7 / 2$ is
(a) 8
(b) 32
(c) 36
(d) 24
79. In the following electron transfer reactions, the one in which the bridging ligand comes from the reductant is
(a) $\left[\mathrm{IrCl}_{6}\right]^{2-}+\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} \longrightarrow$ products
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} \longrightarrow$ products
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\left[\mathrm{IrCl}_{6}\right]^{2-} \longrightarrow$ products
(d) $\left[\mathrm{CrO}_{4}\right]^{2-}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow$ products
80. The correct statement regarding the following physical properties is
(a) Bond order follows $\mathrm{Li}_{2}<\mathrm{C}_{2}<\mathrm{B}_{2}<\mathrm{N}_{2}$ order.
(b) Melting point follows $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$ order.
(c) Pauling electronegativity follows $\mathrm{Al}<\mathrm{Si}<\mathrm{S}<\mathrm{P}$ order.
(d) First ionization energy follows $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}$ order.
81. The correct statement for the following reaction is

(a) involves intermolecular hydride transfer and the product is achiral
(b) involves intramolecular hydride transfer and the product is achiral
(c) involves intramolecular hydride transfer and the product is chiral
(d) involves intermolecular hydride transfer and the product is chiral
82. The structure of the compound A in the following reaction sequence is

(a)


(b)

(c)


83. The reaction(s) with a positive entropy of activation $\left(\Delta S^{\#}\right)$ is(are)
(A)

(B)


(C)

(a) A and C
(b) B and C
(c) only C
(d) A and B
84. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

85. The reagents A and major product B in the following reaction sequence are

(a) $\mathrm{A}=\mathrm{i}, \mathrm{NaBH}_{4}$; ii. $\mathrm{H}_{2} \mathrm{~S}$, cat. piperidine, $\mathrm{B}=$

(b) $\mathrm{A}=$ i. $\mathrm{H}_{2} \mathrm{~S}$, cat. piperidine, ii. $\mathrm{NaBH}_{4}, \mathrm{~B}=$

(c) $\mathrm{A}=\mathrm{i} . \mathrm{H}_{2} \mathrm{~S}$, cat. piperidine, ii. $\mathrm{NaBH}_{4}$,

(d) i, $\mathrm{NaBH}_{4}$; ii. $\mathrm{H}_{2} \mathrm{~S}$, cat. piperidine

86. The intermediates involved in the follwoing reaction are


(A)

(B)

(C)

(D)
(a) B and C
(b) B and D
(c) A and C
(d) A and B
87. The correct sequence of reagents to effect the following transformation is

(a) (i) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; (ii) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$; (iii) DDQ ; (iv) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$
(b) (i)DDQ; (ii) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; (iii) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; (iv) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$
(c) (i) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; (ii) DDQ ; (iii) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; (iv) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$
(d) (i) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; (ii) $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; (iii) $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$; (iv) DDQ
88. The major products P and Q formed in the following reaction sequence are

(a) $\mathrm{P}=$


(b) $\mathrm{P}=$



(c) $\mathrm{P}=$


(d) $P=$


89. The stereochemistry of the double bonds in the product is

(a) $3 \mathrm{E}, 5 \mathrm{E}, 7 \mathrm{Z}$
(b) 3Z, 5E, 7E
(c) $3 \mathrm{E}, 5 \mathrm{Z}, 7 \mathrm{Z}$
(d) $3 \mathrm{Z}, 5 \mathrm{Z}, 7 \mathrm{E}$
90. The reactions that will furnish $\mathrm{t}-\mathrm{BuCOPh}$ as the major product are
(A)

(B)

(C)

(D)

(c) only A and C
(d) only B and D
91. Considering the rate law (rate $=\mathrm{k}$ [epoxide]) for the reaction shown below, the plausible intermediate is

(a)

(b)

(c)

(d)

92. Given below are the bond dissociation energy $\left(\mathrm{BDE}^{\mathrm{kJJmo}}{ }^{-1}\right)$ values. Based on the data, the correct statement about the following equilibrium is


| Bond | $\mathrm{BDE}\left(\mathrm{kJmol}^{-1}\right)$ | Bond | $\mathrm{BDE}\left(\mathrm{kJmol}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}-\mathrm{H}$ | -460 | $\mathrm{C}-\mathrm{C}$ | -360 |
| $\mathrm{C}-\mathrm{H}$ | -420 | $\mathrm{C}=\mathrm{O}$ | -760 |
| $\mathrm{C}-\mathrm{O}$ | -380 | $\mathrm{C}=\mathrm{C}$ | -630 |

