UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-II

Note: This paper contains fifty (50) objective type questions of two (2) marks each. All questions are compulsory.

1. Consider the circuit shown below. In a certain steady state, Y is at logical '1'. What are possible values of A, B, C?

(a) A = 0, B = 0, C = 1

(b) A = 0, B = C = 1

(c) A = 1, B = C = 0

- (d) A = B = 1, C = 1
- 2. The worst case time complexity of AVL tree is better in comparison to binary search tree for
 - (a) Search and Insert Operations
- (b) Search and Delete operations
- (c) Insert and Delete Operation
- (d) Search, Insert and Delete operations
- 3. The GSM network is divided into the following three major systems:
 - (a) SS, BSS, OSS
- (b) BSS, BSC, MSC (c) CELL, BSC, OSS (d) SS, CELL, MSC
- The power set of the set $\{\phi\}$ is 4.
 - (a) $\{\phi\}$
- (b) $\{\phi, \{\phi\}\}$
- (c) $\{0\}$
- (d) $\{0, \phi, \{\phi\}\}$
- If the disk head is located initially at 32, find the number of disk moves required with FCFS if the 5. disk queue of I/O blocks requests are: 98, 37, 14, 124, 65, 67.
 - (a) 239
- (b) 310
- (c) 321
- (d) 325

- 6. Component level design is concerned with
 - (a) Flow oriented analysis

(b) Class based analysis

(c) Both of the above

(d) None of the above

- 7. The 'C' language is
 - (a) Context free language

(b) Context sensitive language

(c) Regular language

- (d)None of the above
- 8. The Mobile application protocol (MAP) typically runs on top of which protocol?
 - (a) SNMP (Simple Network Management Protocol)
 - (b) SMTP (Simple Mail Transfer Protocol)
 - (c) SS7 (Signalling System 7)
 - (d) HTTP (Hyper Text Transfer Protocol)

9.	If the packet arrive with an M-bit value is '1' and a fragmentation offset value '0', then it isfragment.								
	(a) First	(b) Middle	(c) Last	(d) All of the above					
10.	The number of bit strings of length eight that will be either start with a 1 bit or end with two bits 00 shall be								
	(a) 32	(b) 64	(c) 128	(d) 160					
11.	In Compiler desi	ign 'reducing the strengtl	n' refers to						
	(a) reducing the range of values of input variables.								
	(b) code optimization using cheaper machine instructions								
	(c) reducing efficient	ciency of program							
	(d) None of the	above							
12.	In which address value to the cont (a) Absolute	•	address of the operar (c) Immediate	nd is generated by adding a constant					
13.	Which of the fol	` '	(c) Illimediate	(d) Index					
13.		BCNF is always in 3 NF	1 1	3 NF is always in BCNF BCNF is not in 3 NF					
14.	212 K, 417 K, 1			d 600 K (in order) and processes of algorithm, in which partition would (d) 600 K					
15.	What is the size (a) 8-Bits	of the Unicode character (b) 16-Bits	r in Windows operating (c) 32-Bits	ng system? (d) 64-Bits					
16.	In which tree, fo	or every node the height of	of its left subtree and	right subtree differ almost by one?					
	(a) Binary search tree (AREER (b) AVL tree								
	(c) Threaded Bir	nary Tree	(d) Complete Bin	ary Tree					
17.	The design issue (a) Framing(c) Synchronizat	of Datalink Layer in OS	SI Reference Model is (b) Representatio (d) Connection co	n of bits					
18.	•	ving expressions of a gra	` '						
		$E \rightarrow E * F / F + E$							
		$F \rightarrow F - F / id$							
	Which of the following is true?								
	(a) * has higher	precedence than +	(b) – has higher p	precedence than *					
	(c) + and – have	same precedence	(d) + has higher p	precedence than *					
19.	(a) Initial, Repea(b) Primary, Sec	rels used to measure a properties of the propert	d, Optimized. ed, Optimized						

