PAPER : JUNE 2019

UGC-NET COMPUTER SCIENCE & APPLICATIONS (87)

PAPER-II

Note: This paper contains hundred(100) objective type questions for two (2) marks each. All questions are compulsory. The candidates are required to select the most appropriate answer of each question.

1. The parallel bus arbitration technique uses an external priority encoder and a decoder. Suppose, a parallel arbiter has 5 bus arbiters. What will be the size of priority encoder and decoder respectively ?

(a) $4 \times 2, 2 \times 4$ (b) $2 \times 4, 4 \times 2$ (c) $3 \times 8, 8 \times 3$ (d) 8×3 , 3×8 2. Consider the following C-code fragment running on a 32-bit x86 machine: typedef struct { S B[10]: union { S*p=&B[4];unsigned char a; S*q=&B[5]; $p \rightarrow U \cdot b = 0x1234;$ unsigned short b; /* structure S takes 32-bits */ }U; unsigned char c; **}S**: If M is the value of q - p and N is the value of (int) & $(p \rightarrow c)) - ((int)p)$, then (M, N) is (b) (3, 2)(d) (4, 4)(a) (1, 1) (c) (1, 2)

3. Consider the game tree given below:

Here \bigcirc and \bigcirc represents Min and Max nodes respectively. The value of the root node of the game tree is

4. On translating the expression given below into quadruple representation, how many operations are required?

(a) 5 (b) 6
$$(i*j)+(e+f)*(a*b+c)$$

(c) 3 (d) 7

- 5. What percentage (%) of the IPv4, IP address space do all class C addresses consume ? (a) 12.5 % (b) 25 % (c) 37.5 % (d) 50 % Suppose that a connected planar graph has six vertices, each of degree four. Into how many regions 6. is the plane divided by a planar representation of this graph? (a) 6 (b) 8 (d) 20 (c) 12 7. The RSA encryption algorithm also works in reverse, that is, you can encrypt a message with the private key and decrypt it using the public key. This property is used in
 - (a) intrusion detection systems (b) digital signatures
 - (c) data compression (d) certification

212		PAPER : 、	JUN	E 2019	OREER BIDEWOUR
8.	There are many sorting O(n log n). Like P, but u (a) Merge sort, Quick so (c) Insertion sort, Quick	algorithms based on unlike Q, heapsort so ort < sort	con orts i (d)	nparison. The runni in place where (P, C (b) Insertion sort, Me	ing time of heapsort algorithm is () is equal to Quick sort, Insertion sort rge sort
9.	You are designing a link layer protocol for a link with bandwidth of 1 Gbps (10 ⁹ bits/second) over a fiber link with length of 800 km. Assume the speed of light in this medium is 200000 km/second. What is the propagation delay in this link ? (a) 1 millisecond (b) 2 milliseconds (c) 3 milliseconds (d) 4 milliseconds				
10.	At a particular time of control tions and 15V (signal) of the semaphore?	omputation, the value operations are compl	e of letec	a counting semaph 1 on this semaphor	ore is 7. Then 20 P (wait) opera- e. What is the resulting value of
11.	A computer has six tape drives. What is the max (a) 5 (1)	 b) 12 c) drives with <i>n</i> processimum value of <i>n</i> for the b) 4 	(c) esse the (c)	2 s competing for the system to be deadle 3	 (d) 42 em. Each process may need two ock free ? (d) 6
12.	The ability to inject pack (a) Man-in-the-middle a (c) IP sniffing	kets into the Internet attack	: wit (b) (d)	th a false source ad IP phishing IP spoofing	dress is known as
13.	Match List-I with List-I List-I (Software Pro	I: ocess Models)		List-II (Software	Systems)
	A. Waterfall model 1. <i>e</i> -business software that starts with only the bas functionalities and then moves on to more advance features				re that starts with only the basic then moves on to more advanced
	B. Incremental developC. Prototyping	CAREER E	2. 3.	An inventory cont be develop within A virtual reality sy gation in a highway	rol system for a supermarket to three months. stem for simulating vehicle navi-
	D. RAD		4.	Automate the ma maintenance in a	nual system for student record school.
	Choose the correct optic (a) A-2, B-4, C-1, D-3 (c) A-3, B-2, C-4, D-1	on from those given	belc (b) (d)	ow: A-1, B-3, C-4, D- A-4, B-1, C-3, D-	2 2
14.	Let A_{α_0} denotes the α -	cut of a fuzzy set A a	at α	α_0 . If $\alpha_1 < \alpha_2$, then	
	(a) $A_{\alpha_1} \supseteq A_{\alpha_2}$ (1)	b) $A_{\alpha_1} \supset A_{\alpha_2}$	(c)	$A_{\alpha_1} \subseteq A_{\alpha_2}$	(d) $A_{\alpha_1} \subset A_{\alpha_2}$
15.	Consider the following:A. EvolutionB. EvolutionB. C and D only	B. Selectionare found in geneticb) B and D only	C. alg (c)	Reproduction orithms ? A, B, C and D	D. Mutation(d) A, B and D only
16.	Using the phong reflecta	ance model, the stren	igth	of the specular hig	hlight is determined by the angle
	between(a) the view vector and(c) the light vector and	the normal vector the reflected vector	(b) (d)	the light vector an the reflected vector	d the normal vector or and the view vector

