PAPER: JUNE 2013

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

Note: This paper contains fifty(50) objective type questions for two (2) marks each. All questions

PAPER-II

1.	are com		•		tes are required	l to select the most	t appropriate answer of each question.					
1.				t MOdel		(b) COnstructive	e COst MOdel					
		-		Omposite		(d) COmprehensive COnstruction MOdel						
2.	Match t			•		` ' 1						
	(A) God		_		(i) Program does not fail for specified time in a given environment							
	(B) Cor	-	•		-	onal requirements						
	(C) Pre	dictable	e			<u>=</u>	nctional requirements					
	(D) Rel	liable		(iv) Pr	ocess is under	cess is under statistical control						
	Codes:											
		A	В	C	D							
		(iii)	(ii)	(iv)	(i)							
	` '	(ii)	(iii)	(iv)	(i)							
		(i)	(ii)	(iv)	(iii)							
		(i)	(ii)	(iii)	(iv)							
3.		While estimating the cost of software. Lines of Code (LOC) and Function Points (FP) are used to										
				of the fo	llowing?							
	(a) Leng	_				(b) Size of softw						
	(c) Functionality of software (d) None of the above.											
4.	A good software design must have											
	(a) High module coupling, High module cohesion											
	(b) High module coupling, Low module cohesion											
	(c) Low module coupling, High module cohesion											
	(d) Low	v modu	ile coi	upling, L	ow module col	nesion						
5.	•		-	-		with n vertices and	_					
	(a) V(G	= e +	n –2	(b) V(G) = e - n + 2	(c) V(G) = e + n	+2 (d) $V(G) = e - n - 2$					
6.	When th	he follo	wing	code is	executed what	will be the value of	of x and y?					
	int $x = 1$	1, y = 0);									
	y = x	Κ++;										
	(a) 2, 1			(b) 2 ,	2	(c) 1, 1	(d) 1, 2					
7.	How ma	any val	lues ca	an be hel	d by an array A	A(-1, m; 1, m)?						
	(a) m			(b) m ²		(c) $m(m + 1)$	(d) m(m+2)					
8.	What is	the res	sult of	f expressi	ion (1 & 2) + (3/4)?						
	(a) 1			(b) 2		(c) 3	(d) 0					
9.	How ma	any tim	nes the	e word 'p	orint' shall be p	orinted by the follo	owing program segment?					
	for (i =	1, $i < 2$	2, i++))	_	•						
	for $(j =$	$1, j \leq 2$	2, j++))								
	for $(k =$											
	printf("	print/n'	")									
	(a) 1			(b) 3		(c) 6	(d) 8					

10.	Which of the follow (a) Hierarchical	ing is not a type of D (b) Network	atabase Management Sy (c) Relational	stem'? (d) Sequential
11.	Manager's salary de (a) Conceptual leve (c) External level D	l Datahiding	from Employee Table. 7 (b) Physical level Da (d) Logical level Da	_
12.	A Network Schema	•	· · ·	•
	(a) restricts to one t(c) stores data in a d	o many relationship latabase	(b) permits many to(d) stores data in a re	-
13.	Which normal form (a) 2NF	is considered as adeq (b) 3NF	uate for usual database (c) 4NF	design? (d) 5NF
14.	of			lation is a table, which is a subset
	(a) $D_1 + D_2 + \dots$ (c) $D_1 \cup D_2 \cup \dots$	$O(1) + D_n$	(b) $D_1 \times D_2 \times \dots \times D_n \times D_1 \times \dots \times D_n \times D_n \times \dots \times D_n \times \dots \times D_n \times \dots \times D_n \times \dots \times D_n \times D_$	D_n
15.	running on a host?			the correct application program
	(a) Port	(b) IP	(c) Logical	(d) Physical
16.	the ciphertext, regar	dless of its position ir	the text.	anged to the same character in
17	(a) polyalphabetic		c (c) transpositional	(d) multialphabetic
17.	(a) Class A	g, the IP address 190. (b) Class B	.255.254.254 belongs to (c) Class C	(d) Class D
18.19.	minimize the size of (a) 10 clusters, 24 re (c) 16 clusters, 12 re	The routing table for egions and 20 routers egions and 25 routers	a three layer hierarchy? (b) 12 clusters, 20 re (d) 15 clusters, 16 re	
17.	a newly arrived frag (a) identification	ments belongs to	(c) time to live	(d) header checksum
20.	` '	*) and $L2 = L(ab^*)$. T	` '	rresponding to language L3 = L1/ (d) None of the above.
21.	Given the production $S_1 \rightarrow AB \mid aaB; A \rightarrow and$ the production of Which of the follow (a) G_1 is ambiguous (b) G_1 is ambiguous (c) G_1 is not ambiguous	n rules of a grammar $a \mid Aa; B \rightarrow b$	G_1 as $as S_2 \rightarrow aS_2bS_2 \mid bS_2aS_2$ ect statement? tous	
22.	•	\rightarrow Sc, S \rightarrow SA A, A	\rightarrow aSb ab, there is a ri	ghtmost derivation
		ht sentential form, an	d its handle is	
	(a) SaS	(b) bc	(c) Sbc	(d) aSb

