PAPER: CSIR-UGC-NET/JRF JUNE 2023

CHEMICAL SCIENCES

PART-B

21. Among the following, the correct thermodynamic equation of state is

(a)
$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial T}{\partial S}\right)_V - P$$

(b)
$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

(c)
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial S}\right)_V - P$$

(d)
$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial A}{\partial V}\right)_T - P$$

22. The two energy levels $(n_x = 1, n_y = 6)$ and $(n_x = 3, n_y = 2)$ of a particle in a two-dimensional rectangular box (potential is zero inside, and infinite outside) of sides L_x and L_y are found to be degenerate. If $L_x = 1$ in appropriate units, then L_y is

(a) 2

(b) 3

- (c) 4
- (d) 6

23. Three measurements of the lead content of a lead oxide nanoparticle sample yielded 15.67 mg, 15.69 mg and 16.03 mg, respectively. The standard deviation (in mg) is

(a) 0.25

- (b) 0.15
- (c) 0.30
- (d) 0.20

24. The character table for the point group D_{3h} is given below.

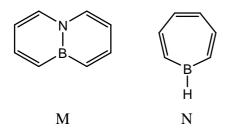
D_{3h}	E	$2C_3(z)$	3C' ₂	$\sigma_h(xy)$	$2S_3$	$3\sigma_{v}$		
A'_{l}	+1	+1	+1	+1	+1	+1	1	$x^2 + y^2, z^2$
A_2'	+1	+1	-1	+1	+1	-1	R_z	_
E'	+2	-1	0	+2	-1	0	(x, y)	$(x^2 - y^2, xy)$
$A_{\rm l}''$	+1	+1	+1	-1 CA	R _I	- 1 (NDEA	OUR
A_2''	+1	+1	-1	-1	-1	+1	Z	-
E"	+2	-1	0	-2	+1	0	(R_x, R_y)	(xz, yz)

In the electronic ground state, BF_{3} has D_{3h} symmetry. Therefore,

- (a) a fundamental transition to an A'_1 state is IR active
- (b) a fundamental transition to the A_2^\prime state is neither IR active nor Raman active
- (c) a fundamental transition to the A_2'' state is Raman active
- (d) a fundamental transition to the E'' state is both IR active, as well as Raman active

Consider the following two data sets: $A = \{x_1, x_2, ..., x_n\}$; $B = \{\lambda x_1, \lambda x_2, ..., \lambda x_n\}$, where x_i are independent random variables and λ is a positive constant. The ratio of the standard deviation and the average values for the data sets, $r_B = \frac{\sigma_B}{\langle B \rangle}$ and $r_A = \frac{\sigma_A}{\langle A \rangle}$, are related by

PAPER: CSIR-UGC-NET/JRF JUNE 2023


(a) $r_B = r_A$

(b) $r_B = r_A \frac{1}{\lambda}$

(c) $r_{R} = r_{A} \lambda$

(d) $r_B = r_A \sqrt{\lambda}$

26. According to Hückel's rule

(a) M and N are antiaromatic

- (b) M and N are aromatic
- (c) M is aromatic and N is antiaromatic
- (d) M is antiaromatic and N is aromatic
- 27. In the process of desulfurization of flue gas, SO_2 is passed through an absorber containing slaked lime in the presence of O_3 . The final product is
 - (a) $CaSO_3.3H_2O$

(b) CaSO₄.CaCO₃

(c) CaSO₄.2H₂O

- (d) CaS₂O₄
- 28. Of the following, the correct statements about carboxypeptidase-A are
 - A. Zn²⁺ ion acts as a Lewis acid
 - B. The substitution of Zn²⁺ ion by Co²⁺ ion renders the enzyme inactive
 - C. Two histidine nitrogen atoms, glutamate oxygen atom(s) and a water molecule coordinate to a Zn²⁺ ion
 - D. Three histidine nitrogen atoms and a water molecule coordinate to a Zn²⁺ ion
 - (a) A and C only

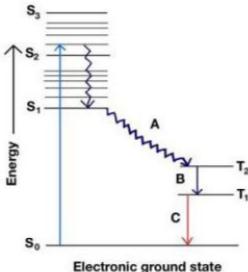
(b) A, C and D only

- (c) B and D only
- ARCER ENDE (d) A and B only
- 29. Of the following statements regarding lanthanoid(III) ions/complexes
 - A. the metal ion interacts weakly with ligand orbitals
 - B. a large number of microstates result in large number of transitions
 - C. the f orbitals are deeply buried
 - D. they show strong f-f electronic transitions

The correct statements are

(a) A, C and D only

(b) B, C and D only


(c) A, B and C only

- (d) B and C only
- 30. At 298 K, a zinc electrode is submerged in an acidic 0.9 M $\rm Zn^{2+}$ solution, which is connected by a salt bridge to a 0.3 M $\rm Ag^+$ solution containing a silver electrode. Given that $\rm Zn/Zn^{2+} = 0.76~V$ and $\rm Ag/Ag^+ = -0.80~V$ vs SHE at 298 K, the initial voltage of the cell (vs SHE) would be
 - (a) 0.01V
- (b) 1.56V
- (c) 0.04V
- (d) 1.53V
- 31. The EI (electron-impact) mass spectrum of $CH_3(CH_2)_2CN$ will show a base peak at m/z value of
 - (a) 54

- (b) 26
- (c) 41
- (d) 70
- 32. In the Jablonski diagram given below, the initial excitation takes place from the singlet ground

state to the second singlet excited state, $(S_0 \to S_2)$. Match the processes to the events marked as A, B and C.

