PAPER : JUNE 2014

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-II

	Note: This paper co	ntains fifty(50) objectiv	ve type questions for t	wo (2) marks each. All qu	uestions
	are compulsory. The	candidates are required	I to select the most ap	propriate answer of each q	uestion.
1.	Infrared signals can l tion.	be used for short range	communication in a cle	osed area using p	ropaga-
	(a) Ground	(b) Sky	(c) Line of sight	(d) Space	
2.	A bridge has access	to address in t	the same network.		
	(a) Physical	(b) Network	(c) Datalink	(d) Application	
3.	The minimum frame	length for 10 Mbps Eth	nernet is byte	s and maximum is	_ bytes.
	(a) 64 & 128	(b) 128 & 1518	(c) 1518 & 3036	(d) 64 & 1518	
4.	The bit rate of a sig	gnal is 3000 bps. If eac	ch signal unit carries (5 bits, the baud rate of th	e signal
	is				
	(a) 500 baud/sec	(b) 1000 baud/sec	(c) 3000 baud/sec	(d) 18000 baud/sec	
5.	Match the following	;:			
	List – I	List –	II		
	A. Physical layer	i. Allow resour	ces to network access		
	B. Datalink layer	ii. Move packet	s from one destination	to other	
	C. Network layer	iii. Process to pr	ocess message deliver	У	
	D. Transport layer	iv. Transmission	n of bit stream		
	E. Application	v. Formation of	f frames		
	Codes :				
	A B	C D E			
	(a) iv v	ii iii i			
	(b) v iv	i Aii E iii	=NDEAVOUI		
	(c) i iii	ii v iv			
	(d) i ii	iv iii v			
6.	A grammar G is LL(1) if and only if the foll	owing conditions hold	for two distinct production	ons $A \rightarrow$
	$\alpha \mid \beta$				
	I. First $(\alpha) \cap F$	First $(\beta) \neq (a)$ where a is	s some terminal symbo	ol of the grammar.	
	II. First $(\alpha) \cap F$	First $(\beta) \neq \lambda$			
	III. First (α) \cap F	Follow (A) = ϕ if $\lambda \in Fi$	rst (β)		
	(a) I and II	(b) I and III	(c) II and III	(d) I, II and III	
7.	Which of the follow	ing suffices to convert a	an arbitary CFG to an	LL(1) grammar ?	
	(a) Removing left re	ecursion alone			
	(b) Removing the gr	cammar alone			
	(c) Removing left re	cursion and factoring t	he grammar		
	(d) None of the above	ve			
8.	A shift reduce parset	r suffers from			
	(a) Shift reduce con	flict only			
	(b) Reduce reduce c	onflict only			
	(c) Both shift reduce	e conflict and reduce co	onflict		
	(d) Shift handle and	reduce handle conflicts	5		

9.	The context free gran	nmar for the language	$\mathbf{L} = \left\{ \mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mathbf{c}^{\mathbf{k}} \mid \mathbf{k} = \mid \mathbf{n} - \mathbf{n} \right\}$	$n \mid , n \ge 0, m \ge 0, k \ge 0 $ is
	(a) $S \rightarrow S_1 S_3, S_1 \rightarrow aS_2$	$S_1 c \mid S_2 \mid \lambda, S_2 \rightarrow aS_2 b \mid \lambda$	$\mathbf{A}, \mathbf{S}_3 \rightarrow \mathbf{aS}_2 \mathbf{b} \mathbf{S}_4 \mathbf{\lambda}, \mathbf{S}_4 \rangle$	$\rightarrow bS_4 c \mid \lambda$
	(b) $S \rightarrow S_1 S_3, S_1 \rightarrow as$	$\mathbf{S}_{1}\mathbf{S}_{2}\mathbf{c} \mid \boldsymbol{\lambda}, \mathbf{S}_{2} \to \mathbf{a}\mathbf{S}_{2}\mathbf{b} \mid \boldsymbol{\lambda},$	$S_3 \rightarrow aS_3b S_4 \lambda, S_4 \rightarrow$	$\rightarrow bS_4c \mid \lambda$
	(c) $\mathbf{S} \rightarrow \mathbf{S}_1 \mathbf{S}_2, \mathbf{S}_1 \rightarrow$	$aS_1S_2c \mid \lambda, S_2 \to aS_2b \mid \lambda$	$A, S_3 \rightarrow aS_3b S_4 \lambda, S_4 $	$\rightarrow bS_4 c \mid \lambda$
	(d) $S \rightarrow S_1 S_3, S_1 \rightarrow$	$aS_1c \mid S_2 \mid \lambda, S_2 \rightarrow aS_2b$	$ \lambda, S_3 \rightarrow aS_3b S_4 \lambda, S_2$	$_{4} \rightarrow bS_{4}c \mid \lambda$
10.	The regular gramma	r for the language $L =$	$\{n_{1}(w) \text{ and } n_{1}(w) \text{ are }\}$	both even, $w \in \{a, b\}^*$ is given
	bv :		(a()b()	
	(Assume p, q, r and s	s states)		
	(a) $p \rightarrow aq br \lambda, q$	\rightarrow bs ap		
	$r \rightarrow as \mid bp, s \rightarrow a$	r bq, p and s		
	are initial and fin	al states.		
	(b) $p \rightarrow aq br, q \rightarrow l$	bs ap		
	$r \rightarrow as \mid bp, s \rightarrow a$	ur bq, p and s		
	are initial and fin	al states.		
	(c) $p \rightarrow aq br \lambda, q$	\rightarrow bs ap		
	$r \rightarrow as \mid bp, s \rightarrow a$	ur bq		
	p is both initial a	nd final states.		
	(d) $p \rightarrow aq br, q \rightarrow$	bs ap		
	$r \rightarrow as \mid bp, s \rightarrow as$	ur bq		
	p is both initial a	nd final states.		
11.	KPA in CMM stands	for		
	(a) Key Process Area		(b) Key Product Area	
12	(c) Key Principal Are	ea CARCER C	(d) Key Performance	Area managing the risk due to upreal
14.	istic schedules and b	udgets ?	agement teeninque for	managing the fisk due to unreal-
	(a) Detailed multi so	urce cost and schedule	estimation.	
	(b) Design cost			
	(c) Incremental deve	lopment		
12	(d) Information hidin	lg is the structure or struc	oturas of the system wh	nich comprise software elements
13.	the externally visible	properties of these ele	ments and the relations	ship amongst them
	(a) Software construct	ction	(b) Software evolutio	n
	(c) Software architec	ture	(d) Software reuse	
14.	In function point ana	lysis, the number of co	mplexity adjustment fa	ctors is
15	(a) 10 Regression testing is	(b) 12 primarily related to	(c) 14	(d) 20
13.	(a) Functional testing		(b) Development test	ing
	(c) Data flow testing	>	(d) Maintenance testi	ng
16.	How many different	truth tables of the com	pound propositions are	e there that involve the proposi-
	tions p and q ?	(1-) 4	$(\cdot) 0$	
	(a) 2	(0) 4	(C) 8	(u) 10