- 23. The equivalent production rules corresponding to the production rules $S \rightarrow S\alpha_1 | S\alpha_2 | \beta_1 | \beta_2$ is
 - (a) $S \rightarrow \beta_1 \mid \beta_2, A \rightarrow \alpha_1 A \mid \alpha_2 A \mid \lambda$
- (b) $S \rightarrow \beta_1 \mid \beta_2 \mid \beta_1 A \mid \beta_2 A, A \rightarrow \alpha_1 A \mid \alpha_2 A$
- (c) $S \rightarrow \beta_1 \mid \beta_2, A \rightarrow \alpha_1 A \mid \alpha_2 A$
- (d) $S \rightarrow \beta_1 \mid \beta_2 \mid \beta_1 A \mid \beta_2 A, A \rightarrow \alpha_1 A \mid \alpha_2 A \mid \lambda$
- 24. Given a Non-deterministic Finite Automation (NFA) with states p and r as initial and final states respectively and transition table as given below:

	a	b
p	ı	q
q	r	S
r	r	S
s	r	s

The minimum number of states required in Deterministic Finite Automation (DFA) equivalent to NFA is

- (a) 5
- (b) 4
- (c)3

- (d) 2
- Which is the correct statement(s) for Non Recursive predictive parser? 25.

$$S_1$$
: First $(\alpha) = \{ t \mid \alpha \Rightarrow t\beta \text{ for some string } \beta \} \stackrel{*}{\Rightarrow} t\beta$

- S_2 : Follow $(X) = \left\{ a \mid S \stackrel{*}{\Rightarrow} \alpha X a \beta \text{ for some strings } \alpha \text{ and } \beta \right\}$

- (a) Both statement S_1 and S_2 are incorrect (b) S_1 is incorrect and S_2 is correct (c) S_1 is correct and S_2 is incorrect (d) Both statement S_1 and S_2 are correct.
- 26. Given an open address hash table with load factor $\alpha < 1$, the expected number of probes in a successful search is

(a) Atmost
$$\frac{1}{\alpha} \ln \left(\frac{1-\alpha}{\alpha} \right)$$
 (b) Atmost $\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha} \right)$

(c) Atleast
$$\frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha} \right)$$

- (d) Atleast $\frac{1}{\alpha} \ln \left(\frac{\alpha}{1-\alpha} \right)$
- 27. For a B-tree of height h and degree t, the total CPU time used to insert a node is
 - (a) $O(h \log t)$
- (b) $O(t \log h)$
- (c) $O(t^2h)$
- (d) O(th)
- The time complexity to build a heap with a list of n numbers is 28.
 - (a) $O(\log n)$
- (b) O(n)
- (c) O(nlogn)
- (d) $O(n^2)$

29. The value of postfix expression

834 + -382 / + *2\$3 + is

- (a) 17
- (b) 131
- (c) 64
- (d) 52
- 30. Consider the following statements for priority queue:
 - S1: It is a data structure in which the intrinsic ordering of the elements does determine the result of its basic operations.
 - S2: The elements of a priority queue may be complex structures that are ordered on one or several fields.

Which of the following is correct?

- (a) Both S1 and S2 are incorrect
- (b) S1 is correct and S2 is incorrect
- (c) S1 is incorrect and S2 is correct
- (d) Both S1 and S2 are correct.

(b) Meta data

Repository of information gathered from multiple sources, storing under unified scheme at a single

(c) Data warehousing (d) Database

site is called as
(a) Data mining

31.