- (a) A: Internal conversion, B: Fluorescence, C: Phosphorescence
- (b) A: Inter system crossing, B: Phosphorescence, C: Phosphorescence
- (c) A: Internal conversion, B: Phosphorescence, C: Phosphorescence
- (d) A: Inter system crossing, B: Fluorescence, C: Phosphorescence
- 33. The feature that *incorrectly* describes an ideal detector in gas chromatography, is
 - (a) the adequate sensitivity should be in the range of 10^{-8} to 10^{-15} g solute/s
 - (b) it has a short response time that is independent of flow rate
 - (c) it is non-destructive of the sample
 - (d) there is a linear response to a 10-fold change only in the solute concentration
- 34. Considering nitrogen as a central atom, the structures of H₂C-N=C=S and H₂Si-N=C=S respectively,
 - (a) bent and linear

(b) linear and linear

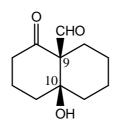
(c) bent and bent

(d) linear and bent

35. In the fission reaction

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{56}Ba + ^{93}_{36}Kr + 3^{1}_{0}n$$

for given masses of 235 U (235.0439 amu), 140 Ba (139.9106 amu), 93 Kr (92.9313 amu) and n(1.00867 amu), and 1 amu (931.494 MeV/c²), the energy released is


- (a) 135.0 MeV
- (b) 200.2 MeV
- (c) 172.0 MeV
- (d) 150.0 MeV
- The change in the entropy and the Gibbs free energy of a system are denoted by ΔS and ΔG , 36. respectively. For reversible melting of ice at 1 atm and 0°C
 - (a) $\Delta S > 0$ and $\Delta G < 0$

(b) $\Delta S > 0$ and $\Delta G = 0$

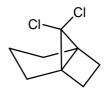
(c) $\Delta S = 0$ and $\Delta G = 0$

- (d) $\Delta S = 0$ and $\Delta G < 0$
- The absolute configuration of the stereogenic centres present in the following molecule is 37.

	(a) 9R, 10S	(b) 9R, 10R	(c) 9S, 10S	(a) 98, 10R					
38.	The pair of complexes/ions that does not obey the 18-electron rule, is								
	(a) $[V(CO)_6]$ and $[Ti($	$[Cp)_2Cl_2$	(b) [Mn(Br)(CO)	(b) $[Mn(Br)(CO)_5]$ and $[Mn(CO)_5]^-$					
	(c) $[Co(CO)_3PPh_3]^-$ and	$\operatorname{nd} \left[\operatorname{Co}_{4}(\operatorname{CO})_{12}\right]$	(d) $[Fe(CO)_5]$ and	$d [Fe_2(CO)_9]$					
39.	The ground state term and the calculated magnetic moment (in BM) for Dy ³⁺ ion respectively, are								
	(a) $^{6}\text{H}_{_{15/2}}$ and 5.91		(b) ${}^{6}\text{H}_{15/2}$ and 10.	65					
	(c) $^{6}\text{H}_{5/2}$ and 6.23		(d) $^{6}\text{H}_{5/2}$ and 5.91	(d) ⁶ H _{5/2} and 5.91					
40.	The number of oxygen atoms bonded to each phosphorus centre in P ₄ O ₆ and P ₄ O ₁₀ respectively,								
	are								
	(a) 4 and 5	(b) 3 and 5	(c) 3 and 4	(d) 5 and 4					
41.	For the proteolytic digestive enzyme pepsin with an isoelectric point $(pI) \approx 1$, the correct statements, among the following, are								
	A. It has many aspartic acid residues								
	B. It has many lysine residues								
	C. It is involved in the hydrolysis of peptide bonds								
	D. It is involved in the degradation of fatty acids								
	(a) A and C only		(b) B and C only	7					
	(c) A and D only		(d) B and D only	Y					
42.	The ¹ H NMR spectrum of a mixture of chloroform and acetone shows two singlets at δ7.25 and								
	2.1 ppm with integral heights of 12 and 18 mm, respectively. The molar ratio of chloroform to acetone in the mixture is								
	(a) 1:6	(b) 3:2	(c) 1:3	(d) 4:1					
43.	The coordination numbers of cobalt ion in solid Cs_3CoCl_5 and zinc ion in solid $(NH_4)_3ZnCl_5$ are, respectively.								
	(a) 5 and 4	(b) 4 and 4	(c) 4 and 5	(d) 5 and 5					
44.	The value of the Hammett substituent constant (σ) for <i>p</i> -OMe is -0.30 . If the pKa of benzoic acid is 4.19, that of <i>p</i> -anisic acid is								
	(a) 4.79	(b) 3.89	(c) 3.59	(d) 4.49					
45.	For the radicals CH_3° (A), $CH_3CH_2^{\circ}$ (B), $c-C_6H_{11}^{\circ}$ (C), the correct order for the relative rates of addition to $CH_2 = CHCN$ is								
	(a) $A > C > B$	(b) $C > B > A$	(c) C > A > B	(d) $B > A > C$					
46.	If $A_x B_y$ crystallizes in	an fcc lattice, with atom	A occupying every co	orner and atom B occupying					