17. A Boolean function F is called self-dual if and only if $\mathbf{F}(x_1, x_2, \dots, x_n) = \mathbf{F}(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ How many Boolean functions of degree n are self-dual ? (b) $(2)^{2^n}$ (c) $(2)^{n^2}$ (d) $(2)^{2^{n-1}}$ (a) 2^{n} Which of the following statement(s) is (are) not correct ? 18. (i) The 2's complement of 0 is 0. (ii) In 2's complement, the left most bit cannot be used to express a quantity. (iii)For an n-bit word (2's complement) which includes the sign bit, there are 2^{n+1} negative integers and one 0 for a total of 2^n unique states. (iv)In 2's complement the significant information is contained in the 1's of positive numbers and 0's of the negative numbers. (a) i and iv (b) i and ii (c) iii (d) iv 19. The notation $\exists ! x P(x)$ denotes the proposition "there exists a unique x such that P(x) is true". Give the truth values of the following statements : Ι $\exists ! x \mathbf{P}(x) \rightarrow \exists x \mathbf{P}(x)$ II $\exists ! x \neg P(x) \rightarrow \neg \forall x P(x)$ (a) Both I & II are true (b) Both I & II are false (c) I - false, II - true(d) I – true, II – false 20. Give a compound proposition involving propositions p, q and r that is true when exactly two of p, q and r are true and is false otherwise. (a) $(p \lor q \land \neg r) \land (p \land \neg q \land r) \land (\neg p \land q \land r)$ (b) $(p \land q \land \neg r) \land (p \lor q \land \neg r) \land (\neg p \land q \land r)$ (c) $(p \land q \land \neg r) \lor (p \land \neg q \land r) \land (\neg p \land q \land r)$ (d) $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$ 21. Consider the graph given below as : Which one of the following graph is isomorphic to the above graph?

	The upper bound	a and lower bound for the	e number of leaves in	a D tree of degree K with height if is			
	given by :			(ub = 1			
	(a) \mathbf{K}^{h} and $2 \mid \mathbf{K}$	$2 \mid^{n-1}$	(b) K * h and $2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\left[\frac{K}{2} \right]^{n-1}$			
	(c) K^{h} and $2 \downarrow K$	2^{h-1}	(d) K * h and $2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\left(\frac{k}{2}\right)^{h-1}$			
23.	Consider a comp	olete bipartite graph k _m . F	For which values of m	and n does this, complete graph have			
	a Hamiltonian c	ircuit					
	(a) $m = 3, n = 2$	(b) $m = 2, n = 3$	(c) $m = n \ge 2$	(d) $m = n \ge 3$			
24.	Big-O estimates	for the factorial function	and the logarithm of	the factorial function i.e. n! and log n!			
	is given by						
	(a) O(n!) and O(n log n)	(b) $O(n^n)$ and $O(n^n)$	n log n)			
	(c) $O(n!)$ and $O($	log n!)	(d) $O(n^n)$ and $O(1)$	og n!)			
25.	How many cards	s must be chosen from a c	leck to guarantee tha	t atleast			
	(i) two aces of	two kinds are chosen.					
	(ii) two aces are	e chosen.					
	(iii) two cards of	f the same kind are chose	n.				
	(1v) two cards of $(1v)$ two cards of $(1v)$	t two different kinds are c	whosen. $()$ 52–52–14–5				
26	(a) $50, 50, 14, 5$	(0) $\Im 1$, $\Im 1$, $1\Im$, /	(c) $52, 52, 14, 5$	(0) 51, 51, 14, 5			
20.	List I	Ligt II	oble computing technologies :				
	A GPRS	i An integrated of	ligital radio standard				
	B. GSM	ii 3G wireless/ N	Iobile technology				
	C. UMTS	iii. Nine different s	schemes for modulati	ion and error correction			
	D EDGE						
	D. EDGE	iv. An emerging w	ireless service that o	offers a mobile data			
	D. EDGE Codes :	iv. An emerging w	vireless service that o	ffers a mobile data			
	D. EDGE Codes : A B	IV. An emerging w	vireless service that o	ffers a mobile data			
	D. EDGE Codes : A B (a) iii iv	C D ii C D	CNDCAVA	offers a mobile data			
	D. EDGE Codes : (a) iii iv (b) iv i	$\begin{array}{c} \mathbf{C} \mathbf{D} \\ \mathbf{C} \mathbf{D} \\ \mathbf{i} \mathbf{i} \mathbf{CAi} \mathbf{EER} \\ \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{EER} \end{array}$	ENDEAVO	offers a mobile data			
	D. EDGE Codes : (a) iii iv (b) iv i (c) ii ii	C D ii CAipEER ii iv i	ENDEAVO	offers a mobile data			
	D. EDGE Codes : (a) iii iv (b) iv i (c) ii ii (d) ii i	i iv. An emerging w	ENDERVO	offers a mobile data			
27.	D. EDGE Codes : (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I	C D ii CAirEER i iv i iv iii Broker (ORB) is	ENDERVO	offers a mobile data			
27.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p	C D ii CAiDER ii V iii iv iii Broker (ORB) is program that runs on the o	ENDEAVO	e application server.			
27.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p	C D ii CAinEER iii V i iv iii Broker (ORB) is program that runs on the option of the formula of the formul	client as well as on the client side only.	e application server.			
27.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p III A software p	C D ii CAiBER iii V iii Broker (ORB) is program that runs on the operation of the formation of the forma	client as well as on the client side only. application server, when the side only.	ffers a mobile data IR he application server. here most of the components reside.			
27.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p (a) I, II and III A software agen	C D ii CAineR iii CAINER ii	client as well as on the client side only. application server, whe (c) II and III	ffers a mobile data BIR ne application server. here most of the components reside. (d) I only			
27. 28.	D. EDGE Codes: A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p III A software p (a) I, II and III A software agen I A software of the	V An emerging w C D ii CA iBEER i iv ii Broker (ORB) is program that runs on the option of the formation of	client as well as on the client side only. application server, whe (c) II and III	ffers a mobile data Reapplication server. here most of the components reside. (d) I only			
27. 28.	D. EDGE Codes: A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p (a) I, II and III A software agen I A software o (b) I I A software o I A software o	C D ii CAinERR i v ii Broker (ORB) is program that runs on the of program that runs on the of the off of a complish program which is capable	client as well as on the client side only. application server, whe (c) II and III ing a given task.	Iffers a mobile data IR In application server. There most of the components reside. (d) I only I only			
27. 28.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p II A software p (a) I, II and III A software agen I A software o II A software of II A softwar	V. An emerging w C D ii CA iBEER ii V iii Broker (ORB) is program that runs on the option of the formation o	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf	Iffers a mobile data IR IR In a polication server. There most of the components reside. (d) I only I only I of the user in order to accomplish a			
27. 28.	D. EDGE Codes: A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p III A software p (a) I, II and III A software agen I A software o II A so	 IV. An emerging w C D II Aiger II Aiger II Aiger II II II Aiger II II II Aiger II II II	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task.	Iffers a mobile data BR In application server. There most of the components reside. (d) I only I only I only			
27. 28.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p II A software p (a) I, II and III A software agen I A software o II A so	 iv. An emerging w c D ii AibEER iii iii AibEER iii iii iii Broker (ORB) is brogram that runs on the oprogram th	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III	Iffers a mobile data IR IR In the application server. There most of the components reside. (d) I only I only I only I of the user in order to accomplish a (d) All of the above			
27.28.29.	D. EDGE Codes: A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request D I A software p II A software p II A software p (a) I, II and III A software agen I A software agen I A software oc II A computer given computation III An open sou (a) I Match the follow	V. An emerging w C D ii Aijeer ii V ii iv iii Broker (ORB) is program that runs on the of program that runs on the of t is defined as leveloped for accomplish program which is capable onal task. rce software for accompli- (b) II ving :	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III	Iffers a mobile data IR IR IR IR IR IR IR IR IR IR			
27. 28. 29.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p II A software p II A software g II A software g II A software d I A s	 iv. An emerging w c D ii AiBERR iii iii AiBERR iii iii iii iii Broker (ORB) is brogram that runs on the oprogram that runs on the aiber (b) I and II t is defined as leveloped for accomplish program which is capable onal task. rce software for accompliant (b) II ving : 	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III List – II	Iffers a mobile data IR IR In the application server. There most of the components reside. (d) I only I only I only I of the user in order to accomplish a (d) All of the above			
27. 28. 29.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request D I A software p II A software p II A software p (a) I, II and III A software agen I A software agen I A software agen I A software o II A computer given computation III An open sou (a) I Match the follow List – I A. Classificatio	iv. An emerging w C D ii Aijeer ii Aijeer iii Aijeer iv iii Broker (ORB) is orogram that runs on the observation on the	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III List – II i. Principal con	Iffers a mobile data IR IR IR IR IR IR IR IR IR IR			
27. 28. 29.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request I I A software p II A software p II A software p (a) I, II and III A software agen I A software agen I A software o II A software o (a) I, II and pen sou (a) I Match the follow List – I A. Classificatio B. Clustering	iv. An emerging w C D ii Aijer R ii iv ii iii V iii IV	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III List – II i. Principal con ii. Branch and E	Iffers a mobile data IR IR In a pplication server. There most of the components reside. (d) I only I only I only I of the user in order to accomplish a (d) All of the above Inponent analysis Bound			
27. 28. 29.	D. EDGE Codes : A B (a) iii iv (b) iv i (c) ii ii (d) ii i Object Request D I A software p II A software p II A software p (a) I, II and III A software agen I A software agen I A software agen I A software o II A computer given computation III An open sour (a) I Match the follow List – I A. Classificatio B. Clustering C. Feature Extr	V. An emerging w C D ii AijeER ii iv ii Broker (ORB) is program that runs on the of program that runs on the of program that runs on the of program that runs on the of t is defined as leveloped for accomplish program which is capable onal task. rce software for accompl (b) II ving : n action	client as well as on the client as well as on the client side only. application server, whe (c) II and III ing a given task. e of acting on behalf lishing a given task. (c) III List – II i. Principal con ii. Branch and E iii. K-nearest nei	Iffers a mobile data Reapplication server. here most of the components reside. (d) I only f of the user in order to accomplish a (d) All of the above nponent analysis Bound ighbour			

