General Characteristic of Invertebrates

Invertebrates are animal that neither possess nor develop a vertebral column (Backbone or spine) derived from notochord.

The majority of animal species are invertebrates (approx~97%)

Some of the general characteristics of invertebrates will be discussed here. They are as follows:

(i) **Organisation:** It is the way in which body of an organism is organised. It can be cellular level of organisation, tissue level of organisation and organ-system level of organisation.

- Ex. Cellular level porifera
 - Tissue level—coelenterate

Organ-system level-platyhelminthes to hemichordates

- (ii) Symmetry It can be defined as the quality of being made up of exactly similar parts facing each other or around an axis.
- Assymmetrical no symmetry *Ex*. Some poriferans.
- Radial it generates identical body halves around the central axis *Ex.* Cnidaria, aduets of echinoderms.
- Bilateral It generates identical body halves around the central axis. *Ex.* platyhelminthes to hemichordates.
- Biradial– It is combination of bilateral and radial (except some mollusk and echinederms) *Ex.* some cnidarians.
- **3. Germ Layer:** It is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the fomation of all organs & tissue. They develop through the process of gastrulation.
 - Diploblastic:- Animal possessing two major tissue layers. outer layer (ectoderm) & inner layar (endoderm) Ex. porifera, cnidarians
 - Triploblastic: 3 layers are present. Ex. Platyhelminthes to hemichordates.
- 4. Body coelom: A coelom is a cavity bined by an epithelium derived from mesoderm organism formed inside the coelom can freely, move, grow, develop independently of the body wall while fluid protects them from shockes
 - Acoelomates :- No coelom present

Ex. Porifera, cnideria, platyhelminthes.

- Pseudocoelomates:- Body cavity is not derived from mesoderm. It is derived from blastocoel.
 Ex. Nematodes
- Schizocoelom In this body cavity is formed by splitting of mesoderm. Ex. annelida, mollusca, Arthopoda.
- Enterocelom;- In this coelom formed from pouches pinched off of the digestive tract. Ex. Echinodermata, Hemichordata.
- 5. Segmentation- it is the division of body plans into a series of repetitive segments
 - Insegmented no segments

General Characteristic of Invertebrates

- Ex. porifera, cnideria, nematades, mollusca, echinodermata, and hemichordata,
- Pseudometamerism in those either the segmentations is only external or the segments behave independently not as a unit
 - Ex. Platyhelminthes.
- Metamerism:- In this, body is composed of repeating segments attached to make a whole. Ex. Annelids, arthropoda.
- **6.** Protostomic and deutrostomic

Protostomic:-These are animals in which mouth develops from blastopore.

Ex. Nematoda, annelida, mollusca, Arthropoda

Deutrostomic:- These are animals in which anus develops from blastopore.

Ex. aschinodeumata, hemichordata.

7. Digestive tract.

- Incomplete it consists of digestive cavity with a single opening. it serves both as mouth and anus. Ex. Echinodermata, platyhelminthes.
- Complete :-It consists of digestive tract with two openings one serve as mouth, other as anes. Ex. Nematoda to Hemichordates.
- 8. Respiratory system: helps in exchange of gases, Different structures are present in diff. phyla.
 - Cutaneous:- gas exchange occurs through skin or outer integument of organism Ex:- some annelids.
 - Branchial respiration using gills. Ex- some annelids.
 - Ctenidia :- gills in molluses are called ctenidia due to their comb-like shape. Ex:- molluses.
 - Book lungs: it is a type of respiration organ found internally. Ex. some arthropods (scorpion & spiders)
 - Book gills: It is a glap like organ used for respiration. it is found externally Ex. some arthropods.
- 9. Circulatory system : Blood vascular system is well developed in higher verterbrates. It can be of open or closed type.
 - open circulatory system: It is a system where blood and interstitional fluid are allowed to mix in an organism,. blood is not sealed in arteries & veins.
 - Ex. Arthropoda, Echinodermata, Hemichordata
 - Closed circulatory system:- In this blood is closed within vessels of different size & wall thickness. Blood is pumped by heat through vessels.
 - Ex. Annelida, Mollusca
- **10. Exceretory system:** Different types of excretory organs are present in different invertebrates. They are discussed as follows:
 - Direct diffusion:- In some lower invertebrates, products are excreted directly by diffusion. Ex. Protozoans, porifera
 - Thame cells:- It is specialized excretory cell found in the simplest freshwater invertebrates. Also called protinephridia.
 - Ex-platyhelminthes.
 - Nephridia:- It is an invertebrate organ which occurs in pairs and performs a function similar to the kidney of vertebrates.