- 17. For a magnetic disk with concentric circular tracks, the seek latency is not linearly proportional to the seek distance due to (a) non-uniform distribution of requests. (b) arm starting or stopping inertia. (c) higher capacity of tracks on the periphery of the platter.
 - (d) use of unfair arm scheduling policies.
- 18. With respect to relational algebra, which of the following operations are included from mathematical set theory?
 - (1) Join (2) Intersection (3) Cartisian product (4) Project (a) (1) and (4) (b) (2) and (3) (c) (3) and (4) (d) (2) and (4)
- 19. Match List-I with List-II:
 - List-I
 - A. Disk
 - B. CPU
 - C. Memory

 - D. Interrupt

- 3. File system
 - 4. Virtual address space

List-II 1. Thread

2. Signal

- Choose the correct option from those given below:
- (a) A-1, B-2, C-3, D-4 (b) A-3, B-1, C-4, D-2 (c) A-2, B-1, C-4, D-3 (d) A-2, B-4, C-3, D-1
- 20. Consider the following grammar:
 - $S \rightarrow XY$

 $X \rightarrow YaY \mid a \text{ and } Y \rightarrow bbX$

Which of the following statements is/are true about the above grammar ?

- (1) Strings produced by the grammar can have consecutive three a's.
- (2) Every string produced by the grammar have alternate a and b.
- (3) Every string produced by the grammar have at least two a's.
- (4) Every string produced by the grammar have b's in multiple of 2.
- (a) (1) only (b) (2) and (3) only (c) (4) only (d) (3) and (4) only
- 21. The M components in MVC are responsible for
 - (a) user interface
 - (b) security of the system
 - (c) business logic and domain objects
 - (d) translating between user interface actions/events and operation on the domain objects

22. Match List-I with List-II:

where L_1 : Regular language

- L_2 : Context-free language
- L_3 : Recursive language
- L_4 : Recursively enumerable language

List-I

- A. $\overline{L}_3 \cup L_4$
- B. $\overline{L}_2 \cup L_3$
- C. $L_1^* \cap L_2$

- List-II 1. Context-free language
- 2. Recursively enumerable language
- 3. Recursive language
- Choose the correct option from those given below:

(a) A-2, B-1, C-3 (b) A-2, B-3, C-1 (c) A-3, B-1, C-2 (d) A-1, B-2, C-3

214	PAPER : JUNE 2019
23.	 Which of the following statements is/are true with regard to various layers in the Internet stack ? P: At the link layer, a packet of transmitted information is called a frame. Q: At the network layer, a packet of transmitted information is called a segment. (a) P only (b) Q only (c) P and Q (d) Neither P nor Q
24.	Which of the following problems is/are decidable problem(s) (recursively enumerable) on turing machine M ? (1) G is a CFG with $L(G) = \phi$ (2) There exist two TMs M_1 and M_2 such that $L(M) \subseteq \{L(M_1) \cup L(M_2)\}$ = language of all TMs. (3) M is a TM that accepts ω using at most $2^{ \omega }$ cells of tape (a) (1) and (2) only (b) (1) only (c) (1), (2) and (3) (d) (3) only
25.	How can the decision algorithm be constructed for deciding whether context-free language <i>L</i> is finite ? (1) By constructing redundant CFG <i>G</i> in CNF generating language \underline{L} . (2) By constructing non-redundant CFG <i>G</i> in CNF generating language <i>L</i> . (3) By constructing non-redundant CFG <i>G</i> in CNF generating language $L - \{\land\} (\land \text{ stands for null})$ Which of the following is correct ? (a) (1) only (b) (2) only (c) (3) only (d) None of (1), (2) and (3)
26.	 Reinforcement learning can be formalized in terms of in which the agent initially only knows the set of possible and the set of possible actions. (a) Markov decision processes, object (b) Hidden states, objects (c) Markov decision processes, states (d) objects, states
27.	What will be the number of states when a MOD-2 counter is followed by a MOD-5 counter ?(a) 5(b) 10(c) 15(d) 20
28.	In relational database management, which of the following is/are property/properties of candidate key ? P: Uniqueness Q: Irreducibility (a) P only (b) Q only (c) Both P and Q (d) Neither P nor Q
29.	Consider the following methods: M_1 : Mean of maximum M_2 : Centre of area M_3 : Height method Which of the following is/are defuzzification method(s) ? (a) Only M_2 (b) Only M_1 and M_2 (c) Only M_2 and M_3 (d) M_1 , M_2 and M_3
30.	 Which of the following statements is/are TRUE ? P: In software engineering, defects that are discovered earlier are more expensive to fix. Q: A software design is said to be a good design, if the components are strongly cohesive and weakly coupled. Select the correct answer from the options given below: (a) P only (b) Q only (c) Both P and Q (d) Neither P nor Q
31.	Consider double hashing of the form:
	$h(k, i) = (h_1(k) + ih_2(k)) \operatorname{mod} m$
	where $h_1(k) = k \mod m$