30.

31.

32.

Code	es :				
	Α	В	С	D	
(a)	iii	iv	ii	i	
(b)	iv	iii	i	ii	
(c)	iii	iv	i	ii	
(d)	iv	iii	ii	i	
SET, trans	an ope	en encrypon the ir	ption ar nternet,	nd security stands for	specification model that is designed for protecting credit card
(a) S	ecure E	Electroni	ics Tran	saction	(b) Secular Enterprise for Transmission
(c) S	ecurity	Electro	nic Tra	nsmission	(d) Secured Electronic Termination
Inap	baged n	nemory	manage	ment algo	rithm, the hit ratio is 70%. If it takes 30 nanoseconds to search
Trans mem	slation ory acc	Look-as	side Bu e is	ffer (TLB) and 100 nanoseconds (ns) to access memory, the effective
(a) 9	1 ns		(b) 6	59 ns	(c) 200 ns (d) 160 ns
Matc	h the fo	ollowing	g :		
Ι	List – I	-			List – II
A. N	Aultilev	el feedb	ack qu	eue	i. Time-slicing
B. F	FCFS				ii. Criteria to move processes between queues
C. S	hortest	process	s next		iii. Batch processing
D. R	Round r	obin sch	neduling	2	iv. Exponential smoothening
Code	es:				
	Α	В	С	D	
(a)	i	iii	ii	iv	
(b)	iv	iii	ii	i	
(c)	iii	i	iv	i	
(d)	ii	iii	iv	i	
à					

33. Consider a system with five processes P_0 through P_4 and three resource types R_1 , R_2 and R_3 . Resource type R_1 has 10 instances, R_2 has 5 instances and R_3 has 7 instances. Suppose that at time T_0 , the following snapshot of the system has been taken :

	Α	llocatio	on
	R ₁	R ₂	R ₃
P ₀	0	1	0
P ₁	2	0	0
P,	3	0	2
P,	2	1	1
P ₄	0	2	2
•		Max	
	R ₁	R ₂	R ₃
	7	5	3
	3	2	2
	9	0	2
	2	2	2
	4	3	3
	A	vailab	le
	R ₁	R ₂	R ₃
	3	3	2
Assu	me that	now th	he proces

Assume that now the process P_1 requests one additional instance of type R_1 and two instances of resource type R_3 . The state resulting after this allocation will be (a) Ready state (b) Safe state (c) Blocked state (d) Unsafe state

34. Match the following :

List – I

- A. Contiguous allocation
- B. Linked allocation
- C. Indexed allocation
- D. Multi-level indexed

Codes :

	Α	В	С	D
(a)	iii	iv	ii	i
(b)	iii	ii	iv	i
(c)	i	ii	iv	iii
(d)	i	iv	ii	iii

List – II

- i. This scheme supports very large file sizes.
- ii. This allocation technique supports only sequential files.
- iii. Number of disks required to access file is minimal.
- iv. This technique suffers from maximum wastage of space in storing pointers