32.	The task of correcting and pre-processing data is called as (a) Data streaming (b) Data cleaning (c) Data mining (d) Data storming
33.	Using data $p = 3$, $q = 11$, $n = pq$, $d = 7$ in RSA algorithm find the cipher text of the given plain text SUZANNE
	(a) BUTAEEZ (b) SUZANNE (c) XYZABCD (d) ABCDXYZ
34.	The relation 'divides' on a set of positive integers is (a) Symmetric and transitive (b) Anti symmetric and transitive (c) Symmetric only (d) Transitive only
35.	Give as good a big-O estimate as possible for the following functions:
	$(n \log n + n^2)(n^3 + 2)$ and $(n!+2^n)(n^3 + \log(n^2 + 1))$
	(a) $O(n^5 + 2n^2) & O(n^3 * n!)$ (b) $O(n^5) & O(n^3 * 2^n)$
	(c) $O(n^5) & O(n^3 * n!)$ (d) $O(n^5 + 2n^2) & O(n^3 * 2^n)$
36.	A test contains 100 true/false questions. How many different ways can a student answer the questions on the test, if the answer may be left blank also. (a) $^{100}P_2$ (b) $^{100}C_2$ (c) 2^{100} (d) 3^{100}
37.	Which of the following connected simple graph has exactly one spanning tree? (a) Complete graph (b) Hamiltonian graph (c) Euler graph (d) None of the above.
38.	How many edges must be removed to produce the spanning forest of a graph with N vertices, M edges and C connected components? (a) $M + N - C$ (b) $M - N - C$ (c) $M - N + C$ (d) $M + N + C$ Which of the following shall be a compound proposition involving the propositions p, q and r, that is
39.	Which of the following shall be a compound proposition involving the propositions p, q and r, that is true when exactly two of the q, p and r are true and one is false otherwise?
	(a) $(p \lor q \land \neg r) \lor (p \land q \land r) \land (\neg p \land q \lor r)$
	(b) $(p \land q \lor r) \land (p \land q \land r) \lor (\neg p \land \neg q \lor \neg r)$
	$(c) (p \wedge q \wedge \neg r) \wedge (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$
	(d) $(p \lor q \land r) \lor (p \land q \land r) \lor (\neg p \land q \land r)$
40.	The truth value of the statements: $\exists !xP(x) \rightarrow \exists xP(x)$ and $\exists !x\neg P(x) \rightarrow \neg \forall xP(x)$ (where the notation $\exists !xP(x)$ denotes the proposition. "There exists a unique x such that $P(x)$ is true") are:
	(a) True and False (b) False and True (c) False and False (d) True and True
41.	How many different Boolean functions of degree 4 are there? (a) 2^4 (b) 2^8 (c) 2^{12} (d) 2^{16}
42.	A Boolean operator \ominus is defined as follows $1\ominus 1=1,\ 1\ominus 0=0,\ 0\ominus 1=0 \ \text{and}\ 0\ominus 0=1$ What will be the truth value of the expression $(x\ominus y)\ominus z=x\ominus (y\ominus z)$? (a) Always false (b) Always true (c) Sometimes true (d) True with x, y, z are all true.

43.	Which one of the focument form?	ollowing is decimal	value of a signed	binary number 1101010, if it is in 2's
	(a) -42	(b) -22	(c) -21	(d) -106
44.	a pairwise basis; that P1 P2 P3	is Pk if and only if:	_	if Bernstein's conditions are satisfied on
	(a) Pi Pj for all $i \neq j$	j	(b) Pi Pj for	all $i = j + 1$
	(c) Pi \parallel Pj for all i \leq	j	(d) Pi Pj for	all i≥j
45.	When a mobile telep ownership to the cell (a) handoff	getting strongest sig	gnal. This process	another cell, the base station transfers is known asting (d) cell switching
46.	example of	, ,		artially swaps out a process. This is an
	(a) Short term sched(c) Medium term sch	neduling	(b) Long term (d) Mutual exc	clusion
47.	Assuming that the di FCFS if the disk quer (a) 310			he number of disk moves required with 124, 65, 67: (d) 321
48.		conds(ns). If one page		computer with average memory access ed for every 10 ⁶ memory accesses, what (d) 35 ns
49.	Consider the following sort <in> temp; head Which of the following (a) Sort, taking the interpretation (b) Sort the file 'temp' (c) Sort, taking the interminal. Finally 'temp' tempinal.</in>	ng UNIX command: - 30 < temp; rm tem ng functions shall be nput from 'temp', pri np', removes 30 lines nput from 'in' and wri np' is removed.	e performed by this ints 30 lines from to from temp and de iting the output to	s command? temp and delete the file temp.
50.	The mv command ch	anges		
	(a) the inode		(b) the inode-r	
	(c) the directory entry	y	(d) both the di	rectory entry and the inode.

PAPER: JUNE 2013

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-III

Note: This paper contains **seventy five (75)** objective type questions of **two (2)** marks each. **All** questions are compulsory. The candidates are required to select the most appropriate answer of each question.