20.	The problem of indef be solved using:	inite blocage of low-pa	riority jobs in general p	priority scheduling algorithm car
	(a) Parity bit	(b) Aging	(c) Compaction	(d) Timer
21.	Which API is used to (a) Circle ()	draw a circle? (b) Ellipse ()	(c) Round Rect ()	(d) Pie ()
22.	In DML, RECONNO (a) OPTIONAL Set	T command cannot be (b) FIXED Set	used with (c) MANDATOR Set	(d) All of the above
23.		tegorized by Radio Go in impedance 75Ω used (b) Ethernet	•	dapted for specialized functions. (d) Thick Ethernet
24.	RAD stands for(a) Rapid and Design (c) Rapid Application	·	(b) Rapid Aided Dev (d) Rapid Application	elopment
25.	send it on to 4 other people have seen the	people. Some people letter, including the files after there have been	do this, while some do	o receives the letter is asked to o not send any letter. How many eceives more than one letter and it but did not send it out? Also
	(a) 122 & 22	(b) 111 & 11	(c) 133 & 33	(d) 144 & 44
26.		fined as f (key) = key What will be the location (b) 2	-	robing is used to insert keys 55, (d) 5
27.	Which of the following (a) Remove left recurs (c) Both of the above	rsion alone	ting CFG to LL(I) gram (b) Factoring gramma (d) None of the above	ar alone
28.	(a) Fraudulent use of			ment system. ard details over internet.
29.	during exception har (a) Void terminate () (b) Non void terminate ()	•	() cted () ted ()	or handling exception, that occur
30.	Which of the followi (a) Segmentation (c) Swapping	ng memory allocation	scheme suffers from ex (b) Pure demand Pag (d) Paging	kternal fragmentation ?
31.	Basis path testing fal (a) system testing		(c) black box testing	(d) unit testing
32.		tents of individual record	•	

Consider the tree given below: 33.

Using the property of eccentricity of a vertex, find every vertex that is the centre of the given tree.

- (a) d & h
- (b) c & k
- (c) g, b, c, h, i, m
- (d) c & h
- 34. The maximum number of keys stored in a B-tree of order m and depth d is
 - (a) md + 1 1
- (b) $\frac{\text{md}+1-1}{m-1}$ (c) (m-1) (md+1-1) (d) $\frac{\text{md}-1}{m-1}$
- Which of the following is the most powerful parsing method? 35.
 - (a) LL(I)
- (b) Canonical LR
- (c) SLR
- (d) LALR
- 36. In UNIX, which of the following command is used to set the task priority?
 - (a) init
- (b) nice
- (c) kill
- (d) PS
- AES is a round cipher based on the Rijndal Algorithm that uses a 128-bit block of data. AES has 37. three different configurations._____ rounds with a key size of 128 bits, _____ rounds with a key size of 192 bits and _____ rounds with a key size of 256 bits.
 - (a) 5, 7, 15
- (b) 10, 12, 14
- (c) 5, 6, 7
- (d) 20, 12, 14
- 38. Match the following IC families with their basic circuits:
 - A. TTL
- 1. NAND
- B. ECL
- 2. NOR
- C. CMOS
- 3. Inverter
- (a) A-1, B-2, C-3
- (b) A-3, B-2, C-1
 - (c) A-2, B-3, C-1
- Match the following with respect to C++ data types: 39.
 - A. User defined type 1. Qualifier
 - B. Built in type
- 2. Union
- C. Derived type
- 3. Void
- D. Long double
- 4. Pointer
- (a) A-2, B-3, C-4, D-1

(b) A-3, B-1, C-4, D-2

(c) A-4, B-1, C-2, D-3

- (d) A-3, B-4, C-1, D-2
- 40. Given an empty stack, after performing push (1), push (2), Pop, push (3), push (4), Pop, Pop, push (5), Pop, what is the value of the top of the stack?
 - (a) 4
- (c) 2
- (d) 1

- Enumeration is a process of 41.
 - (a) Declaring a set of numbers
 - (b) Sorting a list of strings
 - (c) Assigning a legal values possible for a variable
 - (d) Sequencing a list of operators
- 42. Which of the following mode declaration is used in C++ to open a file for input?
 - (a) ios : : app
- (b) in :: ios
- (c) ios:: file
- (d) ios : : in