- **35.** Which of the following commands will output "one two three" ?
 - (a) for val; do echo-n \$val; done < one two three
 - (b) for one two three; do echo-n-; done
 - (c) for n in one two three; do echo-n \$n; done
 - (d) for n in one two three $\{echo-n \ \ n\}$
- **36.** Mergesort makes two recursive calls. Which statement is true after these two recursive calls finish, but before the merge step ?
 - (a) The array elements form a heap.
 - (b) Elements in each half of the array are sorted amongst themselves.
 - (c) Elements in the first half of the array are less than or equal to elements in second half of the array.
 - (d) All of the above
- **37.** A text is made up of the characters α , β , γ , δ and σ with the probability 0.12, 0.40, 0.15, 0.08 and 0.25 respectively. The optimal coding technique will have the average length of (a) 1.7 (b) 2.15 (c) 3.4 (d) 3.8
- **38.** Searching for an element in the hash table requires O(1) time for the ______ time, whereas for direct addressing it holds for the ______ time.
 - (a) worst-case, average (b) worst-case, worst-case
 - (c) average, worst-case (d) best, average
- **39.** An algorithm is made up of 2 modulus M_1 and M_2 . If time complexity of modulus M_1 and M_2 are h(n) and g(n) respectively, the time complexity of the algorithm is (a) min (h(n), g(n)) (b) max (h(n), g(n)) (c) h(n) + g(n) (d) h(n) * g(n)
- **40.** What is the maximum number of parenthesis that will appear on the stack at any one time for parenthesis expression given by

	(())	(())	(()))	
--	------	------	-------	--

(a) 2 (b) 3

C. Static storage class

D. External storage class

41. Match the following :

List – I

A. Automatic storage classB. Register storage classi. Scope of the variable is global.ii. Value of the variable persists be

(c) 4

List – II

ii. Value of the variable persists between different function calls.

(d) 5

- iii. Value stored in memory and local to the block in which the variable is defined.
- iv. Value stored in CPU registers.

	Code	es :							
		Α	В	С	D				
	(a)	iii	iv	i	ii				
	(b)	iii	iv	ii	i				
	(c)	iv	iii	ii	i				
	(d)	iv	iii	i	ii				
42.	When	n we pa	ass an ai	rray as a	an argum	ent to a	a function,	what actual	lly gets passed ?
	(a) A	ddress	of the a	rray			(b) Values	s of the ele	ments of the array
40	(c) B	ase add	dress of	the arra	ly		(d) Numb	er of eleme	ents of the array
43.	While	e (87)	printf("o	compute	er~);				
	The a	above (staten	nent Wil	1		(la) marine (· • • • • • • • • • • • • • • • • • • •	20 times
	(a) p	rint co	mputer	8/ 1111 , 1 time	les		(d) print (d)	"computer	0 times
11	(c) p	rint co	omputer	I time	es ed to		(d) print	computer	minute times
44.		void ar	aument	hetwee	eu lo n classes				
	(a) a	volu alg		classes	whose so	\cdot	de is unave	vilable	
	(0) a (c) a	llow on		to acces	whose so	elated c	lace	illaule.	
	(d) N	Ione of	the abo		ss all ulliv		1d55.		
45.	Whic	ch of th	ne follov	ving is	the corre	ct value	e returned t	to the oper	rating system upon the successful
	com	oletion	of a pro	gram?				io ino oper	
	(a) 0		P	(b) 1			(c) - 1	(d) Progra	am do not return a value.
46	Man	ager's s	salarv de	etails ar	e hidden	from th	e employee	This is c	alled as
TU •	(a) C	oncent	ual leve	l data h	iding	nom u	(b) Physic	cal level da	aned as ta hiding
	$(a) \in$	xternal	level d	ata hidi	ng		(d) Local	level data	hiding
47.	Whic	h of th	e follov	ving sta	tements i	is false	?		
	(a) A	ny rela	tion wit	h two a	ttributes	is in BC	CNF.		
	(b) A	relatio	n in wh	ich evei	ry key ha	s only o	one attribute	es is in 2NI	F.
	(c) A	prime	attribut	e can be	e transitiv	ely dep	endent on a	a key in 3N	IF relation.
	(d) A	prime	attribut	e can be	e transitiv	vely dep	endent on a	a key in BC	CNF relation.
48.	A clu	istering	g index i	s create	d when_		·		
	(a) p	rimary	key is d	eclared	and orde	ered	(b) no key	y ordered	
	(c) fo	oreign k	key orde	ered			(d) there	is no key a	nd no order
49.	Let F	$\mathbf{R} = \{\mathbf{A},$, B, C, I	D, E, F}	be a rela	ation scl	hema with t	the following	ng dependencies
	$C \rightarrow$	$F, E \rightarrow$	A, EC	\rightarrow D, A	$A \rightarrow B$				
	Whic	ch of th	e follow	ving is a	key for	R ?	<pre>/ ` · · -</pre>		
50	(a) C	D	. 11 .	(b) E	EC		(c) AE		(d) AC
50.	Matc	the fo	ollowing	g :			T • 4	тт	
		JSU – I					LIST -		
	A.L D.F						i. LUCI	NIT	
	D.L C T						II. COM	wii i vol Difforon	
		ICL RINAR'	V Opera	tion			iv REV(
	Code) \ PG •	i Opera	uion				JKL	
	Cour	A	B	С	D				
	(a)	ii	i	iii	iv				
	(b)	i	ii	iv	iii				
	(c)	iii	 ii	i	iv				
	(d)	iv	i	ii	iii				