	~		_	-								
1	quest		na Matu	mitry Inda	w (CMI) io	defined as						
1.				•		s defined as						
			$-(\mathbf{F}_{a}+\mathbf{F}_{a})$	$[F_c + F_d]$	M _f							
	wher		1		- ! 41							
	M _f = the number of modules in the current release.											
	F_a = the number of modules in the current release that have been added. F_c = the number of modules in the current release that have been changed.											
						rent release that have been deleted.						
	_		_		lize when	(1) CMI 1 0						
			roaches			(b) SMI approaches 0						
			roaches			(d) None of the above.						
2.			ollowin									
			-Felix n			(i) Failure intensity						
	, ,	-	Fix mod			(ii) Cost estimation						
					tion model	(iii) Project planning						
		•	hmetic l	Poisson	model	(iv) Maintenance						
	Code	es:										
		A	В	C	D							
	(a)	ii	i	iv	iii							
	(b)	i	ii	iv	iii							
	(c)	ii	i	iii	\iv CC	R ENDEAVOUR						
	(d)	ii	iv	iii	AITCC	K CNDCAVOUR						
3.		is	a proc	ess mode	el that rem	oves defects before they can precipitate serious hazards						
	(a) Ir	ncremei	ntal mo	del		(b) Spiral model						
	(c) C	lean ro	om soft	ware en	gineering	(d) Agile model						
4.	Equiv	valence	partitic	oning is a	ı n	nethod that divides the input domain of a program into classes						
					es can be d							
	(a) W	/hite-bo	ox testii	ng		(b) Black-box testing						
	(c) O	rthogo	nal arra	y testing		(d) Stress testing						
5.	The f	followi	ng three	golden	rules							
			•	control		(ii) Reduce the user's memory load						
	(iii) N	Make th	ne interf	ace cons	sistent are	•						
	(a) U	ser sat	isficatio	n		(b) Good interface design						
	(c) S	aving s	ystem's	resourc	es	(d) None of these						
6.	Softv	vare sa	fety is a	1	activity	that focuses on the identification and assessment of potential						
•						tively and cause an entire system to fail.						
						anagement						
	` ′			y assurar	0							
				stimation								

(d) Defect removal efficiency

- The 'PROJECT' operator of a relational algebra creates a new table that has always 7.
 - (a) More columns than columns in original table
 - (b) More rows than original table
 - (c) Same number of rows as the original table.
 - (d) Same number of columns as the original table.
- 8. The employee information of an Organization is stored in the relation:

Employee (name, sex, salary, deptname)

Consider the following SQL query.

Select deptname from Employee

Where sex = 'M'

group by deptname

having avg (salary) > {select avg (salary) from Employee}

Output of the given query corresponds to

- (a) Averge salary of employee more than average salary of the organization.
- (b) Average salary less than average salary of the organization
- (c) Average salary of employee equal to average salary of the organization.
- (d) Average salary of male employees in a department is more than average salary of the organization
- 9. For a database relation R(a, b, c, d) where the domains of a, b, c, d include only the atomic values.

The functional dependency $a \rightarrow c$, $b \rightarrow d$ holds in the following relation

(a) In 1NF not in 2NF

(b) In 2NF not in 3NF

(c) In 3NF

(d) In 1NF

- 10. Match the following:
 - (A) RAID 0
- (i) Bit interleaved parity
- (B) RAID 1
- (ii) Non redundant stripping
- (C) RAID 2
- (iii) Mirrored disks
- (D) RAID 3
- (iv) Error correcting codes.

Codes:

- Α В i (a) iv (b) iii iv
- ii i iv (c) iii
- iii ii iv (d)
- The golden ratio φ and its conjugate $\overline{\varphi}$ both satisfy the equation 11.
 - (a) $x^3 x 1 = 0$
- (b) $x^3 + x 1 = 0$ (c) $x^2 x 1 = 0$ (d) $x^2 + x 1 = 0$
- The solution of recurrence relation, $T(n) = 2T(floor(\sqrt{n})) + log n$ is 12.
 - (a) $O(n \log \log \log n)$ (b) $O(n \log \log n)$
- (c) $O(\log \log n)$
- (d) $O(\log n \log \log n)$
- 13. In any n-element heap, the number of nodes of height h is
 - (a) less than equal to $\left| \frac{n}{2^h} \right|$
- (b) greater than $\left\lceil \frac{n}{2^h} \right\rceil$

(c) greater than $\left| \frac{n}{2^{h+1}} \right|$

(d) less than equal to $\left| \frac{n}{2^{h+1}} \right|$

14. A data file of 1, 00, 000 characters contains only the characters g-1, with the frequencies as indicated in table:

	g	h	i	j	k	1
Frquency	45	13	12	16	a	5
in thousand	43	13	12	10) 	