2

Ex. Annelids

- Organ of Bojanus:-They are excretory glands that serve function of kidney. *Ex.* Molluscs.
- Malpighian tubules :- They consist of branching tubules extending from alimentary canal that absorbs solutes, water & waste from surrounding hemolymph.
 Ex. Arthropods (Arachnids etc)
- Coxal gland :- It is found in some arthropods, for collecting and excreting urine. *Ex:-* Arachnids, chelicerates.
- **11.** Nervous system:- This system consists of networks of neve cells and fibres which transmits nerve impulses between parts of the body. It is quite primitive in invertebrates.
 - Porifera- absent
 - Cnidaria (primitive nerve cells and their processes.)
 - Platyhelminthes- ladder like brain and longitudinal nerve cords.
 - Nematodes Circumpharyngeal nerve ring and nerves.
 - Annelida- Nerve ring solid, double mid ventral cord and ganglia.
 - Mollusc It consists of a pair of ganglia and nerve cords with statocyst (balance organs) and eyes as major sense organ
 - Arthropods-It consists of a dorsal brain and a ventral, ganglionated longitudinal nerve cord from which lateral nerve extend in each segment.
 - Echinoderms- It consists of a central nervous system made up of a nerve ring connected to a series of radial nerve cord.
 - Hemichordata- It is primitive consisting of intra-epidermal nerve plexus.

12. Reproduction & Sex

- Unisexual- male and female reproductive organs are present in different bodies. *Ex.* Nematoda etc.
- Bisexual male and female reproductive organs are present in same body. *Ex.* porifera
- Asexual reproduction :- offspring arise from a single organism and inherit the genes of that present only. *Ex.* Some poriferans & coelenterates.
- Sexual reproduction :- Production of new living organism by combining genetic information from two individuals of different sexes (male & female)
 - Ex. Nematodas, mollucs, arthropods etc.
- **13.** Fertilization :- Union of egg and sperm for producing zygote.
 - Cross fertilization :- Fusion of male & female gametes from different individuals of same species. Ex. Most of the phylum.
 - Internal fertilization Fertilization occurs inside female body

- Extranal fertilization
 - Fertilization occurs in external enviroment.

14. Development:

- Direct development:- Development without metamorphosis- There are no larval stages Ex. Nematoda, some, annelids molluscs & arthropods.
- Indirect development :- Development includes metamorpsis of larval stages to form adult. Ex. Porifera, coelenterata platyhelminthis, some (annelids, molluses) echinodemata, hemichordata.