PAPER : JUNE 2014

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-III

	Note: T question	'his pa 1s are	aper c comp	ontains ulsory. ′	seventy five (7 The candidates an	5) objective type of required to select	uestions of two (2) marks each. All the most appropriate answer of each
	question	1.					
1.	Beam-pe	enetra	tion a	ind shac	low-mask are the	e two basic techniq	ues for producing color displays with
	a CRT. V	Which	n of th	e follov	ving is not true ?	•,	
	I. The	beam	-pener	tration	is used with rand	om scan monitors.	
	II. Shac	10W-11	nask 1	s used 1	n rasterscan syst	ems.	
	III. Bear	m-pen	etratio	on meth	od is better than	shadow-mask me	thod.
	IV. Shac	low-n	nask r	nethod	is better than bea	im-penetration me	thod.
•	(a) I and	. 11	1	(b) I	1 and III	(c) III only	(d) IV only
2.	Line cap	s are	used 1	tor adju	sting the shape o	f the line ends to g	ive them a better appearance. Various
	kinds of	line c	caps u	sed are			
	(a) Butt	cap a	nd sha	arp cap		(b) Butt cap and	round cap
_	(c) Butt	cap, s	sharp	cap and	round cap	(d) Butt cap, rou	nd cap and projecting square cap
3.	Given be	elow a	are ce	rtain ou	tput primitives a	nd their associated	attributes. Match each primitive with
	its corre	spond	ling at	ttributes	S :		
	List	– I]	List – II		
	A. Line	;		i. '	Гуре, Size, Coloi	:	
	B. Fill	Area		ii. (Color, Size, Font		
	C. Text	_		iii. S	Style, Color, Patt	ern	
	D. Marl	ker		iv. '	Гуре, Width, Col	or	
	F	4	B	С	D		
	(a) i		ii	iii	iv		
	(b) i	i	i	iii	Aiveer	INDEAVU	UK
	(c) i	V	iii	ii	i		
	(d) i	ii	i	iv	ii		
4.	Consider	r a wi	ndow	bounde	ed by the lines : x	x = 0; y = 0; x = 5 a	and $y = 3$. The line segment joining (–
	1, 0) and	d (4, 5	5), if a	igainst 1	this window will	connect the points	
	(a) $(0, 1)$) and	(2, 3)	(b) ((0, 1) and $(3, 3)$	(c) $(0, 1)$ and $(4, $	3) (d) $(0, 1)$ and $(3, 2)$
5.	Which o	of the	follow	ving col	lor models are de	efined with three p	rimary colors ?
	(a) RGB	and a	HSV	color m	odels	(b) CMY and HS	SV color models
	(c) HSV	and [HLS c	color m	odels	(d) RGB and CM	IY color models
6.	In a digi	ital tra	ansmis	ssion, tl	ne receiver clock	is 0.1 percent fas	ter than the sender clock. How many
	extra bit	s per	secon	d does	the receiver rece	ive if the data rate	is 1 Mbps ?
	(a) 10 bj	ps		(b) 1	100 bps	(c) 1000 bps	(d) 10000 bps
7.	Given U	= { 1	, 2, 3,	4, 5, 6,	7}		
	_A	$x = \{(3)\}$	3, 0.7)	, (5, 1),	(6, 0.8)		
	then A	will b	e : (w	here ~	\rightarrow complement)		
	(a) $\{(4, 0)\}$	0.7), ((2, 1),	(1, 0.8))}		(b) $\{(4, 0.3), (5, 0), (6, 0.2)\}$
	(c) {(1, 1	1), (2,	, 1), (3	3, 0.3),	(4, 1), (6, 0.2), (7)	7, 1)}	(d) $\{(3, 0.3), (6.0.2)\}$
8.	Consider	r a fu	zzy se	et old as	s defined below		
	$Old = \{($	20, 0	1), (3	0, 0.2),	(40, 0.4), (50, 0.	6), (60, 0.8), (70, 1	1), (80, 1)}
	Then the	e alph	a-cut	for alph	a = 0.4 for the second	et old will be	

- (a) $\{(40, 0.4)\}$
- (b) $\{(50, 60, 70, 80)\}$
- (c) $\{(20, 0), (30, 0.2)\}$
- (d) $\{(20, 0), (30, 0), (40, 1), (50, 1), (60, 1), (70, 1), (80, 1)\}$
- Perceptron learning, Delta learning and LMS learning are learning methods which falls under the 9. category of
 - (a) Error correction learning learning with a teacher
 - (b) Reinforcement learning learning with a critic
 - (c) Hebbian learning
 - (d) Competitive learning learning without a teacher
- Code blocks allow many algorithms to be implemented with the following parameters : 10.
 - (a) clarity, elegance, performance (b) clarity, elegance, efficiency
 - (c) elegance, performance, execution (d) execution, clarity, performance
- Match the following with respect to the jump statements -11.

wian	in the re	JIIOwille	5 with It	speet it	, the jump statements .			
Ι	List – I		Ι	List – II				
A. r	eturn		i. 7	The cond	litional test and increment portions			
B. g	oto		ii. A	A value a	associated with it			
C. b	reak		iii. F	Requires	a label for operation			
D. c	ontinue	;	iv. A	An exit f	rom only the innermost loop			
Code	es :							
	Α	В	С	D				
(a)	ii	iii	iv	i				
(b)	iii	iv	i	ii				
(c)	iv	iii	ii	i				
(d)	iv	iii	i	ii				
The	control	string in	n C++ c	onsists (of three important classifications of characters			
(a) E	scape s	equence	e charac	ters, Fo	rmat specifiers and White-space characters			

(b) Special characters, White-space characters and Non-white space characters

- (c) Format specifiers, White-space characters and Non-white space characters
- (d) Special characters, White-space characters and Format specifiers
- Match the following with respect to I/O classes in object oriented programming :
- List I
 - List II A. fopen() i. returns end of file
 - B. fclose() ii. return for any problem report
 - C. ferror() iii. returns 0
 - D. feof() iv. returns a file pointer

Codes :

12.

13.

	Α	В	С	D
(a)	iv	i	ii	iii
b)	iii	i	iv	ii
(c)	ii	iii	iv	i
(d)	iv	iii	i	ii

- 14. Which one of the following describes the syntax of prolog program?
 - I. Rules and facts are terminated by full stop (.)
 - II. Rules and facts are terminated by (;)
 - III. Variables names must start with upper case alphabets.
 - IV. Variables names must start with lower case alphabets.

Codes :

(a) I, II (b) III, IV (c) I, III (d) II, IV

15.	Let L even-	be any number	languag red posi	ge. Def tions a	ne even (w) as the s ad even (L) = {ever	strings obtained by $(w) w \in L$. We	extracting from w the letters in the define another language Chop (L)						
	by rea	moving	the two	o leftmo	st symbols of every	string in L given b	by Chop (L) = { $w v w \in L$, with						
	$v \mid =$	2}. If L	is regu	lar lang	uage then								
	(a) ev	(a) even(L) is regular and Chop(L) is not regular.											
	(b) B	oth eve	n(L) and	d Chop	(L) are regular.								
	(c) ev	ven(L) i	s not re	gular a	nd Chop(L) is regul	ar.							
	(d) B	oth eve	n(L) and	d Chop	(L) are not regular.								
16.	5. Software testing is												
	(a) th	e proce	ess of es	tablish	ng that errors are n	ot present.							
	(b) th	ne proce	ess of es	stablish	ng confidence that	a program does wl	hat it is supposed to do.						
	(c) th	e proce	ess of ex	ecuting	g a program to show	v that it is working	as per specifications.						
	(d) th	ne proce	ess of ex	xecutin	g a program with th	e intent of finding	errors.						
17.	Assu	me that	a prog	ram w	ll experience 200 f	ailures in infinite	time. It has now experienced 100						
	failur	es. The	initial fa	ailure i	ntensity was 20 faile	ares/CPU hr. Then	the current failure intensity will be						
	(a) 5	failures	s/CPU h	r	(1	o) 10 failures/CPU	hr						
	(c) 20	0 failure	es/CPU	hr	(d) 40 failures/CPU	hr						
18.	Cons	ider a p	oroject v	vith the	following function	al units :							
	Num	Number of user inputs = 50											
	Num	ber of u	ser out	puts = 4	-0								
	Num	ber of u	iser enq	uiries =	35								
	Num	ber of u	ser files	s = 06									
	Num	ber of e	external	interfa	ces = 04								
	Assu	ming all	l comple	exity ac	justment factors an	d weighing factors	as average, the function points for						
	the p	roject v	vill be										
	(a) 13	35		(b) 7	22 (*	c) 675	(d) 672						
19.	Matc	h the fo	ollowing	;:									
	L	ist – I]	List – II								
	A. C	orrectn	ess	i. (*	The extent to which	a software tolerat	es the unexpected problems						
	B. A	ccuracy	y	ii. '	The extent to which	a software meets	its specifications						
	C. R	obustne	ess	iii. '	The extent to which	a software has sp	ecified functions						
	D. C	omplet	eness	iv.	Aeeting specification	ons with precision							
	Code	es :											
		Α	В	С	D								
	(a)	ii	iv	i	iii								
	(b)	i	ii	iii	iv								
	(c)	ii	i	iv	iii								
	(d)	iv	ii	i	iii								
20	Whic	h one o	of the fo	llowing	is not a definition	of error ?							
20.	(a) It	refers t	o the di	screnai	cy between a comp	uted observed or i	neasured value and the true speci-						
	fied c	r theor	etically	correct	value		neusarea value and the true, speer-						
	neu C		circany	COLLEC	value.								