(a) protecting Data i(b) reduce Storage s(c) enhances Data In	n Data Communication pace requirement attegrity	•	·
	utomation is Q . The n	naximum number of s	tates in equivalent finite automaton
(a) Q	(b) 2 Q	(c) $2^{ Q } - 1$	(d) $2^{ Q }$
What is the result of $(1 \& 2) + (3 \& 4)$	the following express	ion ?	
(a) 1	(b) 3	(c) 2	(d) 0
Back Propagation is weight changes.	a learning technique th	hat adjusts weights in	the neural network by propagating
` '		(b) Backward from(d) Backward from	n sink to source n since to hidden nodes
A. TTL B. ECL C. CMOS Code:	 High fan out Low propagation High power dissipation 		
(a) 3 2 (b) 1 2 (c) 1 3 (d) 3 1	1 3 2 2		
is an "um" (a) Debugging	brella" activity that is a (b) Testing	applied throughout th (c) Desiging	ne software engineering process. (d) Software quality assurance
Identify the operatio (a) OR	n which is commutativ (b) NOR	ve but not associative (c) EX - OR	? (d) NAND
 nos. requiring skill (a) Select p.posting-from position p where p.skill = p and p.posting-No (c) Select p₁.posting from position p₁, where p₁.skill = p 	is No, p.psoting-No .skill 0 < p.posting-No -No, p ₂ .posting-No position p ₂ p ₂ .skill	 (b) Select p₁.posting from position p where p₁.skill = (d) Select p₁.posting from position p where p₁.skill = 	ng-No, p ₂ .posting-No 1, position p ₂ = p ₂ .skill ng-No, p ₂ .posting-No 1, position p ₂
	(a) protecting Data is (b) reduce Storage s (c) enhances Data In (d) decreases Data In (d) decreases Data In Let L be a set acces deterministic finite a that accepts L is (a) Q What is the result of (1 & 2) + (3 & 4) (a) 1 Back Propagation is weight changes. (a) Forward from so (c) Forward from so Match the following A. TTL B. ECL C. CMOS Code: A B (a) 3 2 (b) 1 2 (c) 1 3 (d) 3 1 is an "um (a) Debugging Identify the operatio (a) OR Given a Relation PO - nos. requiring skill (a) Select p.posting- from position p where p.skill = p and p.posting-No (c) Select p ₁ -posting from position p ₁ , where p ₁ -skill = s	(a) protecting Data in Data Communication (b) reduce Storage space requirement (c) enhances Data Integrity (d) decreases Data Integrity Let L be a set accepted by a non determ deterministic finite automation is Q . The result accepts L is (a) Q (b) 2 Q What is the result of the following express (1 & 2) + (3 & 4) (a) 1 (b) 3 Back Propagation is a learning technique the weight changes. (a) Forward from source to sink (c) Forward from source to hidden nodes Match the following: A. TTL 1. High fan out B. ECL 2. Low propagation C. CMOS 3. High power dissipations Code: ABC (a) 3 2 1 (b) 1 2 3 (c) 1 3 2 (d) 3 1 2 is an "umbrella" activity that is a commutative (a) OR (b) NOR Given a Relation POSITION (Posting - NO) - nos. requiring skill is (a) Select p.posting-No, p.psoting-No	(c) enhances Data Integrity (d) decreases Data Integrity Let L be a set accepted by a non deterministic finite automat deterministic finite automation is Q . The maximum number of sthat accepts L is (a) Q (b) 2 Q (c) 2 Q - 1 What is the result of the following expression? (1 & 2) + (3 & 4) (a) 1 (b) 3 (c) 2 Back Propagation is a learning technique that adjusts weights in weight changes. (a) Forward from source to sink (b) Backward from (c) Forward from source to hidden nodes (d) Backward from Match the following: A. TTL 1. High fan out B. ECL 2. Low propagation delay C. CMOS 3. High power dissipation Code: A B C (a) 3 2 1 (b) 1 2 3 (c) 1 3 2 (d) 3 1 2 is an "umbrella" activity that is applied throughout the (a) Debugging (b) Testing (c) Desiging Identify the operation which is commutative but not associative (a) OR (b) NOR (c) EX - OR Given a Relation POSITION (Posting - NO, Skill), then query to nos. requiring skill is (a) Select p.posting-No, p.psoting-No from position p where p.skill = p.skill and p.posting-No < p.posting-No (c) Select p1-posting-No, p2-posting-No from position p1, position p2 where p1.skill = p2.skill from position p2 where p1.skill = p2.skill select p1.skill = p2.skill select p2.skill = p3.skill select p3.skill select p3.skill select p3.skill select p3.skill select p4.skill select p3.skill select p4.skill sele