(a) A is more stable than B by $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) A is more stable than B by $130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) B is more stable than A by $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) B is more stable than A by $130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
93. The following transformation involves

(a) i) Norrish type-II; ii) fragmentation of a cyclopropyl diradical
(b) i) Norrish type-I; ii) fragmentation of a cyclopropyl diradical
(c) i) Norrish type-I; ii) di- $\pi$-methane rearrangement
(d) i) Norrish type-II; ii) di- $\pi$-methane rearrangement
94. The correct structure that corresponds to the spectroscopic data given below is
$\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2720,1710$
${ }^{1} \mathrm{H} \operatorname{NMR}: \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$
(a)

(b)

(c)

(d)

95. Structure of A , based on the following reaction, is

(a)

(b)

(c)

(d)

96. Intermediate(s) involved in the following reaction is(are)



(B)

(a) A and C
(b) B and C
(c) only A
(d) only B
97. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

98. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

99. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

100. The correct match for the molecules given in Column- P with the spectral data given in Column Q is

## Column-P

(A) Ethyl acetate
(B) 2-chloropentane
(C) 1, 2-dibromo-2-methylpropane

## Column-Q

(I) Two singlets in ${ }^{1} \mathrm{H}$ NMR
(II) Peak intensity at $\mathrm{M}:(\mathrm{M}+2)$ is $3: 1$ in El-MS
(III) Absorption band at $1740 \mathrm{~cm}^{-1}$ in IR
(c) A-II, B-III, C-I (d) A-III, B-II, C-I
101. 1 mole of ${ }^{16} \mathrm{O}_{2}$ and 1 mole of ${ }^{18} \mathrm{O}_{2}$ in two different containers of the same volume have the same entropy. Assuming there are no rotational and vibrational contributions to the entropy, if the temperature of ${ }^{16} \mathrm{O}_{2}$ is 300 K what is the temperature of ${ }^{18} \mathrm{O}_{2}$ in K ?
(a) 37.54
(b) 300.10
(c) 266.66
(d) 273.48
102. Which of the following statement/s corresponding to the accompanying figures displaying isotherms is/are corect?

(A) Figure X represents an isotherm of type II and point B shows near complete coverage of the surface
(B) Figure Y represents an isotherm of type II and point B shows near complete coverage of the surface
(C) Figure X represents an isotherm of type I and point B shows near complete coverage of the surface
(D) Figure Y represents an isotherm of type III and point B shows beginning of the multilayer formation.
(a) Only statement D is correct
(b) Statements C and D are correct
(c) Statements B and C are correct
(d) Statements A and B are correct.
103. The partition function for a gas is given by

$$
Q(N, V, T)=\frac{1}{N!}\left(\frac{2 \pi m}{h^{2} \beta}\right)^{3 N / 2}(V-N b)^{N} e^{\frac{\beta a N^{2}}{V}}
$$

The internal energy of the gas is
(a) $\frac{3}{2} N k_{B} T+\frac{2 a N}{V}$
(b) $\frac{1}{2} N k_{B} T-\frac{a N^{2}}{V}$
(c) $\frac{3}{2} N k_{B} T-\frac{a N^{2}}{V}$
(d) $\frac{3}{2} N R T-\frac{2 a N}{V}$
104. For a particle exhibiting simple harmonic motion in 1-dimension, the uncertainty in its position in the state having the following schematic wave function is (zero point energy, $E_{0}=\frac{1}{2} \hbar \omega$ )