3

4	General Characteristic of Invertebrates									
	SOLVED EXAMPLS									
1.	If an animal has birad	ial svr	nmtry then it has				[IIT-JAM-2007]			
	(a) Only one plane of		[]							
	(b) Two axes of rotational symmetry									
	(c) Two planes of symmetry, which have no specific relation to each other									
	(d) Two plane of symmetry, which are at right angles to each other.									
Soln.	There are two planes of symmetry in biradial animal, one passing through anteroposterior axis and sagittal									
	and other through the anteroposterior and transverse axes.									
	Ex. Comb jellies									
	Correct option (d)									
2.	Animals in which blas	stopo	re becomes mouth a	re call	led		[BHU-2012]			
	(a) Stomates	(b)	deutrostomates	(c)	Protostomates	(d)	Echinostomates			
Soln.	In protostomes, the fi	irst op	ening i.e blastopore	beco	mes mouth while in deu	trost	omes it becomes anus.			
	Correct option is (c)								
			ASS	IGNN	MENT					
1	Coelom which is dev	elone	d from mesoderm ce	alle ie i	called					
1,	(a) enterocoel	(b)	nseudocoel	(c)	Hydrocoel	(d)	schizocoel			
2.	Blind sac body plan is	s pres	ent in	(0)	Tiyarococi	(4)	Serielococi			
	(a) porifera	(b)	Coelenterates	(c)	annelids	(d)	Arthropods			
3.	Animal living in burro	ows ar	e called	(-)		(-)				
	(a) Carsorial	(b)	Fossorial	(c)	Cave dwellers	(d)	Scansorial			
4.	Cursorial level of orga	anizat	ion is present in							
	(a) protozoa	(b)	Hydra	(c)	Sycon	(d)	Taenia			
5.	Branchial respiration	takes	place through							
	(a) Skin	(b)	gills	(c)	lungs	(d)	Trachea			
6.	Most vertebrate exhile	bit								
	(a) Bilaleral symmetr	y (b)	Radial symmetry	(c)	Biradial symmetry	(d)	spherical symmetry			
7.	Roundworms are		CARCER		IDCAVOUR					
	(a) Acoelomate	(b)	Pseudocoelomate	(c)	Eucoelomate	(d)	Hemocoelomate			
8.	Mammals are									
	(a) Endothermal	(b)	cytothermal	(c)	Mesothermal	(d)	None of the above			
9.	Green glands are orga	ans of	excretion in							
4.0	(a) platyhelminthes	(b)	crustaceans	(c)	Molluscs	(d)	Annelids			
10.	Ladder type nervous	syste	m is present in		~ 1					
	(a) earthworm	(b)	Molluscs	(c)	Coelenterates	(d)	Flat worms.			
п.	Tissue grade of organ	1satio	n originate from			(1)				
10	(a) Protozoa	(b)	porifera	(c)	Cnidarians	(d)	Platyhelminthes			
12.	Animals which lay eg	gs are		(\cdot)	Our	(1)	None of the sec			
12	(a) viviparous	(D) From 1		(C)	Ovoviviparous	(a)	none of these			
13.	(a) Sobiracial	TOIN (Hoomogool	(a)	Entropool	(J)	Depudoacal			
	(a) Schizocoel	(0)	riaemocoer	(\mathbf{C})	Entrocoer	(u)	r seudocoel			

Class	ical Zoology						5
14.	First enterocoel coeld	omate	s are				<u> </u>
	(a) Chrodates	(b)	Arthropods	(c)	Echinoderms	(d)	Annelids
15.	In tetrapods, respirati	ion is					
	(a) cutaneaus	(b)	pulmonary	(c)	tracheal	(d)	Branchial
16.	Coelom is produced b	by spl	itting of mesoderm in	1			
	(a) Schizocoel	(b)	enterocoel	(c)	Hydrocoel	(d)	None of the above.
17.	True coelom is cover	ed by					
	(a) Ectoderm	(b)	Endoderm	(c)	Mesoderm.	(d)	Ectoderm & Endoderm
18.	Body cavity lined by	mesoo	derm is				
	(a) Coelenteron	(b)	Blastocoel	(c)	Pseudocoel	(d)	Coelom
19.	Which one is devoid	ofcoe	elom				
	(a) Platyhelminthes	(b)	Annelida	(c)	Arthropoda	(d)	Enchinoderms
20.	Maximum diversity is	found	l in phylum.				
	(a) Protozoa	(b)	Arthropoda	(c)	Annelida	(d)	Chordata

ANSWER KEY

1. (d)	2. (b) 3. (c)	4. (c) 5. (b)
6. (a)	7. (b) 8. (a)	9. (b) 10. (d)
11. (c)	12. (b) 13. (d)	14. (c) 15. (b)
16. (a)	17. (c) 18. (d)	19. (a) 20. (d)