- (b) It refers to the actual output of a software and the correct output.
- (c) It refers to a condition that causes a system to fail.
- (d) It refers to human action that results in software containing a defect or fault.
- Which one of the following is not a key process area in CMM level 5?
 - (a) Defect prevention

21.

- (b) Process change management
- (c) Software product engineering
- (d) Technology change management

22.	Consider the following relational schemas for a library database :										
	Book (Title, Author, Catalog_no, Publisher, Year, Price)										
	Collection (Title, Author, Catalog_no) with the following functional dependencies :										
	I. Title, Author \rightarrow Catalog_no										
	II. Catalog_no \rightarrow Title, Author, Publisher, Year										
	III. Publisher, Title, Year \rightarrow Price										
	Assume (Author, Title) is the key for both schemas. Which one of the following is true ?										
	(a) Both Book and Collection are in BCNF.										
	(b) Both Book and Collection are in 3NF.										
	(c) Book is in 2NF and Collection in 3NF.										
	(d) Both Book and Collection are in 2NF.										
23.	Specialization Lattice stands for										
	(a) An entity type can participate as a subclass in only one specialization										
	(b) An entity type can participate as a subcl	ass in more than one si	pecialization								
	(c) An entity type that can participate in on	e specialization									
	(d) An entity type that can participate in on	e generalization									
24	Match the following :	e generalization.									
27.	List _ I	List – II									
	A Timeout ordering protocol	i Wait for graph									
	B Deadlock prevention	ii Roll back									
	C Deadlock detection	iii Wait-die scheme									
	D Deadlock recovery	iv Thomas Write Ru	le								
	Codes ·	IV. Thomas write Re									
	A B C D										
	(a) iv iii i ii										
	(a) iv in i i										
	(c) ii i iv iii										
25	Consider the schema										
20.	$R = \{S, T, U, V\}$										
	and the dependencies										
	$S \rightarrow T, T \rightarrow U, U \rightarrow V \text{ and } V \rightarrow S$										
	If $\mathbf{R} = (\mathbf{R} \text{ and } \mathbf{R})$ be a decomposition such	that $\mathbf{R} \cap \mathbf{R} = \mathbf{\phi}$ then t	the decomposition is								
	(a) not in 2NF	(b) in 2NF but not in	3NF								
	(c) in 3NF but not in 2NF	(d) in both 2NF and 3NF									
26	Which one of the following is not a Client-	Server application ?									
20.	(a) Internet chat (b) Web browser	(c) E-mail	(d) Ping								
27	Which one of the following concurrency pr	otocol ensures both co	onflict serializability and freedom								
27.	from deadlock ·		since serializability and needoni								
	I 2-phase locking										
	I Time phase ordering										
	(a) Both L& II (b) II only	(c) Lonly	(d) Neither I por II								
28	Match the following :	(c) I only	(d) Neither Thor II								
20.	I ist I	List II									
	Δ Expert systems	i Dragmatics									
	R Planning	i. Laginatics									
	C Prolog	II. NESOIUUOII									
	C. 11010g	in. Intents-end analysis									
	D. Matural language processing	iv. Explanation facility									

	Codes :										
		Α	B	С	D						
	(a)	iii	iv	i	ii						
	(b)	iii	iv	ii	i						
	(c)	i	ii	iii	iv						
	(d)	iv	iii	ii	i						
29.	STRI	PS add	resses th	ne prob	lem of eff	iciently	representin	g and impl	lementation of a planner.	It is not	
	relate	d to wl	hich one	of the	following	?					
	(a) SH	HAKEY	Y	(b) S	RI		(c) NLP		(d) None of these		
30.	Slots	and fac	cets are u	used in							
	(a) Se	emantic	Networ	`ks			(b) Frames				
	(c) R1	ıles					(d) All of t	hese			
31.	Consi	der f(N	$\mathbf{V} = \mathbf{g}(\mathbf{N})$) + h(N)	()						
	Where function g is a measure of the cost of getting from the start node to the current										
	is an estimate of additional cost of getting from the current node N to the goal node. Then f(
	h(N) is used in which one of the following algorithms ?										
	(a) A*	* algori	ithm				(b) AO* al	gorithm			
	(c) G1	reedy b	est first	search	algorithm	l I	(d) Iterativ	e A* algor	rithm		
32.		pre	dicate ca	alculus	allows qu	antified	variables to	o refer to o	bjects in the domain of di	scourse	
	and no	ot to pi	redicates	or fun	ctions.						
	(a) Ze	ro-ord	er	(b) F	irst-order		(c) Second	-order	(d) High-order		
33.		is u	used in g	ame tr	ees to red	uce the	number of	branches of	of the search tree to be tra	aversed	
	witho	ut affeo	cting the	soluti	on.						
	(a) Be	est first	search				(b) Goal st	ack planni	ing		
	(c) Al	pha-be	ta prunii	ng proc	edure		(d) Min-ma	ax search			
34.	Consi	der a i	uniproce	ssor sy	stem whe	ere new	processes	arrive at a	an average of five proces	sses per	
	minut	e and	each pro	ocess n	eeds an a	verage	of 6 secon	ds of serv	ice time. What will be th	ne CPU	
	utiliza	tion ?			ADCC						
	(a) 80	%		(b) 5	0%	:K E	(c) 60%	VUUK	(d) 30%		
35.	Consi	der a p	rogram	that co	nsists of 8	pages	(from 0 to 7)) and we h	ave 4 page frames in the p	physical	
	memo	ory for	the page	s. The	page refer	rence st	ring is :				
	123	2563	4637	3153	63424	3451			1	/ ·.1	
	The n	umber	of page	faults 1	n LRU an	d optin	hal page rep	lacement a	algorithms are respectively	y (with-	
	out in	cluding	g initial j	page ia		availat	ble page fra	mes with p	pages):		
26	(a) 9 a	and 6	£ (1, - £, 1	(D) I	0 and /		(c) 9 and $/$	1:1-1-	(d) 10 and 6		
30.	which one of the following statements is not true about disk-arm scheduling algorithms ?										
	(a) SS (b) Th		hor of re		for dials	gorium	moreases p	enormane	to 01 FCFS.		
	(b) The number of requests for disk service are not influenced by the allocation method.										
	(c) Caching the directories and index blocks in main memory can also help in reducing disk arm										
		TAN or		AN al	orithma a	ra laga	likaly to ha	ua a stamua	tion problem		
37	(u) S(AIN al	intoina t	AIN alg	of from die	le less	interv to ha	iv filo over	anon problem.		
57.	$\frac{1}{(a) \operatorname{Ir}}$	IIIa	initanis ti	(b) B	oot block	SK DIOCE	(c) Super k	lix me syst	(d) File allocation table		
38	(a) I-L	t of wi	ndows 2	ם (ט) מה 100	erating sy	stem th	at is not no	rtable is			
50.	$(a) D_{a}$		Janager	ooo op ient	crating sy	stem th	(h) Virtual	Memory M	Management		
	(a) D((c) Pr	OCESSO	r Manag	ement			(d) User In	terface	management		
			i iriunug	,01110111							