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-III

Eco system is Frame work for

(a) Building a Computer System

1.

Note: This paper contains **seventy fiive (75)** objective type questions of **two (2)** marks each. All questions are compulsory.

(b) Building Internet System

	(c) B	uilding (Offline	Marke	t	(d) Building Mark	et			
2.	The e	efficiency	y (E) ar	nd spee	dup (s _n) for M	Multiprocessor with p p	tiprocessor with p processors satisfies:			
		\leq p and			P	(b) E ≤ 1 and $s_p \leq$				
		\leq p and				(d) $E \le 1$ and $s_p \le$	≤ 1			
3.		h the fol				1				
	$\mathbf{L}_{\mathbf{i}}$	ist - I			List - II					
		ritical re	_		oares Monitor					
		ait/signa			lutual exclusion					
		orking s			rincipal of Loc	cality				
		ead lock		4. C	ircular wait					
	Code	s:	_							
		A	В	C	D					
	(a)	2	1	3	4					
	(b)	1	2	4	3					
	(c)	2	3	1	4					
	(d)	1	3	2	4					
4.		_		_			ents so that they can be hooked onto			
		_	_		ne is known as		ID A			
	(a) Bi	it stuffin	ıg	(b) I	Piggy backing	(c) Pipelining	(d) Broadcasting			
5.		is p	rocess	of extra	acting previous	sly non known valid ar	nd actionable information from large			
	data t	-			ess and strateg	•				
	(a) Da	ata Man	agemei	nt (b) I	Data Base	(c) Data Mining	(d) Meta Data			
6.	The	enact ro	tio of a	n imac	se is defined as					
0.		_		_	ge is defined as	red in unit length.				
					_	d in number of pixels.				
			_			in unit length.				
			_			in number of pixels.				
					-	-				
7.				_		racterize an OS as mul				
			_	_	•	ed into main memory a				
						nnother program is imr				
			ecution	-	•	1 0	is immediately scheduled.			
	(a) A	only		(b) <i>A</i>	and B only	(c) A and C only	(d) A, B and C only			
8.	Using	RSA a	lgorithr	n, wha	t is the value	of cipher text C, if the	plain text $M = 5$ and $p = 3$, $q = 11$			
	and d					-				
	(a) 33	3		(b) 5		(c) 25	(d) 26			

- 9. You are given an OR problem and a XOR problem to solve. Then, which one of the following statements is true?
 - (a) Both OR and XOR problems can be solved using single layer perception.
 - (b) OR problem can be solved using single layer perception and XOR problem can be solved using self organizing maps.
 - (c) OR problem can be solved using radial basis function and XOR problem can be solved using single layer perception.
 - (d) OR problem can be solved using single layer perception and XOR problem can be solved using radial basis function.
- 10. Match the following:

List - I List - II
A. Application layer 1. TCP

B. Transport layerC. Network layer3. HTTP

D. Data link layer 4. BGP

Codes:

C D A В 2 1 4 3 (a) 3 1 2 4 (b) 2 3 1 (c) 2 4 3 (d)

- 11. The time complexities of some standard graph algorithms are given. Match each algorithm with its time complexity? (n and m are number of nodes and edges respectively)
 - A. Bellman Ford algorithm 1. O (m log n)
 - B. Kruskals algorithm 2. O (n^3)
 - C. Floyd Warshall algorithm 3. O (mn)
 - D. Topological sorting 4. O (n + m)