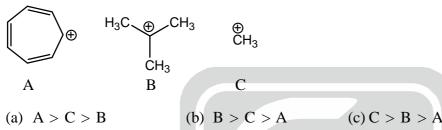
the center of each face of the unit cell, the correct stoichiometry is

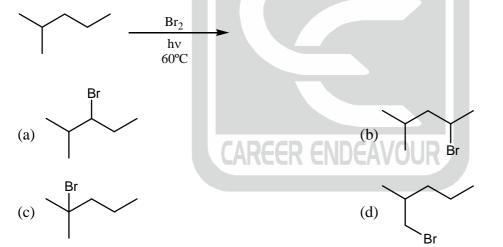
(c) A_2B


(d) A_3B

(b) AB_2

(a) AB_3


47. The number of signals expected for the given compound in ¹H and ¹³C NMR spectra, respectively, are


- (a) 7 and 8
- (b) 6 and 5
- (c) 7 and 5
- (d) 6 and 8
- 48. Transition state theory was developed to explain the empirical Arrhenius expression for rate constants. For a non-linear transition state with *N* atoms, the effective number of vibrational degrees of freedom used in calculating its vibrational partition function is
 - (a) 3N 6
- (b) 3N 7
- (c) 3N 5
- (d) 3N 8

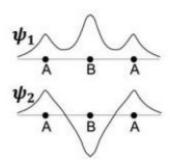
(d) C > A > B

49. In the gas phase, the correct order of hydride affinity for the given carbocations is

50. The major product formed in the given reaction is

- 51. X, Y and Z are three p-block elements in the second row of the periodic table, with electron affinities (in kJ/mol) of -15, -142 and -333, respectively. The correct statement among the following, is
 - (a) Y has the highest first ionization energy
- (b) X has the most number of *p*-electrons
- (c) X has the highest proton affinity
- (d) Z has the highest electronegativity
- 52. Among the following, the NMR inactive nucleus is
 - (a) ${}^{14}N_{7}$

- (b) ${}^{31}P_{15}$
- $(c)^{24}Mg_{12}$
- (d) $^{29}Si_{14}$
- 53. For a transition metal M, the correct order of 13 C NMR spectral shift [in ppm relative to Si(CH₃)₄] for the moieties M-CH₃, M-CO and M-C₆H₅, is
 - (a) $M-CH_3 < M-C_6H_5 < M-CO$


(b) $M-CO < M-CH_3 < M-C_6H_5$

(c) $M-C_6H_5 < M-CH_3 < M-CO$

 $(d) M-CO < M-C_6H_5 < M-CH_3$

54. The following plots schematically show the variation of two molecular orbitals ψ_1 and ψ_2 along the internuclear axis of a linear triatomic molecule A_2B .

If the atomic orbitals corresponding to atoms A and B are, respectively, ϕ_A and ϕ_B , the molecular orbitals ψ_1 and ψ_2 have the form (all the coefficients are positive)

(a)
$$\psi_1 = a_1 \phi_A + b_1 \phi_B + c_1 \phi_A$$
$$\psi_2 = a_2 \phi_A - b_2 \phi_B - c_2 \phi_A$$

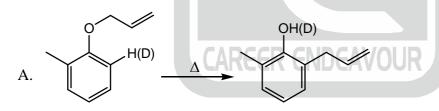
(b)
$$\psi_1 = a_1 \phi_A + b_1 \phi_B + a_1 \phi_A$$

 $\psi_2 = a_2 \phi_A - b_2 \phi_B + a_2 \phi_A$

(c)
$$\Psi_1 = a_1 \phi_A + b_1 \phi_B + c_1 \phi_A$$

 $\Psi_2 = a_2 \phi_A - b_2 \phi_B + c_2 \phi_A$

(d)
$$\psi_1 = a_1 \phi_A + b_1 \phi_B + a_1 \phi_A$$
$$\psi_2 = -a_2 \phi_A - b_2 \phi_B - a_2 \phi_A$$


- 55. The correct set of possible term symbols for the electronic configuration 1s² 2s¹ 2p¹ is
 - (a) ${}^{1}P_{1}$, ${}^{3}P_{2}$, ${}^{3}P_{0}$, ${}^{3}S_{0}$

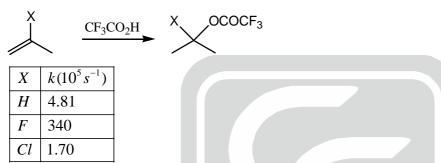
 $(b)^{1}P_{0}, {}^{3}P_{2}, {}^{3}P_{0}, {}^{3}P_{1}$

(c) ${}^{1}P_{1}$, ${}^{3}P_{2}$, ${}^{3}P_{0}$, ${}^{3}S_{1}$

 $(d) {}^{1}P_{1}, {}^{3}P_{2}, {}^{3}P_{0}, {}^{3}P_{1}$

56. Among the following reaction(s), deuterium primary kinetic isotope effect is seen in

B.
$$A \longrightarrow H(D)$$


- (a) A and B
- (b) B and C
- (c) Only A
- (d) Only C
- 57. The silver salt with the highest solubility product (K_{sp}) in water is
 - (a) AgI

- (b) AgCl
- (c) AgF
- (d) AgBr

The above reaction involves

- (a) nucleophile addition followed by elimination
- (b) nucleophilic aromatic substitution
- (c) elimination followed by nucleophile addition
- (d) bimolecular nucleophilic substitution
- 59. Based on the given data on the first-order rate constants for the following reactions, the correct statement is