39.	Match the following with reference to Unix shell scripts :						
	List	– I]	List – II			
	A. \$?		i. 1	File name of the	ne current script		
	B. \$#		ii. I	List of argume	ents		
	C. \$0		iii. 7	The number of	f arguments		
	D. \$*		iv. I	Exit status of I	last command		
	Codes :						
	1	A B	С	D			
	(a) i	ii ii	i	iv			
	(b) i	i iii	i	iv			
	(c) i	v iii	i	ii			
	(d) i	iii	i	iv			
40.	The adv	antage of _		is that it can i	reference memory without paying the	price of having a full	
	memory	address in	the inst	ruction.			
	(a) Dire	ct addressi	ng		(b) Indexed addressing		
	(c) Regi	ster addres	sing		(d) Register Indirect addressing		
41.	The rev	erse polish	notation	equivalent to	the infix expression		
	((A + B))) * C + D)/	(E + F +	G)			
	(a) A B	+ C * D +]	EF+G	+ /	(b) $A B + C D * + E F + G + /$		
	(c) A B	+ C * D +]	E F G +	+ /	(d) $A B + C * D + E + F G + /$		
42.	The out	put of a sec	quential	circuit depend	ls on		
	(a) prese	ent input of	nly		(b) past input only		
	(c) both	present an	d past in	put	(d) past output only		
43.	A byte a	ddressable	compute	er has a memo	ry capacity of 2 ^m Kbytes and can perfe	orm 2 ⁿ operations. An	
	instructi	on involvir	ng 3 ope	rands and one	operator needs a maximum of		
	(a) 3m b	oits	(b) r	n + n bits	(c) $3m + n$ bits (d) $3m + n$	n + 30 bits	
44.	Which c	of the follow	wing flip	-flop is free fi	rom race condition ?		
	(a) T fli	p-flop		-	(b) SR flip-flop		
	(c) Mas	ter-slave JI	K flip-flo		(d) None of the above		
45.	One of t	he main fe	atures th	at distinguish	microprocessor from micro-compute	ers is	
	(a) word	ls are usua	lly large	in microproc	essors.		
	(b) word	ls are usua	lly short	er in micropro	ocessors.		
	(c) micr	oprocessor	does no	t contain I/O	devices.		
	(d) Non	e of the abo	ove.				
46.	The out	put generat	ed by th	e LINUX con	nmand : $\$$ seq 1 2 10 will be		
	(a) 1 2	10			(b) 1 2 3 4 5 6 7 8 9 10		
	(c) 1 3	579			(d) 1 5 10		
47.	All the o	classes neco	essary fo	or windows pr	ogramming are available in the modu	ıle :	
	(a) win.	txt	(b) v	vin.main	(c) win.std (d) MFC		
48.	Window	s 32 API s	upports				
	(a) 16-b	it Windows	s (b) 3	2-bit Window	vs (c) 64-bit Windows (d) All of t	the above	
49.	Superfic	ally the te	rm "obje	ct-oriented",	means that, we organize software as	a	
	(a) colle	ction of co	ntinuous	s objects that i	ncorporates both data structure and b	behaviour.	
	(b) colle	ction of dis	screte ol	jects that inco	orporates both discrete structure and	behaviour.	
	(c) colle	ction of dis	screte ob	jects that inco	orporates both data structure and beha	aviour.	
	(d) colle	ction of ob	jects that	t incorporates	s both discrete data structure and beha	aviour.	
50.	The "par	rt-whole",	or "a-pai	t-of", relation	ship in which objects representing the	components of some-	
	thing as	sociated w	ith an ol	ject represent	ing the entire assembly is called as	-	
	(a) Asso	ciation	(b) A	Aggregation	(c) Encapsulation (d) Genera	alisation	

at run time is (a) Small talk (b) C++ (d) Eiffel (c) Java Match the following interfaces of Java. Servlet package : 52. List – I List – II A. Servlet Config i. Enables Servlets to log events B. Servlet Context ii. Read data from a client C. Servlet Request iii. Write data to a client D. Servlet Response iv. To get initialization parameters **Codes :** B С D Α (a) iii iv ii i iii ii iv i (b) (c) ii iii iv i iii (d) iv i ii 53. The syntax of capturing events method for document object is (a) Capture Events () (b) Capture Events (Orgs events Type) (c) Capture Events (event Type) (d) Capture Events (event Val) Linking to another place in the same or another webpage require two A (Anchor) tags, the first with 54. the _____ attribute and the second with the _____ attribute. (a) NAME & LINK (b) LINK & HREF (c) HREF & NAME (d) TARGET & VALUE Given an image of size 1024×1024 pixels in which intensity of each pixel is an 8-bit quality. It 55. requires _____ of storage space if the image is not compressed. (b) one Megabyte (c) 8 Megabytes (a) one Terabyte (d) 8 Terabytes Match the following cryptographic algorithms with their design issues : 56. List – I List – II A. DES i. Message Digest B. AES ii. Public Key DEAVOUR C. RSA iii. 56-bit key iv. 128-bit key D. SHA-1 **Codes:** С D Α B iii ii i iv (a) (b) iii i iv ii iii ii i (c) iv iii (d) iv i ii 57. Consider a code with five valid code words of length ten : Hamming distance of the code is (a) 5 (b) 10 (c) 8(d) 9Which of the following special cases does not require reformulation of the problem in order to 58. obtain a solution ? (a) Alternate optimality (b) Infeasibility (d) All of the above (c) Unboundedness The given maximization assignment problem can be converted into a minimization problem by **59**. (a) subtracting each entry in a column from the maximum value in that column. (b) subtracting each entry in the table from the maximum value in that table.