Codes:

Α В C D 2 3 4 (a) 1 2 4 3 1 (b) 3 4 1 2 (c) 2 3 4 (d) 1

- 12. Let $V_1 = 2I J + K$ and $V_2 = I + J K$, then the angle between V_1 and V_2 and a vector perpendicular to both V_1 and V_2 shall be:
 - (a) 90° and (-2I + J 3K)

(b) 60° and (2I + J + 3K)

(c) 90° and (2I + J - 3K)

- (d) 90° and (-2I J + 3K)
- 13. Consider a fuzzy set A defined on the interval X = [0, 10] of integers by the membership Junction

$$\mu_{A}(x) = \frac{x}{x+2}$$

Then the $\,\alpha\,$ cut corresponding to $\,\alpha=0.5\,$ will be

- (a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- (b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- $(c) \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (d) { }

14.	Let T(n) be the functor TRUE?	tion defined by $T(n) =$	1 and $T(n) = 2T (n/2)$	$+\sqrt{n}$, which of the following is
	(a) $T(n) = O(\sqrt{n})$	(b) $T(n) = O(\log_2 n)$	(c) $T(n) = O(n)$	$(d) T(n) = O(n^2)$
15.	In classful addressing (a) A	g, an IP address 123.23 (b) B	.156.4 belongs to (c) C	class format.
16.	The mandelbrot set transformation :	used for the constru	ction of beautiful im-	ages is based on the following
	II	$X_{n+1} = X_n^2 + Z$		
	Here, (a) Both x and z are (c) x is real and z is	real numbers. complex	(b) Both x and z are (d) x is complex and	<u>=</u>
17.	assuming that input,	ng permutations can be sequence is 1, 2, 3, 4, 5 (b) 5, 4, 3, 2, 1	5 ?	t using a stack of size 3 elements (d) 3, 4, 5, 1, 2
18.	In a Linear Program then the possible nur	ming Problem, suppos mber of basic solutions	e there are 3 basic var	iables and 2 non-basic variables,
19.	(a) 6 Identify the following	(b) 8 g activation function:	(c) 10	(d) 12
	$\phi(V) = Z + \frac{1 + \exp(-1)}{1 + \exp(-1)}$	$\frac{1}{-x*V+Y}$,		
	Z, X, Y are paramete (a) Step function		(c) Sigmoid function	(d) Gaussian function
20.	The number of ways objects are placed int	to distribute n disting to box i, $i = 1, 2, k$	uishable objects into k equals which of the fol	distinguishable boxes, so that n_i llowing ?
	(a) $\frac{n!}{n_1! + n_2! + \dots + n_1}$	CAREER		
	(c) $\frac{n_1!}{n_1!n_2!n_3!n_n}$		(d) $\frac{n_1! n_2! n_k}{n_1! - n_2! - n_3!}$	1
21.		do the following equation $x_1 + x_2 + x_3 = 11$		$-n_k$!
	where $x_1 \ge 1, x_2 \ge 2, x_3 \ge 1$	1 2 3		
	(a) C (7, 11)	(b) C (11, 3)	(c) C (14, 11)	(d) C (7,5)
22.	Which provides an ir (a) FTP Active- X Co (c) Calinsock Active-	ontrol	suit protocols in Windo (b) TCP/IP Active-X (d) HTML Active-X	
23.	What are the final va circuit shown below		r 4 clock cycles, if initi	ial values are 00 in the sequential
		1 T Q	T Q	
	(a) 11	(b) 10	(c) 01	(d) 00