- (a) F and Cl inductively stabilize the intermediate carbocation
- (b) Cl stabilizes the intermediate carbocation better than H
- (c) Cl stabilizes the intermediate carbocation better than F
- (d) F stabilizes the intermediate carbocation better than H
- 60. Given that the pK_{a1} and pK_{a2} values for alanine are 2.34 and 9.68, respectively, its isoelectric point (pI) is
 - (a) 6.01

- (b) 12.02
- (c) 7.34
- (d) 4.14

PART-C

61. The major products A and B formed in the given reaction sequence are

Ph
$$CCl_3$$
 Bu
 $(cat.)$
 BH_3
 A
 $NaOH$
 NaN_3
 BH_3
 A
 $NaOH$
 NaN_3

(a)
$$A = Ph$$

CCl₃
 $B = Ph$

OH

(b)
$$A = Ph$$

CCI₃
 $B = Ph$

OH

OH

OH

(c)
$$A = \begin{array}{c} HO_{III} \\ Ph \end{array}$$
 $B = \begin{array}{c} N_{3} \\ Ph \end{array}$ OF

- 62. Among the assertions
 - A. UO2+ is thermodynamically stable in water
 - B. UO_2^{2+} is a hard acid.
 - C. The geometry of UO₂²⁺ is bent
 - D. Both the 5f and 6d orbitals of U are involved in bonding with the 2p orbitals of oxygen atom. The correct statements for UO_2^{n+} are
 - (a) A and C only

(b) B and D only

(c) B, C and D only

(c) Ph———CHO

- (d) A and B only
- 63. The major product formed in the given reaction is

- 64. For the Hamiltonian operator $\hat{H} = \frac{1}{2m} \hat{p}^2 + \lambda \hat{x}^4$, the best choice among the following trial variational wavefunctions for estimating the ground state energy is
 - (a) $\frac{1}{x^2 + a^2}$
- (b) $\frac{a}{x^2}$
- (c) $\frac{a}{x}$
- (d) $\frac{1}{(x^2+a^2)^2}$

65. The major products A and B in the given reactions are

A
$$\stackrel{\text{mCPBA}}{\longleftarrow}$$
 $\stackrel{\text{i. NBS, H}_2O}{\longleftarrow}$ B

(a)
$$A = B =$$

$$Me$$

$$Me$$

(b)
$$A = \begin{pmatrix} t \\ Bu \\ Me \end{pmatrix}$$
 $B = \begin{pmatrix} t \\ Bu \\ Me \end{pmatrix}$

(c)
$$A = \begin{bmatrix} t \\ Bu \\ Me \end{bmatrix}$$
 $B = \begin{bmatrix} t \\ Bu \\ Me \end{bmatrix}$

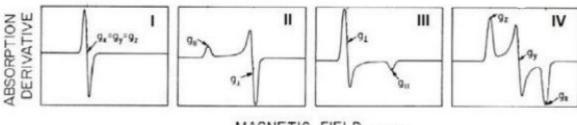
$$(d) A = B = Me$$

- 66. A particular sample of polymer has 100 chains with molecular weight 1000, 200 chains with molecular weight 10000, and 200 chains with molecular weight 100000. The polydispersity of the sample is
 - (a) 1.485

- (b) 1.970
- (c) 2.068
- (d) 3.532
- 67. The correct statements in the following reaction sequence,

$$CO_2 + P \xleftarrow{[OH]^-}{Feaction B} Fe(CO)_5 \xrightarrow{H^-} P + CO$$

$$P \xrightarrow{excess [OH]^-} O$$


- A. the v_{CO} in P is lower than v_{CO} in Fe(CO)₅
- B. reaction B proceeds via coordinated formyl intermediate
- C. Q is isolelectronic with Ni(CO)₄
- D. P is used as a catalyst in water-gas shift reaction
- (a) A, B and C only

(b) B, C and D only

(c) A, C and D only

- (d) A and C only
- 68. The electron paramagnetic resonance spectrum from among the following, which represents a metal ion with S = 1/2 in rhombic symmetry,

MAGNETIC FIELD -

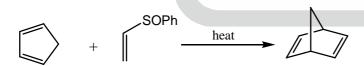
is

(a) IV

(b) III

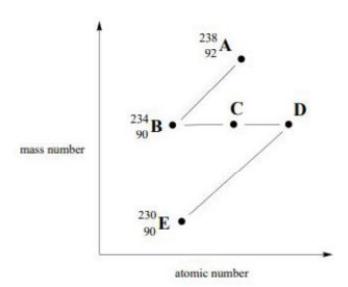
- (c) II
- (d) I
- The result of applying the operator $e^{-ia\hat{p}/h}$ on the function f(x) is 69.
 - (a) $+a \frac{df(x)}{dx}$
- (b) f(x+a)
- (c) $-a \frac{df(x)}{dx}$ (d) f(x-a)
- 70. Consider ammonia to be an ideal gas, with each molecule of ammonia occupying an effective area of 7Å² on barium fluoride surface. The adsorption follows the following isotherm.

$$\frac{z}{(1-z)V} = \frac{1}{cV_m} + \frac{(c-1)z}{cV_m}$$


where, $z = \frac{p}{n^*}$, c is a constant, and V_m the is monolayer capacity (volume of the adsorbed gas)

at STP. The plot of $\frac{z}{(1-z)V}$ against z gives the intercept as 4.66×10^{-4} cm⁻³ and slope as 0.0761

cm⁻³. The surface area of adsorption (in m²) is close to

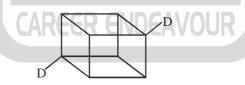

(a) 24.5

- (b) 2.5
- (c) 33.2
- (d) 1.9
- In the given reaction, CH₂=CHS(O)Ph is a synthetic equivalent of 71.