Protozoa

General Characteristics

- They can be terrestrial or aquatic
- They are too small and can be seen only through microscope.
- They are colorless and body is naked
- Iocomotion occurs by pseudopodia, cilia or flagella
- Symmetry can be radial, bilateral spherical or irregular
- They are holozoic or saprozoic or holophytic in nutrition.
- Respiration and excretion occurs through body surface
- Asexual reproduction is by binary fission, multiple fission, budding or cyst formation.
- Sexual reproduction is by syngamy or conjugation
- Body is not differentiated into somatoplasm & germplasm, so there is no natural death. Study of Protozoa— protozoology

Difference b/w protozoa & porifera

Protozoa

- Belongs to kingdom protista
- Single-called organisms
- Can be free-living or parasitic

Classification

- Protozoa can be classified into four subphylum an the basis of locomotary organs
 - Zooflgellata
 - Sarcodina
 - Sporozoa
 - Ciliophora
 - The important characteristics of these are discussed with important examples.

I. Zooflagellata

- Locomotion is by flagella
- They are mostly uninucleated except Giardia, Opalina.
- Asexual reproduction Binary fission or cyst formation
- Sexual reproduction- absent

Examples

- Trichomonas vaginalis:- causes leucorrhoea in females
- Giardia lamblia/ grand old man of intestine-diarch or
- Trypanosoma gambiense-sleeping sickness
- Mastigaamoeba connecting link b/w zooflagellates and sarcodina

- Porifera
- Belongs to kingdom animalia
- Multicellular
- Generally sessile organism with pores on body

П. Sarcodina

- Single nucleated
- Locomotion is by pseudo podia
- -Asexual reproduction is by binary fission multiple fission, budding and spore formation.
- Sexual reproduction is by syngamy
- Divide into classes:-

Actinopodea

- ٠ Pseudopodia is filopodia or axopodia
- Ex. Actinophyrs- the sun animal cule

III. Sporozoa

- Uninucleated
- No locomotary organs
- -Asexual reproduction is by binary fission
- Sexual reproduction is by gamogony
- Divided into different classes
- (a) Telosporea
 - Spores are naked ٠
 - Ex. Gregarina, Monocystis

(b) Toxoplasmea

- spores are absent in them
- Ex. Toxoplasma
- (c) Haplosporea
 - Spores are present
 - E.x Ichthyosporidium

IV Cilophora

- -Binucleated
- Locomotion is by cilia Asexual reproductive binary fission
- sexual reproduction conjugation
- Divided into different classes

(a) Holotrichia

- Cilia are simple & uniform
- Ex. Paramecium :- slipper animalcule

(b) Peritricha

- No cilia on body. Cilia on ends _
- Ex-Vorticella:- Bell organism
- (c) Suctoria
 - Adults with tentacles. Only young ones ciliated _
 - Ex-Ephelota
- (d) Spirotricha
 - Buccal cilia are enhanced, Body cilia reduced
 - Ex-Bursaria

Rhizopodea

- Pseudopodia is lobopodia or reticulopodia Ex. – Amoeba proteus
 - Entamoeba histolytica

Locomotion in Protozoa

Locomotion in protozo occur by different methods on the basis of which they are divided into different subphylum.

The methods of locomotation:-

- \rightarrow Amoeboid movement
- It occurs only on surface
- Consists in formation of pseudopodia by the streaming flow of cytoplasm in direction of movement.

SoL- gel theory or change of viscocity

- The cytoplasm consists of a central fluid plasmasol surrounded by more viscous plasmagel
- Active contraction of plasmagel at posterior and which leads to flow of plasmasol to anterior end into expanding pseudopodium.
- continuous solution at posterior end and gelation

Ex-Amoeba

Amoeba showing amoeboid movement acc. to sol- gel theory.

Flagellar Movement

Needs liquid medium

(a) Paddle stroke

- It consists of an effective down stroke with flagellum held out rigidly
- And a relaxed recovery stroke in which flagellum in curved and brought forward again
- Animal move forward, gyrate & also rotate on longitudinal axis

(b) Undulation movement

-It consists of wave- like undulation in flagellum.