		0			J .			
	Frquency	15	12	12	16	9	_	
	in thousand	45	13	12	16	9	5	
	using the varial (a) 2, 52, 000 b			code () 2, 6				n codes, the file can be encoded with (c) 2, 46, 000 bits (d) 2, 24, 000 bits
15.	A vertex cover	of ar	n und	irect	ed g	raph	G	(V, E) is a subset $V_1 \subseteq V$ vertices such that
	(a) Each pair of							
	(b) If $(u, v) \in E$							
	(c) If $(u, v) \in E$	the	n u e	€ V ₁ (or v	$\in V_{\scriptscriptstyle 1}$		
	` /			-		•		nected by an edge.
16.								n devices, there arephysical channels to link all
	devices.							
	(a) $n(n-1)/2$		(b) n(n	1+1)/	2		(c) $2n$ (d) $2n+1$
17.	The baud rate of	of a s	ignal	l is 6	00 ba	aud/	sec	ond. If each signal unit carries 6 bits, then the bit rate of a
	signal is		_					
	(a) 3600		(b) 100)			(c) 6/600 (d) None of the above.
18.	Match the follo	wing	g:					
	(A) Data link la	ayer						(i) Flow control
	(B) Network la	yer						(ii) Node to node delivery
	(C) Transport la	•						(iii) Mail services
	(D) Application	ı laye	er					(iv) Routing
	Codes:	_	~		_			
		B	C .		D			CNDCAVOUD
	` '	i	iv i		iii iii		K	ENDEAVOUR
	` '	iv :	\					
	` '	i iv	iii iii		iv i			
	(u) 11	1 V	111		1			
19.	•			-			•	tes/pixel. Assume the image is uncompressed. How long
	does it take to						-	
20	(a) 196.6 secon		,					(c) 1.966 seconds (d) 0.1966 seconds
20.		easur					_	ths of two signals or a signal at two different points.
21	(a) Frequency	ha fa) Att				(c) Throughput (d) Decibel
21.	Which one of t (a) Shielded Tv			_		1 18	mu	1
	(c) Thick Coax		-	ı cai	DIC			(b) Unshielded Twisted pair cable(d) Fiber Optic cable.
22.	, ,			the s	tand	ard	10	Mbps Ethernet?
	(a) 10 megabau) 20				(c) 30 megabaud (d) 40 megabaud
	. ,		, -	, -	- 0			· /

- At any iteration of simplex method, if $\Delta j(Zj-Cj)$ corresponding to any non-basic variable Xj is 23. obtained as zero, the solution under the test is
 - (a) Degenerate solution

(b) Unbounded solution

(c) Alternative solution

(d) Optimal solution

24.	A basic feasible solution to a m-origin, n-destination transportation problem is said to be if the number of positive allocations are less than $m + n - 1$.										
	-	(b) non-deg				ounde		(d) u	nbalanced		
25.	The total transportation	cost in an i	nitial l	basic fe	easible	soluti	on to t	he follow	ing transportation problem		
	using Vogel's Approximation method is										
	W1 W2 W3 W4 W5 supply										
	F1 4 2 3 2 6 8										
	F2 5 4 5 2 1 12										
		F3	6	5	4	7	3	14			
		Demand	4	4	6	8	8	1.			
	(a) 76	(b) 80			(c) 90			(d) 9	6		
26.	` '	` /	nrogr		` ′		ner fr	` /	etermine the characteristics		
20.	of some object in the a		progr	alli ili v	ORCU.		per m	unic to de	terrime the characteristics		
	· ·	(b) twice		((c) 30	times		(d) 6	0 times		
27.	Bresenham line drawin	· /	ı is at		` /		uses	(u) 0	o times		
27.	(a) Real arithmetic only		115 40					tic only			
	(a) Real arithmetic only(b) Integer arithmetic only(c) Floating point arithmetic(d) Real and integer arithmetic										
28.	The refresh rate above v		ure st				_				
	(a) Crucial fusion frequency (b) Current frequency fusion										
	(c) Critical fusion frequency (d) Critically diffused frequency										
29.	In homogenous coordinate system (x, y, z) the points with $z = 0$ are called										
	(a) Cartesian points (b) Parallel points										
	(c) Origin point					int at i		7			
30.	If 40 black lines interle	aved with	40 wh	ite line	es can	be dis	tinguis	shed acro	ss one inch, the resolution		
	is										
	(a) 40 line-pairs per inc	ch		((b) 80	line-p	airs pe	er inch			
	(c) 1600 lines per inch				(d) 40	lines p	er inc	h			
31.	Images tend to be very	large coll	ection	of da	ta. Th	e size	of me	mory rec	quired for a 1024 by 1024		
	image in which the col	our of each	pixel	l is rep	resent	ed by	a n-bi	t number	; (in an 8 bit machine) is		
	(a) $n \times 8MB$			((b) n/8	MB					
	(c) (1024×1024)/8 MB			((d) 102	24 MB	}				
32.	Arrays in C language c							• •			
	(a) n-subscripts	(b) two-sub	script	ts ((c) onl	y one	subsci	ript (d) th	hree subscripts only		
33.	Refer the points as liste										
	(1) What are the operat										
	(2) What are the opera		•								
	(3) What is the order o	_									
	(4) Are there restriction	-									
	Which of the above mu										
2.4		(b) 1, 3 and				2 and 4			, 2, 3 and 4		
34.	Horn caluses are specia										
						_	-	-	ic proposition on left side.		
	(c) A single atomic pro	-				-	-	-	on on right side.		
25	(d) A single atomic pro	-							amatar nagaina?		
35.	Which of the following										
	(a) in mode	(b) out mod	ıe	((c) III-(out mo	ue	(a) a	ll of the above		

42.