- (a) ethyne
- (b) ethene
- (c) ethane
- (d) ketene
- 72. Statements A-D below pertain to the given decay series,

- A. The radionuclide (D) is formed by two successive β -particle emissions from the radionuclide (B).
- B. The radionuclide (E) is formed by successive β -particle and α -particle emissions from the radionuclide (C).
- C. The atomic number of the radionuclide (C) is 91.
- D. The atomic number of the radionuclide (D) is 90.

The correct statements are


(a) A and C only

(b) B and D only

(c) C and D only

(d) A, B and C only

73. Sym-cubane-d₂, the structure of which is given below, is a bi-substituted isotopomer of cubane, where two hydrogens are substituted by deuterium.

The point group of this molecule is

(a)
$$D_{2h}$$

(b)
$$D_{3d}$$

(d)
$$C_{2h}$$

- 74. A perturbation $\hat{H}' = V_0(3\cos^2\phi 1)$, where V_0 is a constant, is applied to a rigid rotator undergoing a rotational motion in a plane. The first order energy correction to the ground state is
 - (a) $2V_0$

- (b) $\frac{1}{4}V_0$
- (c) $\frac{1}{2}V_0$
- (d) V_0
- 75. Of the following assertions regarding the mechanism of electron transfer,
 - A. An outer-sphere mechanism involves electron transfer from reductant to oxidant, with the coordination shells or spheres of each staying intact.
 - B. In inner-sphere mechanism, the reductant and oxidant share a ligand in their inner or primary coordination sphere which assists in electron being transferred.
 - C. In inner-sphere mechanism, an oxidant possesses at least one ligand capable of binding

simultaneously to two metal ions.

D. In inner-sphere mechanism, ligands of reductant are substitutionally inert.

The correct statements are

(a) A and D only

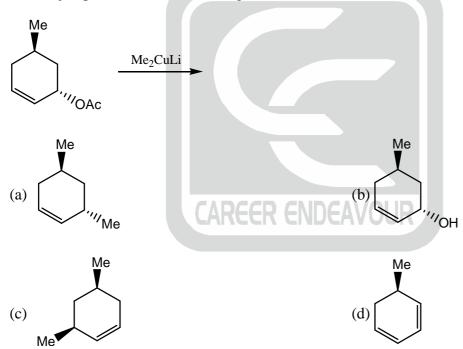
(b) A, B and C only

(c) B and C only

- (d) B, C and D only
- 76. The tunnelling probability of a particle with energy E incident on a potential barrier of height V_0 , and width L is given by the expression

$$T(E) = 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right) e^{-2kL}$$

where k is a constant. For a certain particle with $E = \frac{V_0}{2}$, the tunnelling probability was found to


be 1.6×10^{-7} . If the width of the potential is halved, then the tunnelling probability will be

(a) 3.2×10^{-7}

(b) 8.0×10^{-4}

(c) 6.4×10^{-7}

- (d) 3.2×10^{-3}
- 77. The major product formed in the given reaction is

78. The major product formed in the given reaction is

79. The intermediate A and the major product B formed in the given reaction, respectively, are

(a)
$$A = Br$$
 Br
 Br

(b)
$$A = \bigoplus_{Br} Br$$

$$B = \left\{\begin{array}{c} B_1 \\ B_2 \end{array}\right\}$$

(c)
$$A = \bigoplus_{Br} \Theta$$

(d)
$$A = \bigoplus_{\text{Br}} \text{Br}$$

80. The mechanisms for the formation of molecules A and B involve, respectively,

- (a) oxa-di- π -methane rearrangement and Norrish type II cleavage
- (b) Norrish type I cleavage and oxa-di- π -methane rearrangement
- (c) oxa-di- π -methane rearrangement and Norrish type I cleavage
- (d) Norrish type I cleavage and Norrish type II cleavage
- 81. Consider the cell, $Pt|H_2(g, p^0)|HCl(aq)||AgCl(s)|Ag$, and the corresponding cell reaction $2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2HCl(aq)$ where, p° is the standard pressure. In terms of the molality b of HCl(aq), and the mean activity coefficient γ , the Nernst equation for the cell reaction is

(a)
$$E = E_0 - \frac{2RT}{F} \ln(\gamma b)$$

(b) $E = E_0 - \frac{RT}{F} \ln(\gamma b)$
(c) $E = E_0 - \frac{RT}{2F} \ln(\gamma b)$
(d) $E = E_0 - \frac{RT}{F} \ln(2\gamma b)$

82. The given reaction proceeds *via*

- (a) A [1,3]-H shift followed by [4+2] cycloaddition
- (b) A [1,5]-H shift followed by [4+2] cycloaddition
- (c) A [3+2] cycloaddition followed by hydride shift
- (d) A [4+2] cycloaddition followed by alkyl shift
- 83. Alkylation of lithium enolate P occurs through a