(a) $\frac{7 E_{0}}{k}$
(b) $\sqrt{\frac{14 E_{0}}{k}}$
(c) $\frac{14 E_{0}}{k}$
(d) $\sqrt{\frac{7 E_{0}}{k}}$
105. For a C-H bond with a stretching frequency $3000 \mathrm{~cm}^{-1}$, what is the expected isotope (deuterium) effect $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ at 298 K for a full bond homolysis? Given: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}, \mathrm{k}_{\mathrm{B}}=$ $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
(a) e
(b) 1
(c) $e^{4}$
(d) $e^{2}$
106. A protein has 3 tyrosine residues and ' $n$ ' tryptophan residues both of which are the only amino acids absorbing at 280 nm . If the absorbance of the protein having a concentration of $10 \mu \mathrm{M}$ (in a cuvette of path length 2 cm ) is 0.59 , the number of tryptophan residues in the protein must be
[Given: $\varepsilon_{280}($ Tyrosine $)=1500 \mathrm{M}^{-1} \mathrm{~cm}^{-1} ; \varepsilon_{280}($ Tryptophan $)=5000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ ]
(a) 11
(b) 5
(c) 2
(d) 7
107. What is the cell potential (in V ) at 298 K and 1 bar for the following cell?
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{ZnBr}_{2}(\mathrm{aq}, 0.20 \mathrm{~mol} / \mathrm{kg}) \| \mathrm{AgBr}(\mathrm{s})\right| \mathrm{Ag}(\mathrm{s}) \mid \mathrm{Cu}$
(Given: $E_{Z n^{+2} / Z n}^{0}=-0.762 \mathrm{~V}, E_{A g B r / A g}^{0}=+0.730 \mathrm{~V}$ and assuming $\gamma_{ \pm}$of $\mathrm{ZnBr}_{2}$ solution = 0.462) ?
(a) 0.298
(b) 2.198
(c) 0.531
(d) 1.566
108. For the molecule methylenecyclopropene (structure given below), the roots obtained from the Huckel secular determinant can be approximated as $\mathrm{x}=-2.0,-0.30,+1.0,+1.5$, where $x=\frac{\alpha-E}{\beta}$, with E being the energy of a $\pi$ orbital.


The delocalization energy of methylenecyclopropene is:
[Given: the energy of the ground state $\pi$ orbital of ethyelene is $E=\alpha+\beta$ ]
(a) $2 \alpha+2.6 \beta$
(b) $-(2 \alpha+1.7 \beta)$
(c) $0.6 \beta$
(d) $0.3 \beta$
109. A symmetric top molecule with moments of inertia $I_{x}=I_{y}$ and $I_{z}$ in the body-fixed axes is described by the Hamiltonian $H=\frac{1}{2 \ell_{x}}\left(L_{x}^{2}+L_{y}^{2}\right)+\frac{1}{2 \ell_{z}} L_{z}^{2}$, the eigenvalues for the levels with quantum numbers $\ell=1, m_{\ell}=1$ and $\ell=1, m_{\ell}=0$ are, respectively.
(a) $\frac{3 \hbar^{2}}{2}$ and $-\hbar^{2}$
(b) $\hbar^{2}$ and $-\hbar^{2}$
(c) $\frac{3 \hbar^{2}}{2}$ and $\hbar^{2}$
(d) $-\hbar^{2}$ and $\hbar^{2}$
110. The molecular weight of polyethene determined in five individual experiments is given below:

| Experiment No. | Molecular weight $(\mathrm{g} / \mathrm{mol})$ |
| :---: | :---: |
| 1 | 10000 |
| 2 | 11000 |
| 3 | 9000 |
| 4 | 10500 |
| 5 | 11500 |

The standard deviations in the above measurements is closest to
(a) $850 \mathrm{~g} / \mathrm{mol}$
(b) $2000 \mathrm{~g} / \mathrm{mol}$
(c) $1600 \mathrm{~g} / \mathrm{mol}$
(d) $500 \mathrm{~g} / \mathrm{mol}$
111. Given below is a conjugated system of 11 carbon atoms


Assume the average C-C bond length to be $1.5 \AA$ and treat the system as a 1 -dimensional box. The
frequency of radiation required to cause a transition from the ground state of the system to the first excited state (take $\frac{h^{2}}{8 m}=k$ ) is
(a) $\frac{13}{225} \frac{k}{h}$
(b) $\frac{11}{225} \frac{k}{h}$
(c) $\frac{9}{225} \frac{k}{h}$
(d) $\frac{7}{225} \frac{k}{h}$
112. The Gibbs free energy of mixing for a regular binary solution of components A and B , at temperature T, on the basis of the Margules equation for activity coefficient, is (in standard notation)
(a) $n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right)$
(b) $n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}+\xi x_{A} x_{B}\right)$
(c) $n R T\left(x_{A} \ln \gamma_{A}+x_{B} \ln \gamma_{B}\right)$
(d) $n R T \xi x_{A} x_{B}$
113. The effective rate constants for a gaseous unimolecular reaction:
$A \rightarrow P$ following the Lindemann-Hinshelwood mechanism are $1.70 \times 10^{-3} \mathrm{~s}^{-1}$ and $2.20 \times 10^{-4} \mathrm{~s}^{-1}$ at [A] $=4.37 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and $1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, respectively. The rate constant for the activation step in the mechanism is approximately equal to (in $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ )
(a) 12.3
(b) 49.4
(c) 6.1
(c) 24.7
114. Six distinguishable particles are distributed over 3 non-degenerate levels, of energies $0, \varepsilon$ and $2 \varepsilon$. The most probable value for the total energy is
(a) $5 \varepsilon$
(b) $7 \varepsilon$
(c) $8 \varepsilon$
(d) $6 \varepsilon$
115. The lattice structure of $\alpha-\mathrm{Fe}(\mathrm{BCC})$ with some lattice planes are shown in the figure.
(A)