- when waves proceed from tip to base- pull animal forward, if vice-versa then backward

(c) Simple conical gyration

- In this, a spiral turning of flagellum occurs like a screw.
- This exerts a propelling action pulling the animal forward through water with spiral rotation as well as gyration around axis of movement.

Ciliary movement

- Cilium oscillates like a pendulum
- Each oscillation consists of
 - a fast effective stroke
 - a slow recovery stroke
- During fast effective stroke, cilium becomes curved and rigid and strike the water like an arc and body moves forward in opposite direction of stroke.
- During slow recovery stroke, cilia comes back to original position.

Dia: Showing ciliary movement of single cilium

Sexual

Autogamy Conjugation

Reproduction in Paramecium

Reproduction in paramecium occurs by following ways

Asexual

- Binary fission (transverse)
 Cytogamy
- Endomixis

All of these are discussed in detail

1. Binary fission

- It occurs in favorable environment when there is no shortage of food.
- Animal stop feeding and become spindle shaped
- Micro nucleus divide mitotically while mauorucleus divide amitotically
- Nuclear division is followed by cytokinesis i.e. division of cytoplasm.
- Oral groove start disappearing and a new ingestory apparatus daughter is called proter with original contractile vacuole.
- Posterior daughter is called opisthe with vacuole produced by budding.

2. Endomixis

- Macronucleus divides amitotically
- Micronucleus divides mitotically twice to form a daughter nuclei out of which 6 disintegrate.
- Now paramecium divides and each daughter nuclei receives single nucleus which undergo division and form 4 daughter nuclei.
- Out of these 2 because maronuclei 8 become micronucli.
- Now each daughter divides into two, each gets one macronucleus & 2 micronucleus.

Stages in endomixis

Conjugation:-

It is a modified form of cross- fertilization. Which involves union of two individuals for exchanging their micronuclear material.

- Conjugates stop feeding before conjugate. Most of the apparatus disappear gradually.
- Endoplasmic bridge is formed b/w 2 conjugate.
- Macronucleus dissolves micronuclus ending meiosis & form 4 haploid nuclei.
- 3 of the haploid nuclei disintegrate and one left divides again into two pronuclei- gametic nuclei mall pronuclei of one conjugant cross to other conjugant and fuses with stationary female fronucleeo to form zygote/ synkaryon
- Conjugants separate.
- Now, synkaryon divides by three successive mitotic divisions into 8 daughter nuclei called-amphinucleus
- Four of these become macronuclei & other 4, micronuclei

- Three micronuclei dis-integerate.
- These ex- conjugants divide by 2 successive division and form 4 daughter nuclei.
- Each daughter nuclei cures one macronucleus (by distribution) and one micronucleus (By division.)

Paramecium- Conjugation

4. Autogamy:

- It is a modified form of self fertilization
- The macronucleus breaks & disintegrates.
- The micronuclei divide once by meiosis & then by mitosis to form & daughter nuclei.
- Now, 7 daughter nuclei disintegrate and remaining one divide into male & female pronuclei Both of them fuse to form synkaryon
- Nuclei divide by mitosis to form 4 amphinuclei two become macro & two become micro nuclei
- Animal divides into two daughters receiving one macronuclei & 2 micronuclei.

Autogamy of Paramecium

Stages in Autogamy

5. Cytogamy

- In this, the conjugants unite but there is no exchange of pronuclei.
- Male & Female pronuclei of same individual fuse to form synkaryon like autogamy.
- Intermediate b/w conjugation & autogamy

Life History of Plasmodium

The plasmodium is a malarial parasite. It has 2 hosts.

1st host- female anopheles mosquito

Protozoa

2nd host man.

- The life cycle consists of three phases:-
 - (a)Infection of human with sporozoites
- (b) Asexual Reproduction
- (c) Sexual Reproduction

(1) State of infection:

The human infection begins when an infected female anopheles bites a person and injects sporozoite saliva into the blood circulation.