P
$$\frac{\text{CH}_{3}\text{I}}{\text{CH}_{3}}$$
 $+$ $\frac{\text{CH}_{3}\text{I}}{\text{CH}_{3}}$ $+$ $\frac{\text{CH}_{3}\text{I}}{\text{CH}_{3}}$ $+$ $\frac{\text{CH}_{3}\text{I}}{\text{N}}$

- (a) chair-like transition state and the major product is N
- (b) chair-like transition state and the major product is M

- (c) twist boat-like transition state and the major product is M
- (d) twist boat-like transition state and the major product is N
- The number of unpaired electrons in [Cp₂Fe], [Cp₂Ni] and [Cp₂Co] complexes are, respectively, 84.
 - (a) 0, 0 and 1

(b) 0, 2 and 1

(c) 0, 1 and 2

(d) 2, 2 and 1

85. The major product formed in the given reaction is

- 86. An ideal gas with an initial pressure P and volume V undergoes an isothermal and reversible expansion. If the change in entropy due to this expansion is ΔS , the magnitude of work done by the gas is
 - (a) $nR\Delta S$

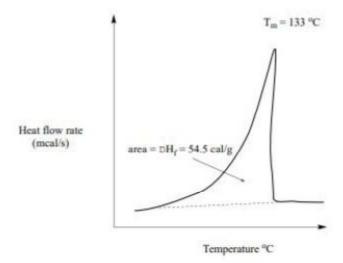
- (b) $nR\Delta S/PV$ (c) $PV\Delta S/nR$
- 87. Acetone undergoes photodissociation upon absorption of 330 nm light. Exposure of a gaseous sample of acetone to a radiant power of 20 mW at 330 nm for a period of 3 hours results in the photodissociation of 75 µmol of acetone. The quantum yield for the photodissociation, assuming all the light is absorbed, is
 - (a) 1.26×10^{-4}
- (b) 1.26×10^{-1}
- (c) 1.26×10^{-3} (d) 1.26×10^{-2}
- A reaction follows the rate law $-\frac{d[A]}{dt} = k[A]^2$. Starting from an initial concentration $[A]_0$, the 88.

time taken for the concentration to reduce to $\frac{[A]_0}{4}$, namely the quarter-life of A, is

(a) $\frac{\ln k}{2}$

- (b) $\frac{1}{k[A]_0}$ (c) $\frac{\ln 2}{k}$ (d) $\frac{3}{k[A]_0}$

89. The major product formed in the given reaction is



- 90. Five moles of $[B_9H_{14}]^-$ react with two moles of B_5H_9 at 85°C resulting in the evolution of nine moles of H_2 and the formation of a monoanionic borane cluster that has a
 - (a) Nido structure

(b) Closo structure

(c) Arachno structure

- (d) Hypo structure
- 91. In the differential scanning calorimetry plot of a polyethylene sample (given below), if the heat of fusion is 68.4 cal/g, the percent crystallinity of the sample,

(a) 100%

(b) 55%

(c) 68%

(d) 79%

92. The intermediate involved in the given Etard reaction is

$$(c) \qquad \begin{array}{c} CI & O \\ O - Cr - CI \end{array}$$

$$(d) \bigcirc O - Cr - Cl$$

93. The correct expression for the rate of the given reaction is

(a) Rate = $k[ketone][HO^-]$

(b) Rate = $k[ketone]^2[HO^-]$

(c) Rate = $k[ketone][HO^{-}]^{2}$

- (d) Rate = k[ketone]
- 94. The transference number of the hydrogen ion in an aqueous solution containing HCl and NaCl is 0.5. The limiting molar conductivities of H⁺, Na⁺ and Cl⁻ are, respectively, 350 × 10⁻⁴ Sm² mol^{-1} , $50 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$ and $75 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$. The ratio of the concentration of HCl and

NaCl, namely
$$\frac{[HCl]}{[NaCl]}$$
 is

(a) $\frac{10}{11}$

- (c) $\frac{5}{11}$ (d) $\frac{11}{10}$
- 95. In the solid state, methyllithium is tetrameric and has a Li₄ core. The correct statement about the structure and bonding in methyllithium is
 - (a) Each methyl anion is bridging between two Li-centres via 3-center-2-electron bonding
 - (b) Each methyl anion binds to three Li centres via 4-center-2-electron bonding
 - (c) It possesses a 2-center-2-electron bond
 - (d) Each methyl anion is terminally bound to each Li-centre
- The operator for the square of the angular momentum for an electron in a hydrogenic atom is 96. given below.

$$\hat{L}^2 = -h^2 \left[\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

A correct form of the angular function for the p_x orbital is

- (a) $\sin \theta e^{2i\phi}$
- (b) $\sin \theta e^{i\phi}$
- (d) $\cos \theta e^{2i\phi}$

97. Identify P and Q in the following reaction sequence

$$[Mn(CO)_{\epsilon}]^{-} + C_{2}H_{\epsilon}Cl \longrightarrow P \xrightarrow{\Delta orhv} Q$$

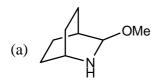
(a)
$$P = [(\eta^1 - C_3 H_5) Mn(CO)_4 Cl]^-$$
 and $Q = [(\eta^3 - C_3 H_5) Mn(CO)_4]$

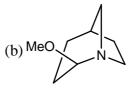
(b)
$$P = [(\eta^3 - C_3H_5)Mn(CO)_4]$$
 and $Q = [(\eta^1 - C_3H_5)Mn(CO)_4C1]^{-1}$

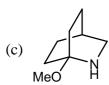
(c)
$$P = [(\eta^3 - C_3H_5)Mn(CO)_4]_2$$
 and $Q = [(\eta^1 - C_3H_5)Mn(CO)_4]_2$

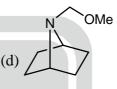
(d)
$$P = [(\eta^1 - C_3H_5)Mn(CO)_5]$$
 and $Q = [(\eta^3 - C_3H_5)Mn(CO)_4]$

PAPER: CSIR-UGC-NET/JRF JUNE 2023




- 98. Consider four non-interacting ⁴He atoms, each of which can occupy three energy levels of energies 0, a and 2a. The number of microstates having total energy E = 3a is
 - (a) 4


(b) 12


- (d) 1

The major product formed in the given reaction is 99.