(c) speed

24.	If dual has an unbounded solution, then its corresponding primal has (a) no feasible solution (b) unbouded solution													
			solution					, ,		of these	uon			
25.	The number of distinct bracelets of five beac are indistinguishable if the rotation of one y (a) 243 (b) 81					ds made up of red, blue, and green beads (two bracelets yield another) is, (c) 51 (d) 47								
26.			he classi lata, Use							application	ns ? er data, Vi	rtual da	ta	
	` '		lata, Put								rtual data,			
27.	In an and the	In an enhancement of a CPU design, the speed of a floating point unit has been increased by 20% and the speed of a fixed point unit has been increased by 10%. What is the overall speed achieve if the ratio of the number of floating point operations is 2:3 and the floating point operation use							achieved					
								-			ginal design		ш орега	tion used
	(a) 1.0		c the thi	(b) 1.	•	110 111	cu po		perai. 1.85	ion in ong	(d) 1.1			
28.	` '		basic f			ion	to th	` ′		ng transp	ortation		n using	Vogel's
			on meth									L	C	C
						D_1	D_2	D_3	D_4	Supply				
				,	S ₁	1	2	1	4	30				
				,	S_2	3	3	2	1	50				
				\$	S_3	4	2	5	9	20				
				Der	nand	20	40	30	10					
	(a) x ₁	$_{1} = 20$	$x_{13} = 1$	$0, x_{21} =$	20,						$20, x_{13} =$			
			$x_{24} = 1$	$0, x_{32} =$: 10,						20, $x_{24} =$	10,		
			$x_{13} = 180$	0 v	- 20					cost = 18 of the ab				
	\mathbf{x}_{23}	$_{3}=20,$	$x_{13} = 1$ $x_{24} = 1$ $x_{13} = 1$					(u)	None	or the ab				
29.				connecte	ed to a	a sing	gle ele	ectric	outle	et by using	g an extens	sion boa	ırd each	of which
		-					-			•	nect all the			
	(a) 29)		(b) 2	8			(c) 2	20		(d) 19			
30.			_		espect	to th	e Mo		_	_	hitecture.			
			k contro mmunic		ita rate	a			00 M Peside	.ops ency laten	cy (RL)			
							in ce			•	om a BS to	MD		
			ndwidth						-Mbp	_				
	Code	s:							-					
	()	A	В	C	D									
	(a)	2 3	1	4	3									
	(b) (c)	3 4	4	2 2	1 1									
	(d)	4	3	1	2									
31.		n of th			s are s F and		hen'		instr All fla		executed ? (d) No	flag is	set	
32.	` '			` '			ne ah				ht refers to			
<i>.</i>	(a) tir		- 11511t W	215111 PI	00000		uo			er of reso				

(d) All the above

33.	objects that can be h (a) Depend on the ap	andled by this algorith	nm shall (b) be arbitrary numb	•
34.	The power set of A (a) 256	B, where $A = \{2, 3, 5, (b) 64\}$	$\{7\}$ and $B = \{2, 5, 8, 9\}$	is (d) 4
35.	(a) Win APP	(b) Win API	Windows Applications (c) Win Main	(d) Win Void
36.	is true ?	•		which of the following statements
	(a) It cannot have sult (b) It cannot have ne	broutine call instructions	on.	
	(c) Interrupts are not			
	• •	lls and interrupts are p	ossible.	
37.				ardware is known as
20	(a) Kernel	(b) Bus	(c) Shell	(d) Stub
38.	Which is not the corr		u hamamamhiama	
	, ,	lar sets is closed unde	inder inverse homomor	nhieme
		lar sets is closed under		pinsins.
	, ,	lar sets is closed under	•	
39.			pacity to produce new	
	(a) Overloaded Lang		(b) Extensible Langu	
	(c) Encapsulated Lan	iguage	(d) Abstraction Lang	uage
40.	Which of the followi (a) Windows 95	ng operating system is (b) Windows 98	s better for implementing (c) Windows 2000	ng client-server network ? (d) All of these
41.	•		41 ID 411 / 61 II	ources are shared by 3 processes. For what value of m deadlock
	(a) 7	(b) 9	(c) 10	(d) 13
42.	The grammer 'G1'		· /	
42.	•	and the grammer 'G2	'is	
	$S \rightarrow aS aSb X, X -$	•		
	Which is the correct	statement?		
	_	_	(b) G1 is unambiguo	-
10	(c) Both G1 and G2	_	(d) Both G1 and G2	_
43.	-			suming that each process switch overhead resulting from process
		-	-	anteed to get its turn at the CPU
	at least every t secon		F 8	8
	t – ns	t – ns	t-ns	t-ns
	(a) $q \le \frac{1}{n-1}$	(b) $q \ge \frac{1}{n-1}$	(c) $q \le \frac{t - ns}{n + 1}$	(d) $q \ge \frac{1}{n+1}$
44.		er Passing Mechanism		
	(a) Call by Value	(b) Call by Reference	e (c) Call by Address	(d) Call by Name
45.	Which of the followi	ng regular expression	identities are true ?	
	(a) $(r + s)^* = r^* s^*$		$(c) (r + s)^* = (r^*s^*)^*$	(d) $r^* s^* = r^* + s^*$