(2) Asexual reproduction

It divide into

- (i) Exerythrocytic cycle
- (ii) Erythrocytic cycle

(i) Exerythrocytic cycle :-

- Within 30-60 mins of parasite inoculation, sporozoite find their way to first target i.e. liver- the sporozoite enter liver cells and start dividing leading to schizont creation in 6-7 days.
- Each schizont gives rise to thousands of merozoites that are released into the blood stream and end the exerythrocytic phase of sexual reproduction.
- (ii) Erythrocytic cycle:- Merozoites released in blood stream enter the RBCs
 - The first stage after invasion is a ring stage that evolves into a trophozoite. As it grows, a large noncontractile vacuole appears in center and pushes the nucleus towards side forming a signet- ring.
 - Soon, the vacuole disappears and trophozoites become amoeboid. It acquires brownish-black hemozoin granules.
 - In 2-3 days, trophozoite grous into adult, almost entire RBC. A number of granules appear called Schuffner's dot in *P.vivax*.
 - Now adult trophozoite undergo repeated mitotic division to form uninucleated merozoites. A small amount of residual cytoplasm with hemozoin granules is left in the centre of schizont. This accumulation of hemozoin granules causes the characteristic attack of malarial fever.
 - After a no. of erythrocytic cycle, merozoites invade fresh RBC and grow into a different kind of round forms called gametocytes or gamonts.
 - Fully formed gametocytes are dimorphic- smaller microgamete & larger macrogmete.

Sexual Reproduction:

- It starts when a female anopheles suck the blood of infected human host.
- In the mosquito gut, the microgamete nucleus divide three times producing eight nucleus, each nucleus fertiliser a macrogamete forming a zygote.
- The zygote after fusion of nuclei & fertilization becomes the so-colled ookinete. The ookinete, then penetrate the mid-wall of mosquite, where it encysts into formation of occyst.
- Inside oocyst, the ookinete nucleus divides to produce thousands of sporozoites (sporogony)
- The oocyst rupture & sporozoites are released inside the mosquito cavity & find their way to the salivary gland of mosquito

Plasmodium Species

	P. Virax	P. OR ALE	P. MALARIAL	P. FALCIPAR UM
Pro-exoerythoeytic (Days)	6-8	9	14-16	5-7
Erythrocytic cycle hours	48	50	72	48
Incubation period (days)	12-17 or more	16-18 or more	18-40 or more	9-14
Sporogony (day)	8-10	12-14	14-16	9-10

14								Protozoa	
			SOLVED) EXA	AMP	PLES			
1.	Protozoa is classified into sporozoa, ciliophora etc on the basis of								
	(a) nutrition				(b)	locomotor struct	ures		
	(c) nucleus				(d)	reproduction			
Soln.	In. On the basis of locomotary structures, protozoa is classified into sub phylum.								
	(a) Zoo flagellata	(b)	Sarcodina	(c)	Spo	rozoa	(d)	Ciliophora	
	Which are further div	vided i	nto classes						
	Correct option is (b)							
2.	Chaga'S disease is c	aused	by						
	(a) Trypanosoma gai	mbien	se		(b)	T. cruzi			
	(c) T. rhodesiense				(d)	T. brucei			
Soln.	Chagas diseases is a	lso kn	own as american ty	/ponos	somi	asis is caused by	Ггура	anosoma cruzi. It is mostly	
	spread by insects call	led as	kissing bugs.	1		-	• 1		
	Correct option is (b)							
3.	Sleeping sickness oc	curs d	ue to						
	(a) euglena		(b) Plasmodium		(c)	crustacea	(d) protozoa	
Soln.	Sleeping sickness is c	caused	by the protozoan n	amed 7	Fryp	anosoma gambien	se.	-	
	Correct option is (d	l)			• •	-			
	_	-	ASS	IGNM	EN	-			
			Add						
1.	The basis of classifica	ation c	of protozoa is		_				
	(a) size			(b)	-L	ocomotary organe	lles		
•	(c) shape			(d)	N	umber of nuclei			
2.	Class sporozoa of ph	ylum	protozoa is characte	erised t	by				
2	(a) Flagella	(b)	cilia	(c)	sh	nape	(d)	Number of nuclei	
3.	Structure for regulat	1000	osmotic pressure of	1 = (1)		n aquatic single ce	lied a	nimals are	
4	(a) central vacuole	(b)	Contractile vacuo	ole (d)		ood vacuole	(a)	water vacuole	
4.	Single celled animals	repro	duce by		D		(1)	Decementic	
5	(a) FISSION Which is not a locom	(D)	IUSION organalla in protozo	(C)	В	udding	(a)	Regeneration	
5.		otary	Flocello		D	andanadia	(J)	Sataa	
6	(a) Cilla Maligant malaria is a	(U) boau	Flagella	(0)	r:	seudopodia	(u)	Selae	
0.	(a) Plasmodium oval	auseu	Dfalcinarum	(\mathbf{c})	n	vivov	(d)	P malarial	
7	Gametocytes of mala	rial na	rasite are formed in	(0)	р.	, vivax	(u)	1. Indiana	
7.	(a) stomach of femal	e anoi	naste are formed in sheles	(b)	St	tomach of male Δr	onhe		
	(c) Blood of man	c anoj	Sheles	(d)	اد ۲	aliyary gland of an	onhe	les	
8	Schizogomy stage in	life his	tory of plasmodium	(u)	s in	anvary gland of an	opiic		
0.	(a) RBCs & liver	III¢ III¢	story of plasmouldin	(h)	5 III St	tomach of anonhe	les		
	(c) liver cells only			(d)	R	lood of anonheles	105		
9.	Sporogony of plasme	odium	occurin	(u)	D	isou or unopricies			
	(a) Liver cells	(h)	RBC's of man	(c)	R	lood of mosquite	(d)	Stomach of mosquito	
					D	no ou or mosquio	(4)	Storiauri or mosquito	