- 100. For the Eu^{3+} ion (At No: 63),
 - A. the calculated and the observed magnetic moments are in agreement with each other.
 - B. the higher energy states ${}^{7}F_{1}$ and ${}^{7}F_{2}$ are populated and increase the observed magnetic moment.
 - C. the 4f orbital is more than half-filled
 - D. the ground state term symbol is ${}^{7}F_{0}$

Of the above, the correct statements are

(a) A and D only

(b) A and B only (d) B and D only

(c) C and D only

- 101. The correct set of reagents required to convert ethyl benzoate to ethylbenzene is
 - (a) (1) MeMgI (excess); (2) H₃O⁺; (3) 1, 2-ethanedithiol, BF₃Et₂O; (4) H₂, Raney Ni
 - (b) (1) Me₂TiCp₂; (2) H₃O⁺; (3) 1,2-ethanediol, BF₃Et₂O; (4) N₂H₄, H₂O₂
 - (c) (1) Me₂TiCp₂; (2) H₃O⁺; (3) 1, 2-ethanedithiol, BF₃Et₂O; (4) H₂, Raney Ni
 - (d) (1) EtMgI (excess); (2) H₃O+; (3) 1,2-ethanediol, BF₃Et₂O; (4) N₂H₄, H₂O₂
- The energy level diagram for the π -molecular orbitals of the cyclic C_3H_3 radical is given below. 102.

The *delocalization* energy of the molecule in the ground state (in units of β , where β is Hückel's constant for interaction energy) is

(a) 3

(b) 1

(c)0

(d) 2

103. The correct order of second ionization enthalpies, is

(a) B > C > N > Be

(b)
$$N > C > Be > B$$

(c) B > N > C > Be

(d)
$$N > B > C > Be$$

104. The correct statements concerning H(CHB₁₁Cl₁₁), are

- A. Its conjugate base is a non-coordinating anion
- B. [CHB₁₁Cl₁₁] has a stable icosahedral geometry
- C. It is a superacid
- D. It can protonate fullerene and benzene

(a) A and C only

(b) B, C and D only

(c) A, B, C and D

(d) A, B and C only

105. The vibrational energy for a diatomic molecule is given by $G(v) = \left(v + \frac{1}{2}\right)v_e - \left(v + \frac{1}{2}\right)^2 v_e x_e$,

where v_e is the fundamental frequency and x_e is the anharmonicity constant. The infrared spectrum of BeO molecule in an excited state shows two transitions at 1078.48 cm⁻¹ and 1062.42 cm⁻¹, identified as transitions between vibrational levels $2 \rightarrow 3$ and $3 \rightarrow 4$, respectively. The v_e and $v_e x_e$ (in cm⁻¹) for BeO molecule in this state, respectively, are

(a) 1126.66 and 8.03

(b) 1030.30 and -8.03

(c) 1174.84 and 16.06

(d) 1078.48 and 8.03

106. A three-state system with energies $E = -\varepsilon_0$, $0, +\varepsilon_0$ is in a thermal equilibrium at a temperature T.

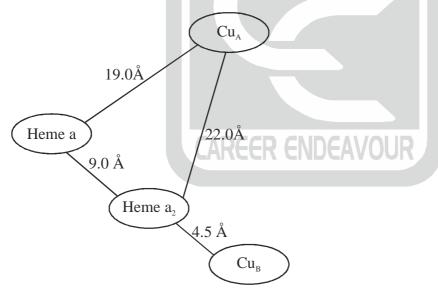
If $\beta \varepsilon_0 = x$, the probability of finding the system with energy E = 0 is $\left[\text{recall}, \cosh x = \frac{1}{2} (e^x + e^{-x}) \right]$

(a) $(2\cosh x)^{-1}$

(b)
$$\frac{1}{2} \cosh x$$

PAPER: CSIR-UGC-NET/JRF JUNE 2023

(c) $(1+2\cosh x)^{-1}$


- (d) $1 + 2 \cosh x$
- 107. The statement regarding the properties of Type I Blue copper proteins that is true is
 - (a) The Cu(II) centre is bound to His and Cys amino acids only
 - (b) In the EPR spectrum, the A_i value in Blue copper proteins is greater than the A_j value of free $\mathrm{Cu}(\mathrm{II})$ ion
 - (c) There is an intense absorption band in the electronic spectrum at $\lambda_{max} \approx 600 \, \text{nm}$ and $\epsilon_{max} \approx 100 \, \text{times}$ greater than the ϵ_{max} of aqueous Cu(II) ion
 - (d) It exists as a pair of Cu(II) centres.
- 108. The rate of an acid-catalyzed reaction in aqueous solution follows the rate equation given below. $v = k[X^+][Y^{2-}][H^+]$