46. Two graphs A and B are shown below: Which one of the following statement is true?

- (a) Both A and B are planar.
- (c) A is planar and B is not.
- (d) B is planar and A is not.
- 47. The minimum number of states of the non-deterministic finite automation which accepts the language

```
\{a b a b^n | n > 0\} \cup \{a b a^n | n \ge 0\} is
(a) 3
```

- (c) 5
- (d) 6

- 48. Functions defined with class name are called as
 - (a) Inline function
- (b) Friend function
- (c) Constructor
- (d) Static function
- 49. Let f be the fraction of a computation (in terms of time) that is parallelizable, P the number of processors in the system, and s_p the speed up achievable in comparison with sequential execution – then the s_p can be calculated using the relation:

(a)
$$\frac{1}{(1-f)-f/P}$$
 (b) $\frac{P}{P-f(P+1)}$ (c) $\frac{1}{1-f+f/P}$ (d) $\frac{P}{P+f(P-1)}$

(b)
$$\frac{P}{P-f(P+1)}$$

(c)
$$\frac{1}{1-f+f/P}$$

- 50. Which of the following definitions generates the same Language as L, where

```
L = \{WW^R \mid W \in \{a, b\}^*\}
```

(a) $S \rightarrow aSb|bSa| \in$

(b) $S \rightarrow aSa|bSb| \in$

(c) $S \rightarrow aSb|bSa|aSa|bSb| \in$

- (d) $S \rightarrow aSb|bSa|aSa|bSb$
- Suppose there are logn sorted lists of n logn elements each. The time complexity of producing a 51. sorted list of all these elements is (use heap date structure)
 - (a) O (n log log n)
- (b) θ (n log n)
- (c) Ω (n log n) (d) Ω (n^{3/2})
- Consider the program below in a hypothetical programming language which allows global variables 52. and a choice of static or dynamic scoping

int i;

```
program Main()
       i = 10:
       call f();
   procedure f()
       int i = 20;
       call g ();
   procedure g ()
   print i;
```

Let x be the value printed under static scoping and y be the value printed under dynamic scoping. Then x and y are

- (a) x = 10, y = 20

- (b) x = 20, y = 10 (c) x = 20, y = 20 (d) x = 10, y = 10

53.	If the parse tree of a word w greater than i, then the word	generated by a Chomsky normal for w is of length	orm grammar has no path of length
	(a) no greater than 2^{i+1}	(b) no greater than	2^{i}
	(c) no greater than 2^{i-1}	(d) no greater than	
54.	system (a) Class Model, Object Mod	Model, and Functional Model. odel and Functional Model.	nree kinds of model to describe a
55.	(a) correctness, reliability(b) efficiency, usability, main	e quality of a software system are tainability uracy, error tolerances, expendabili	ty, access control, audit
56.	R ₁ then which one of the follo functional dependency)	R is decomposed into two relations owing is to be satisfied for a lossless $R_2 \rightarrow R_2$ (b) $R_1 \cap R_2 \rightarrow R_1$ (d) $R_1 \cap R_2 \rightarrow R_2$	s joint decomposition (→ indicates
57.	Given the following statemer (i) Recursive enumerable sets (ii) Recursive sets are closed Which is/are the correct state (a) only (i) (b) only	ts: are closed under complementation under complementation. ments?	
58.	Skolmization is the process of (a) bringing all the quantifiers (b) removing all the universa (c) removing all the existential (d) all of the above.	s in the beginning of a formula in F I quantifiers.	DL.
59.		escribes how data are stored in the ew level (c) Abstraction level	data base ? el (d) Logical level
60.	The transform which possess (a) Fourier transform(c) Wavelet transform	es the "multi-resolution" property i (b) Short-time-Fou (d) Karhunen-Loer	rier transform
61.	Which one is a collection of (a) XML (b) CS	-	(d) XSL
62.	A program P calls two subprocan fail (a) 50% (b) 609	ograms P_1 and P_2 . P_1 can fail 50% (c) 10%	times and P_2 40% times. Then P_2 (d) 70%
<i>(</i> 2		, ,	
63.	Third normal form is based o		andanov
	(a) Closure Dependency(c) Normal Dependency	(b) Transitive Depe (d) Functional Dep	
	(c) Normal Dependency	(d) Functional Dep	chachey