Class	ical Zoology						15	
10.	Which among these have single host							
	(a) Taenia	(b)	Trypanosoma	(c)	Plasmodium	(d)	entamoeba	
11.	Sexual phase in life	cycle of	plasmodium occur	rs in				
	(a) Female Anophe	les		(b)	Male anopheles			
	(c) Culex blood			(d)	Culex stomach			
12.	Infective stage of pla	asmodiu	ım is					
	(a) sporozoite	(b)	Schizont	(c)	Amoeboid	(d)	All of these	
13.	Types of asexual rep	producti	on during schizoga	ny in mal	arial parasite is			
	(a) Binary	(b)	Multiple	(c)	fragmentation	(d)	Budding	
14.	Which stage of plas	modium	escapes during dig	gestion in	alimentary canal of	mosqu	uito	
	(a) sporozoite	(b)	Gametocyte	(c)	Merozoite	(d)	Trophozoite	
15.	Fertilized egg of ma	larial pa	rasite on the outsic	le of mose	quito stomach is			
	(a) Oocyst	(b)	ookinete	(c)	Sporocyst	(d)	Gametocyst	
16.	Exflagellation in plan	modium	occurs is					
	(a) Cavity of stoma	ch (b)	Wall of stomach	(c)	RBC's	(d)	Liver	
17.	Incubation period of	f plasmo	odium vivax is					
	(a) 16-18 days	(b)	28-35 days	(c)	7-12 days	(d)	12-14 days	
18.	Exchange of gameti	ic materi	ial in paramecium c	occurs by				
	(a) Binary fission	(b)	Conjugation	(c)	Encystment	(d)	Endomixis fission	
19.	Conjugation is a typ	be of						
	(a) Asexual reprodu	uction		(b)	sexual reproduction	ı		
	(c) Binary fission			(d)	Fragmentation			
20.	The substance whic	h causes	s malarial fever is					
	(a) Haemation	(b)	Heme	(c)	Haemozoin	(d)	Globin	
		_						
			ANS	WER	KEY			
	1. (b)	2.	(d)	3 . (a)	4.	(a)	5. (b)	
	. (0)		CADEED			(4)		
	6. (b)	7.		8. (a)		(d)	10. (d)	
	11. (a)	12.	(a)	13. (b)	14	.(b)	15. (a)	
	16. (a)	17.	(d)	18. (b)	19	.(b)	20. (c)	