The rate constants for the reaction at ionic strengths of 16 mol L⁻¹ and 9 mol L⁻¹ are k_1 and k_2 , respectively. The value of $\log\left(\frac{k_1}{k_2}\right)$ in the units of the Debye-Hückel constant, B, is

(a) -2

(b) $\frac{4}{3}$

- (c) $\frac{16}{9}$
- (d) -4
- 109. For the four active metal centres in cytochrome c oxidase shown below,

- A. Electron transfer involves Heme a and Cu_A while O_2 binding involves Heme a_3 and Cu_B .
- B. O₂ only interacts with Cu_B to form a Cu(II)-O₂- species with no role for both the hemes
- C. Heme a is 5-coordinate species with an axial His ligation
- D. Cu_B is a monomeric 3-coordinate species while Cu_A is a dicopper species the correct statements are
- (a) A, B and C only

(b) C and D only

(c) B, C and D only

- (d) A and D only
- 110. The phase diagram for a one-component system is shown below.

The number of degrees of freedom at the points marked a, b, c and d, respectively, are

(a) 2, 0, 0, 1

(b) 1, 3, 3, 2

(c) 2, 1, 0, 1

(d) 0, 1, 2, 1

111. The major product formed in the given reaction is

112. Consider the following reaction scheme and the related statements.

 $BrF \xrightarrow{disproportionation} Br_2(g) + X (T shaped geometry)$

- $X \xrightarrow{\text{self ionization}} Y \text{ (cation)} + Z \text{ (anion)}$
- A. X, Y and Z have the same number of lone pairs of electrons.
- B. Y has a bent shape.
- C. Z is sp^3 hybridized and has tetrahedral shape.
- D. X is used as a non-aqueous solvent.

The *correct* statements are

(a) A and B only

(b) A and D only

(c) C and D only

(d) A, B, and D only

113. The number of cation vacancies per mole, when NaCl is doped with 10⁻³ mol % of BCl₃ is

(a) 12.046×10^{23}

(b) 12.046×10^{18}

(c) 6.023×10^{20}

(d) 6.023×10^{18}

114. The major product formed in the given reaction is

HOIIII CO₂Me
$$\frac{0.95 \text{ eq. KOH}}{\text{MeOH, H}_2\text{O}}$$

- 115. Given the spectral transitions for $[CrF_6]^{3-}$ complex as, 671 nm $[^4A_{2g} \rightarrow {}^4T_{2g}]$, 441 nm $[^4A_{2g} \rightarrow {}^4T_{1g}(F)]$ and 291 nm $[^4A_{2g} \rightarrow {}^4T_{1g}(P)]$, the Racah parameter B' is closest to
 - (a) 2813 cm⁻¹
- (b) 1986 cm⁻¹
- (c) 827 cm⁻¹
- (d) 213 cm^{-1}
- 116. Among SF₄, [ClO₄]⁻, FClO₃ and [IF₄]⁺ the number of species having "see-saw" shape is
 - (a) 2

(b) 1

- (c)3
- (d) 4
- 117. Match the following complexes with their characteristics

^{∕∕}∕CO₂H

Complex

d-electron(s)

Total valence electrons

- (i) [WCl₆]
- (a) 2

(x) 12

- (ii) [WCl₆]⁻
- (b) 1

(y) 13

- (iii) [WCl₂]²⁻
- (c) 0

(z) 14

The *correct* combination is

- (a) (i)-(c)-(x); (ii)-(b)-(y); (iii)-(a)-(z)
- (b)(i)-(a)-(x); (ii)-(b)-(z); (iii)-(c)-(y)
- (c) (i)-(c)-(z); (ii)-(b)-(y); (iii)-(a)-(x)
- (d) (iii)-(c)-(x); (ii)-(b)-(z); (i)-(a)-(y)
- 118. The major product(s) of the given reaction is (are)

(a) a mixture of diastereomers

(b) a mixture of enantiomers

(c) a single enantiomer

- (d) a single diastereomer
- 119. A yellow-colored complex P upon addition of aqueous HNO₃ forms a very pale violet-colored complex Q. Complex Q on reaction with NaCl forms a yellow-colored complex R. The species P, Q and R, respectively, that are consistent with the above observations, are
 - (a) $P = [Fe(H_2O)_5(OH)]^{2+}$; $Q = [Fe(H_2O)_6]^{3+}$ and $R = [Fe(H_2O)_5(CI)]^{2+}$
 - (b) $P = [Fe(H_2O)_5(OH)]^+$; $Q = [Fe(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_5(Cl)]^{2+}$
 - (c) $P = [Fe(H_2O)_5(NH_3)]^{2+}$; $Q = [Fe(H_2O)_5(NH_3)]^{3+}$ and $R = [Fe(H_2O)_5Cl]^{2+}$
 - (d) $P = [Fe(H_2O)_5(NH_3)]^{3+}$; $Q = [Fe(H_2O)_6]^{3+}$ and $R = [Fe(H_2O)_3Cl_3]$
- 120. The difference between the lowest energy and the next higher energy conformers (in kcal mol⁻¹) of *meso-*2,3-dibromobutane is

Given: Gauche interactions (kcal mol⁻¹): Me/Me = 0.90; Me/Br = 0.25; Br/Br = 0.75

(a) 1.40

(b) 1.65

(c) 1.90

(d) 0.50