214

32.

33.

34.

35.

36.

37.

38.

(a) 255

(1) Stack

below?

(a) 1

ing sequence:

(a) 357 ms

(a) (1) and (4)

(a) 14 times faster

 $h_2(k) = 1 + (k \mod n)$

(a) Complex data-types

where n = m - 1 and m = 701For k = 123456, what is the difference between first and second probes in terms of slots ? (b) 256 (c) 257 (d) 258 Which of the following is supported in the relational database model ? (b) Multivalued attributes (c) Association with multiplicities (d) Generalization relationships Which of the following are NOT shared by the threads of the same process ? (2) Registers (3) Address space (4) Message queue (b) (2) and (3) (c) (1) and (2)(d) (1), (2) and (3) Suppose that a computer program takes 100 seconds of execution time on a computer with multiplication operation responsible for 80 seconds of this time. How much do you have to improve the speed of multiplication operation if you are asked to execute this program four times faster ? (b) 15 times faster (c) 16 times faster (d) 17 times faster How many states are there in a minimum state automata equivalent to regular expression given Regular expression is a * b(a + b). (b) 2 (c) 3(d) 4 Consider a disk system with 100 cylinders. The requests to access the cylinders occur in the follow-4, 34, 10, 7, 19, 73, 2, 15, 6, 20 Assuming that the head is currently 50, what is the time taken to satisfy all requests if it takes 1 ms to move from the cylinder to adjacent one and the shortest seed time first policy is used ? (b) 238 ms (c) 276 ms (d) 119 ms Which of the following has same expressive power with regard to relational query language ? (1) Relational algebra and domain relational calculus. (2) Relational algebra and tuples relational calculus. (3) Relational algebra and domain relational calculus restricted to safe expression. (4) Relational algebra and tuples relational calculus restricted to safe expression. (a) (1) and (2) only (b) (3) and (4) only (c) (1) and (3) only (d) (2) and (4) only Software products need adaptive maintenance for which of the following reasons ? (a) To rectify bugs observed while the system is in use. (b) When the customers need the product to run on new platforms.

- (c) To support the new features that users want it to support.
- (d) To overcome wear and tear caused by the repeated use of the software.

Consider the following pseudo-code fragment in which an invariant for the loop is 39. " $m * x^k = p^n$ and $k \ge 0$ " (here, p and n are integer variables that have been initialized):

/* Pre-conditions : $p \ge 1 \land n \ge 0^*$ /

/* Assume that overflow never occurs */ int x = p; int k = n; int m = 1; while (k <> 0){ if (k is odd) then m = m * x; x = x * x;