(d) adding maximum value of the table to each entry in the table.

PAPER : JUNE 2014

The pure object oriented programming language with extensive metadata available and modifiable

70

51.

The initial basic feasible solution of the following transportion problem : 60. Destination \mathbf{D}_2 **D**₃ | Supply 5 O_1 **Origins** O₂ 8 7 is given as 2 2 10 Demand then the minimum cost is (a) 76 (c) 80(b) 78 (d) 82 Given the following equalities : 61. $E_1: n^{K+\epsilon} + n^K \lg n = \theta(n^{K+\epsilon})$ for all fixed K and $\epsilon, K \ge 0$ and $\epsilon > 0$. $E_2: n^3 2^n + 6n^2 3^n = O(n^3 2^n)$ Which of the following is true ? (a) E_1 is correct and E_2 is correct. (b) E_1 is correct and E_2 is not correct. (c) E_1 is not correct and E_2 is correct. (d) E_1 is not correct and E_2 is not correct. Consider the fractional knapsack instance n = 4, $(p_1, p_2, p_3, p_4) = (10, 10, 1218)$, $(w_1, w_2, w_3, w_4) = (10, 10, 1218)$ 62. (2, 4, 6, 9) and M = 15. The maximum profit is given by (Assume p and w denotes profit and weight of objects respectively) (a) 40 (b) 38 (c) 32 (d) 30 The solution of the recurrence relation of $T(n) = 3T\left(floor\left(\frac{n}{4}\right)\right) + n$ is **63**. (a) $O(n^2)$ (b) O(nlg n)(c) O(n)(d) O(l g n)**64**. If h is chosen from a universal collection of hash functions and is used to hash n keys into a table of size m, where $n \le m$, the expected number of collisions involving a particular key K is (b) less than lg n (c) greater than 1 (d) greater than lg n (a) less than 1 **65**. Given the following statements : S_1 : The subgraph-isomorphism problem takes two graphs G_1 and G_2 and asks whether G_1 is a subgraph of G₂. S_2 : The set-partition problem takes as input a set S of numbers and asks whether the numbers can be partitioned into two sets A and $\overline{A} = S - A$ such that $\sum_{x \in A}^{x} \sum_{x \in \overline{A}}^{x} \sum_{x \in \overline{A}}^{x}$ Which of the following is true ? (a) S_1 is NP problem and S_2 is P problem. (b) S_1 is NP problem and S_2 is NP problem. (c) S_1 is P problem and S_2 is P problem. (d) S_1 is P problem and S_2 is NP problem. Suppose that the splits at every level of quicksort are in the proportion $(1 - \alpha)$ to α , where $0 < \alpha \le \frac{1}{2}$ 66. is a constant. The minimum depth of a leaf in the recursion tree is approximately given by (a) $-\frac{lgn}{lg(1-\alpha)}$ (b) $-\frac{lg(1-\alpha)}{lgn}$ (c) $-\frac{lgn}{lg\alpha}$ (d) $-\frac{lg\alpha}{lgn}$

72					I	PAPER :	JUNE	2014					CAREER ENDEAVOLR
67.	 Ten signals, each requiring 3000 Hz, are multiplexed on to a single channel using FDM. How n minimum bandwidth is required for the multiplexed channel ? Assume that the guard bands are Hz wide. (a) 30,000 (b) 32,700 (c) 32,000 (d) Nora of the shows 											How much nds are 300	
	(a) 30	,000		(b) (32,700		(c) 33	3,000		(d) Nor	ne of th	ne abo	ve
68.	A terr outgo (a) 4	minal r ing lin	nultiplez e is 960	xer has 0 bps, (b) 8	six 1200 what is tl 8	bps tern he value	minals of n ? (c) 16	and 'n' 5	300 bps	terminal (d) 28	s conn	nected	to it. If the
69.	Whicl (a) St (c) Ti	n of the rict sou me sta	e follow urce rou .mp	ving is t ting	used in th	e option	ns field of IPv4 ? (b) Loose source routing (d) All of the above						
70.	Which (a) Tr (b) No (c) Da (d) Ph	 Which layers of the OSI reference model are host-to-host layers ? (a) Transport, Session, Presentation, Application (b) Network, Transport, Session, Presentation (c) Data-link, Network, Transport, Session (d) Physical, Data-link, Network, Transport 											
71.	A network on the Internet has a subnet mask of 255.255.240.0. What is the maxi hosts it can handle ? (a) 1024 (b) 2048 (c) 4096 (d) 8192										kimum	number of	
72.	Four netwo (a) 4	Four bits are used for packed sequence numbering in a sliding window protocol used in a compute network. What is the maximum window size ? (a) 4 (b) 8 (c) 15 (d) 16									a computer		
73.	Given the following two grammars : $G_1: S \rightarrow AB \mid aaB$ $A \rightarrow a \mid Aa$ $B \rightarrow b$ $G_2: S \rightarrow a S b S \mid b S a S \upharpoonright A$ REER ENDEAVOUR Which statement is correct ? (a) G_1 is unambiguous and G_2 is unambiguous (b) G_1 is unambiguous and G_2 is unambiguous (c) G_1 is ambiguous and G_2 is unambiguous (d) G_1 is ambiguous and G_2 is unambiguous												
74.	Match Li A. Cl B. G C. S- D. Ll	n the fo ist – I homsk reibach gramn L gram	ollowing y Norm h Norma nar nmar	g : al forn al form	1		L i. S ii. S iii. S A iv. S B	$ist - II$ $\rightarrow b S$ $\rightarrow a S$ $\rightarrow AS$ $\rightarrow SA$ $\rightarrow a B$ $\rightarrow b$	S a S b ab a b S B	с			
	Code	s: A	B	С	D								
	(a)	iv	iii	i	ii								
	(b)	iv	iii	ii	i 								
	(c)	iii ;;;	iv	i ::	ii ;								
	(u)	111	IV	11	1								

Given the following two languages : 75.

 $L_1 = \{a^n b^n \mid n \ge 1\} \cup \{a\}$

 $L_2 = \{ w C w^R | w \in \{a, b\}^* \}$

Which statement is correct ?

- (a) Both L_1 and L_2 are not deterministic.
- (b) L_1 is not deterministic and L_2 is deterministic. (c) L_1 is deterministic and L_2 is not deterministic. (d) Both L_1 and L_2 are deterministic.