Computers can have instruction formates with (a) only two address and three address instructions (b) only one address and two address instruction (c) only one address, two address and three address

(d) zero address, one address, two address and three address instructions.

CAREER ENDE	AVOUR				- / II -							
36.	_	The grammar with production rules $S \to aSb SS \lambda$ generates language L given by:										
	(a) L	= { w ∈	$\{a,b\}$	$* \mid n_a(w) = n_b(w)$) and $n_a(v) \ge n_b(v)$ where v is any prefix of w							
	(b) L	(b) $L = \{w \in \{a, b\} * n_a(w) = n_b(w) \text{ and } n_a(v) \le n_b(v) \text{ where } v \text{ is prefix of } w\}$										
		(c) $L = \{w \in \{a, b\} * n_a(w) \neq n_b(w) \text{ and } n_a(v) \geq n_b(v) \text{ where } v \text{ is prefix of } w\}$										
		(d) $L = \{w \in \{a,b\}^* \mid n_a(w) \neq n_b(w) \text{ and } n_a(v) \leq n_b(v) \text{ where } v \text{ is prefix of } w\}$										
37.		A pushdown automation $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is set to be deterministic subject to which of th										
		following condition(s), for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$ and $b \in \Gamma$										
		(s1) $\delta(q,a,b)$ contains at most one element										
	` /	`	$\lambda, b)$ is		$S(q,c,b)$ must be empty for every $c \in \Sigma$							
	(a) on	•		(b) only s2	(c) both s1 and s2 (d) neither s1 nor s2							
38.		For every context free grammar (G) there exists an algorithm that passes any $w \in L(G)$ in number of steps proportional to										
	of ste	ps prop	ortion	al to								
	(a) ln	$ \mathbf{w} $		(b) w	$ (c) w ^2 \qquad (d) w ^3 $							
39.			ollowin	7								
				ve language	(i) Deterministic finite automation							
		_	gramm	ar ammar	(ii) Recursive enumerable (iii) Recursive language							
			_	ammar	(iv) Pushdown automation							
	Code		eteu gi		(iv) I usindown automation							
		A	В	C D								
	(a)	ii	i	iv iii								
	(b)	iii	iv	Ei. CAİRE	ER ENDEAVOUR							
	(c) (d)	iii ii	i iv	i iii	IN CHECAVOOR							
10	, ,											
40.				and s2 are given a	losed under intersection, concatenation, substitution and inverse							
		morph		e languages are el	osci under intersection, concatenation, substitution and inverse							
		_		nguages are close	d under complementation, substitution and homomorphism.							
				ving is correct sta								
	` '			are correct.	(b) s1 is correct and s2 is not correct							
	` ′			and s2 is correct	• •							
41.				•	a addressing mode?							
		_	indirec		(b) Autoincrement							
	(C) K	cialive	indexe	u	(d) Immediate operand							

43.	Whice (a) B		a typica	al progra (b) JM		instruction? (c) SHL	(d) TST				
44.	(a) So	oftware	ich arise interrup interrup	ot	llegal or err	(b) Internal inte	ous use of an instruction or data is (b) Internal interrupt (d) All of the above				
45.	The s	implifie	d function	on in pro	duct of sum	s of Boolean function	$F(W,X,Y,Z) = \Sigma(0,1,2,5,8,9,10)$ is				
	(a) ('	W'+X')(Y'+Z	(X')(X'+Z')	Z)	(b) $(W'+X')(Y')$	(b) $(W'+X')(Y'+Z')(X'+Z')$				
	(c) (W'+X')(Y'+Z	(X'+Z)	Z)	(d) $(W'+X')(Y$	(X+Z')(X'+Z)				
46.	(A) T (B) E (C) N	TL CCL MOS CMOS	B ii iv	(i) Hig (ii) Lo (iii) E	volution of	ent density onsumption 'diode-transistor-log ligital circuits.	gic'				
	(c)	iii	iv	i	ii						
	(d)	i	ii	iii	iv						
47.	(A) F (B) P (C) E	Foreign Private k Event co Data sec	keys ontrol ac	tion mo	del	(i) Domain con (ii) Referential (iii) Encryption (iv) Trigger	integrity				
	()	A 	B	C	BCCD	ENDEAVO	IID				
	(a) (b)	iii ii	ii i	iv	iii	CINDCAVO					
	(c)	iii	iv	i	ii						
	(d)	i	ii	iii	iv						
48.	(a) T (b) T (c) R	he func he func esults in	tion can	changes not char lation er	s values in t nge values i	to a function which on the original array. In the original array	of the following statements is correct?				
49.	Supp the fo	ose you ollowing	ı want to g data st	o delete ructures	s shall be me	at occurs before 'Vivost efficient for this of list (c) Linked list	yek' in an alphabetical listing. Which of operation? (d) Dequeue				
50.			the out () { char* int i =	put of the s = "hel s = 7;	ne following lo world";	g segment of the prog	· / •				
	() 0	4	-		", i, s); }	(-) 1 11	(1) 11				
	(a) Sy	yntax ei	ror	(b) he	IIO W	(c) hello	(d) o world				