(C)

(111)
(111)
(B)



The planes that will not show X-ray reflections are
(a) A and D
(b) A and C
(c) B and C
(d) C and D
116. Carbonic anhydrase $\left(2.5 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ catalyses hydration of $\mathrm{CO}_{2}$ in red blood cells at pH 7.1 and 274 K . The rate of the reaction, $v$ (in $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ ) reaches its maximum value when varied with the substrate ( S ) concentration (in $\mathrm{mmol} \mathrm{dm}{ }^{-3}$ ) according to the following equation

$$
\frac{1}{v}=4\left\{1+\frac{10}{[S]_{0}}\right\}
$$

The catalytic efficiency of the enzyme (in $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ) is
(a) $4 \times 10^{5}$
(b) $10^{6}$
(c) $10^{7}$
(d) $10^{4}$
117. In the reaction between two ions, the rate constant is $\mathrm{k}_{\mathrm{r}}$ when the ionic strength $(l)$ is 0.004 . And the
rate constant is $k_{r}^{0}$ when the activity coefficient is 1 . The ratio $k_{r} / k_{r}^{0}=0.884$. If the charge of one ion is +1 , the charge of other ion is close to
(Debye-Huckel constant $=0.509$ at $298 \mathrm{~K} ; \log 0.884=-0.05$ )
(a) -1.554
(b) -1.395
(c) -0.777
(d) -0.389
118. The predicated rate law, using the steady approximation, for the reaction

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

following the possible mechanism is

$$
\begin{array}{ll}
\mathrm{H}^{+}+\mathrm{I}^{-} \stackrel{k_{1}}{\rightleftharpoons k_{-1}} \mathrm{HI} & \text { rapid equilibrium } \\
\mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{k_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{HOI} \text { slow } \\
\mathrm{HOI}+\mathrm{I}^{-} \xrightarrow[k_{3}]{\longrightarrow} \mathrm{I}_{2}+\mathrm{OH}^{-} \quad \text { fast } \\
\mathrm{OH}^{-}+\mathrm{H}^{+} \xrightarrow[k_{4}]{\longrightarrow} \mathrm{H}_{2} \mathrm{O} \quad \text { fast }
\end{array}
$$

is
(a) $\frac{k_{1} k_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{k_{-1}+k_{2}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}$
(b) $k_{2}[H I]\left[H_{2} O_{2}\right]$
(c) $k_{1} k_{-1} k_{2}[H I]\left[H_{2} O_{2}\right]$
(d) $\frac{k_{2} k_{1}}{k_{-1} k_{4}}\left[H^{+}\right]\left[I^{-}\right]\left[H_{2} O_{2}\right]$
119. The vibrational energy of the $\mathrm{n}^{\text {th }}$ state of HCl is approximately given as
$G(n)=3000\left(n+\frac{1}{2}\right)-50\left(n+\frac{1}{2}\right)^{2}\left(\right.$ in cm $\left.^{-1}\right)$
The vibrational quantum number, $\mathrm{n}_{\max }$, beyond which HCl undergoes dissociation is
(a) 29
(b) 59
(c) 119
(d) 19
120. The state of an electron in a hydrogenic atom is given by the un-normalised wavefunction.

$$
\Phi=\left\{Y_{10}(\theta, \phi)+\frac{1}{\sqrt{2}} Y_{11}(\theta, \phi)\right\} R(r)
$$

where $Y_{\ell m}(\theta, \phi)$ are spherical harmonics and $R(r)$ is the radial function. The probability that a measurement of $L_{z}$ will give an eigenvalue of $\hbar$ is
(a) $1 / 2$
(b) $\frac{1}{\sqrt{2}}$
(c) $1 / 3$
(d) $\frac{1}{\sqrt{3}}$