- 64. If the Fourier transform of the function f(x, y) is F(m, n), then the Fourier transform of the function f(2x, 2y) is:

- (a) $\frac{1}{4}F\left(\frac{m}{2},\frac{n}{2}\right)$ (b) $\frac{1}{4}F(2m,2n)$ (c) $\frac{1}{4}F(m,n)$ (d) $\frac{1}{4}F\left(\frac{m}{4},\frac{n}{4}\right)$
- 65. _ establishes information about when, why by whom changes are made in a software.
 - (a) Software Configuration Management.
- (b) Change Control.

(c) Version Control.

- (d) An Audit Trail.
- Match the following with respect to HTML tags and usage. 66.
 - A. CITE
- 1. Italic representation
- B. EM
- 2. Represents output from programmes
- C. VAR
- 3. Represents to other source
- D. SAMP
- 4. Argument to a programme

Codes:

- (a) 3 (b) (c) 4 1 2 1 (d)
- 67. An expert system shell is an expert system without
 - (a) domain knowledge

- (b) explanation facility
- (c) reasoning with knowledge
- (d) all of the above
- An example of a dictionary-based coding technique is 68.

 - (a) Run-length coding (b) Huffman coding (c) Predictive coding (d) LZW coding
- 69. Which is the method used to retrieve the current state of a check box?
 - (a) get State ()
- (b) put State ()
- (c) retrieve State ()
 - (d) write State ()

- Referential integrity is directly related to 70.
 - (a) Relation key
- (b) Foreign key
- (c) Primary key
- (d) Candidate key

71. You are given four images represented as

$$\mathbf{I}_{1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{I}_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{I}_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{I}_{4} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

The value of entropy is maximum for image

- (a) I_1
- (c) I₃
- (d) I_{4}

72. A cryptarithmetic problem of the type

can be solved efficiently using

(a) depth first technique

- (b) breadth first technique
- (c) constraint satisfaction technique
- (d) bidirectional technique

- 73. Match the following:
 - A. Supervised learning
- 1. The decision system receives rewards for its action at the end of a sequence of steps.
- B. Unsupervised learning
- C. Reinforcement learning
- D. Inductive learning
- 2. Manual labels of inputs are not used.
- 3. Manual lables of inputs are used.

4. System learns by example

Codes:

	A	В	C	D
(a)	1	2	3	4
(b)	2	3	1	4
(c)	3	2	4	1
(d)	3	2	1	4

- 74. A* algorithm is guaranteed to find an optimal solution if
 - (a) h' is always 0.

- (b) g is always 1.
- (c) h' never overestimates h.
- (d) h' never underestimates h.
- 75. Let $\theta(x, y, z)$ be the statement "x + y = z" and let there be two quantifications given as
 - (i) $\forall x \forall y \exists Z \theta(x, y, z)$

(ii) $\exists Z \forall x \forall y \theta(x, y, z)$

Where x, y, z are real numbers. Then which one of the following is correct?

- (a) (i) is true and (ii) is true.
- (b) (i) is true and (ii) is false.
- (c) (i) is false and (ii) is true.
- (d) (i) is false and (ii) is false.