51.	Trace the error	or:										
	void	main ()) {									
		int *l	*b, &a									
		*b =										
			f("%d, '	%d", a,	*b) }							
	(a) No error	1		ogical e		(c) Syntax error	(d) Semantic error.					
52.	Match the fo	llowing		υ		\						
	(A) calloc()	٠	•	(i) Frees previously allocated space								
	(B) free()			-	-	usly allocated space						
	(C) malloc ()			-	for array						
	(D) realloc()					sted size of space						
	Codes:		, ,		1	1						
	\mathbf{A}	В	\mathbf{C}	D								
	(a) iii	i	iv	ii								
	(b) iii	ii	i	iv								
	(c) iii	iv	i	ii								
	(d) iv	ii	iii	i								
53.	Binary symm	netric cl	hannel ı	ises								
	(a) Half dupl	ex prot	ocol			(b) Full duplex pro	otocol					
	(c) Bit orient	ed prot	ocol		(d) None of the ab	ove						
54.	Hamming dis	stance b	etween	10010	100011	0 and 110111101101	is					
	(a) 3		(b) 4		V.	(c) 5	(d) 6					
55.	•	vord 11	` ′	10 is to	he trar							
<i>JJ</i> .	Given code word 1110001010 is to be transmitted with even parity check bit. The encoded we be transmitted for this code is											
	(a) 11100010			13 110001	0100	(c) 1110001010	(d) 111000101					
	•		` l			, ,						
56.		of distii	nct bina	ct binary images which can generated from a given binary image of right N								
	are		(b) $M \times N$ (c) 2^{M+N} (d) 2^{MN}									
	(a) $M + N$		` 1		EK.	$(c) 2^{M+N}$						
57.	, . • <i>,</i>	digital	image,	then x,	y and a	implitude values of f a	ire					
	(a) finite	•.				(b) infinite						
	(c) neither fi	nite noi	r ınfınıte	e		(d) none of the abo	ove.					
58.	Consider the	follow	ing prod	cessor v	vith tim	e slice of 4 millisecon	nds (I/O requests are ignored):					
	Process	Α	В	C	D							
	Arrival time	0	1	2	3							
	CPU cycle	8	4	9	5							
	•			ne of th	ese pro	cesses will be						
	(a) 19.25 mi					(b) 18.25 milliseco						
	(c) 19.5 mill	isecond	S			(d) 18.5 millisecor	nds					
59.	A job has for	ır pagse	e A, B,	C, D an	d the n	nain memory has two	page frames only. The job needs to					
	process its pa	ages in	followi	ng orde	r: ABA	CABDBACD						
	Assuming that	at a pag	e interr	upt occ	urs whe	en a new page is broug	ght in the main memory, irrespective					
	of whether th	ne page	is swap	pped ou	t or no	t. The number of page	e interrupts in FIFO and LRU page					
	replacement	algorith	nms are									
	(a) 9 and 7		(b) 7	and 6		(c) 9 and 8	(d) 8 and 6					

60.	Suppose S and Q are two semaphores initialized to 1. P1 and P2 are two processes which are sharing
	resources.

P1 has statements P2 has statements

wait(S); wait(Q); wait(Q); wait(S)

critical-section 1; critical-section 2;

signal(S); signal(Q); signal(O); signal(S);

Their execution may sometimes lead to an undesirable situation called

(a) Starvation

(b) Race condition

(c) Multithreading

(d) Deadlock

61. An operating system using banker's algorithm for deadlock avoidance has ten dedicated devices (of same type) and has three processes P1, P2 and P3 with maximum resource requirements of 4, 5 and 8 respectively. There are two states of allocation of devices as follows:

State 1	Processes Devices	P1	P2	P3	
	allocated	2	3	4	
State 2	Processes Devices	P1	P2	P3	
	allocated	0	2	4	

Which of the following is correct?

(a) State 1 is unsafe and state 2 is safe.

- (b) State 1 is safe and state 2 is unsafe.
- (c) Both, state 1 and state 2 are safe
- (d) Both, state 1 and state 2 are unsafe.
- 62. Let the time taken to switch between user mode and kernel mode of execution be T1 while time taken to switch between two user processes be T2. Which of the following is correct?
 - (a) T1 < T2
- (b) T1 > T2
- (c) T1 = T2
- (d) Nothing can be said about the relation between T1 and T2
- 63. Working set model is used in memory management to implement the concept of
 - (a) Swapping
- (b) Principal of locality (c) Segmentation (d) Thrashing

- A UNIX file system has 1 KB block size and 4-byte disk addresses. What is the maximum file size 64. if the inode contains ten direct block entries, one single indirect block entry, one double indirect block entry and one triple indirect block entry?
 - (a) 30 GB
- (b) 64 GB
- (c) 16 GB
- (d) 1 GB
- 65. A thread is usually defined as a light weight process because an Operating System (OS) maintains smaller data structure for a thread than for a process. In relation to this, which of the following statement is correct?
 - (a) OS maintains only scheduling and accounting information for each thread.
 - (b) OS maintains only CPU registers for each thread.
 - (c) OS does not maintain a separate stack for each thread.
 - (d) OS does not maintain virtual memory state for each thread
- 66. The versions of windows operating system like windows XP and windows Vista uses following file system:
 - (a) FAT-16

(b) FAT-32

(c) NTFS(NT File system)

(d) All of the above.

67.	Which one of the following is a correct implementation of the metapredicate "not" in PROLOG
	here G represents a goal)?

- (a) not(G):-!, call(G), fail. not(G).
- (b) not(G):- call(G), !, fail. not(G).
- (c) not(G):- call(G), fail, !. not(G).
- (d) not(G), call(G), fail not(G):-!
- 68. Which one of the following is not an informed search technique?
 - (a) Hill climbing search

(b) Best first search

(c) A* search

(d) Depth first search

69. If we convert

$$\exists u \ \forall v \ \forall x \ \exists y \left(P(f(u), v, x, y) \rightarrow Q(u, v, y) \right) to \ \forall v \ \forall x \left(P(f(a), v, x, g(v, x)) \rightarrow Q(a, v, g(v, x)) \right)$$

This process is known as

- (a) Simplication
- (b) Unification
- (c) Skolemization
- (d) Resolution
- 70. Given two jugs of capacities 5 litres and 3 litres with no measuring markers on them. Assume that there is endless supply of water. Then the minimum number of states to measure 4 litres water will be
 (a) 3 (b) 4 (c) 5 (d) 7
- 71. The map colouring problem can be solved using which of the following technique?
 - (a) Means-end analysis

(b) Constraint satisfaction

(c) AO* search

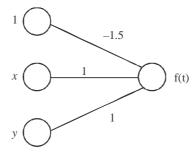
- (d) Breadth first search
- 72. Which of the following is a knowledge representation technique used to represent knowledge about stereotype situation?
 - (a) Semantic network (b) Frames
- (c) Scripts
- (d) Conceptual Dependancy
- 73. A fuzzy set A on R is ____ iff $A(\lambda x_1 + (1-\lambda)x_2) \ge \min[A(x_1), A(x_2)]$

for all $x_1, x_2 \in R$ and all $\lambda \in [0,1]$, where min denotes the minimum operator.

- (a) Support
- (b) α cut
- (c) Convex
- (d) Concave
- 74. If A and B are two fuzzy sets with membership functions.

$$\mu_A(x) = \{0.6, 0.5, 0.1, 0.7, 0.8\}$$

$$\mu_{\rm B}(x) = \{0.9, 0.2, 0.6, 0.8, 0.5\}$$


Then the value of $\mu_{\overline{A \cup B}}(x)$ will be

(a) $\{0.9, 0.5, 0.6, 0.8, 0.8\}$

(b) {0.6, 0.2, 0.1, 0.7, 0.5}

(c) $\{0.1, 0.5, 0.4, 0.2, 0.2\}$

- (d) $\{0.1, 0.5, 0.4, 0.2, 0.3\}$
- 75. Consider a single perception with weights as given in the following figure:

and f(t) defined as
$$f(t) = \begin{cases} 1, & t > 0 \\ 0, & t \le 0 \end{cases}$$

The above perception can solve

- (a) OR problem
- (b) AND problem
- (c) XOR problem
- (d) All of the above.