	$k = \lfloor k/2 \rfloor; /* flow$	oor(k/2)*/	}		
	Which of the following m	nust be true at the e	end of the while loop?	-	
	(a) $x = p^n$ (b)) $m = p^n$	(c) $p = x^n$	(d) $p = m^n$	
40.	How many bit strings of 1(a) 320(b)	length ten either sta) 480	rt with a 1 bit or end w (c) 640	vith two bits 00 ? (d) 768	
41.	Which of the following is(a) Only topological sort(b) Only strongly connec(c) Both topological sort(d) Neither topological sort	s application of dep ted components and strongly conne ort nor strongly cor	oth-first-search ? ected components nnected components		
42.	Suppose that the register of A are compared with m tion, this type of memory memory is known as	A and the register H memory words becau y is uniquely suited	K have the bit configura use K has 1's in these po I to parallel searches b	tion. Only the three leftmost bits ositions. Because of its organiza- y data association. This type of	
	(a) RAM(c) Content addressable 1	memory	(b) ROM(d) Secondary memor	y	
43.	Replacing the expression (a) constant folding (b)	4 * 2.14 by 8.56 is induction variable	known as (c) strength reduction	(d) code reduction	
44.	In relational database, if 1	relation R is in BCM	NF, then which of the fo	ollowing is true about relation R	
	 (a) R is in 4 NF (c) R is in 2 NF and not : 	in 3 NF	(b) R is not in 1 NF(d) R is in 2 NF and 3	3 NF	
45.	Consider that a process h	has been allocated 3 $1, 2, 1, 3, 7$	frames and has a sequ 7, 4, 5, 6, 3, 1	ence of page referencing as :	
	What shall be the differe optimal page replacemen (a) 2 (b)	nce in page faults t for referencing th) 0	for the above string us e string ? (c) 1	sing the algorithms of LRU and (d) 3	
46.	Consider the following p	roperties with resp	ect to a flow network	G = (V, E) in which a flow is a	
	real-valued function $f: V \times V \rightarrow R$:				
	P_1 : For all $u, v \in V$, $f(u, v)$	v) = -f(v, u)			
	$\mathbf{P}_2: \sum_{v \in V} f(u, v) = 0 \text{ for all } u \in V$				
	Which one of the following is/are correct ?				
17	(a) Only P_1 (b) Find the zero-one matrix) Only P_2	(c) Both P_1 and P_2	(d) Neither P_1 nor P_2	
 <i>τ/</i> .	The the zero-one matrix			ven by the matrix <i>R</i> .	
		$\mathbf{A} = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(a) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (b)	$ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} $	(c) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	

(a) 9

hearts are present among them ?

(b) 13

48.

49.

50.

51.

52.

53.

54.

55.

56.

How many cards must be selected from a standard deck of 52 cards to guarantee that at least three

(d) 42

(c) 17

Wh (1) (2) (3) (a)	hich of the followin Update [tablename] Set [columnname] Delete [tablename Select * from [tab (1) and (2)	g statements are DML e] = VALUE [] [lename] (b) (1) and (4)	star	tements ?	(d) (2) and (3)
(ч) Ма	(1) und (2)	(c) (1) and (1)	(-)	(1), (2) and (0)	
Ma	uch List-I with List List-I	-11:		List-II	
A.	Prim's algorithm		1.	$O(V^3 \log V)$	
B.	Diikstra's algorith	m		2.	$O(VE^2)$
C.	Faster all-pairs sho	ortest path	3.	O(E log V)	
D.	Edmonds-Karp alg	gorithm	4.	$O(V^2)$	
Ch	oose the correct op	tion from those given	belo	w:	
(a)	A-2, B-4, C-1, D-3	3	(b)	A-3, B-4, C-1, D-	2
(c)	A-2, B-1, C-4, D-3	3	(d)	A-3, B-1, C-4, D-2	2
A f noc car	fully connected network of the second s	vork topology is a topo onnected network with	olog 1 <i>n</i> 1	y in which there is nodes, the number	a direct link between all pairs of of direct links as a function of <i>n</i>
(a)	$\frac{n(n+1)}{2}$	(b) $\frac{(n+1)}{2}$	(c)	$\frac{n}{2}$	(d) $\frac{n(n-1)}{2}$
Wł	nich of the followin	g is principal conjunct	ive	normal form for [($p \lor q) \land \neg p \to \neg q]$?
(a)	$p \lor \neg q$	(b) $p \lor q$	(c)	$\neg p \lor q$	$\begin{array}{c} 1 \\ (d) \\ \neg p \\ \lor \neg q \end{array}$
Wh (a) (c)	hich of the followin Issue Tracking Sys Distributed Versio	g terms best describes stem n Control System	Git (b) (d)	? EAVOUR Integrated Develo Web-based Repos	pment Environment itory Hosting Service
Ha mo	Hadoop (a big data tool) works with number of related tools. Choose from the following, the common tools included into Hadoop:				
(a) (c)	MySQL, Google A Map reduce, H Ba	ise and Hive	(b) (d)	Map reduce, Scala Map reduce, Hum	a and Hummer amer and Heron
Sof (a) (b) (c) (d)	ftware reuse is the process of ana the process of usir concerned with re the process of ana breaking software	lysing software with the ng existing software are implementing legacy sy lysing software to creat down into its parts to	ne o tifac yste ite a see]	bjective of recover tts and knowledge m to make them m representation of how it works.	ing its design and specification. to build new software. fore maintainble. a higher level of abstraction and
Wł (a)	iich type of address Immediate	(b) Implied	r of (c)	memory references Register	s are required ? (d) Indexed

- 57. Which of the following are the primary objectives of risk monitoring in software project tracking ? P: To assess whether predicted risks do, in fact, occur.
 - Q: To ensure that risk aversion steps defined for the risk are being properly applied.

	R : To collect information that can be used at (a) Only P and Q (b) Only P and R	for future risk analysis. (c) Only Q and R	(d) All of P, Q, R
58.	In the context of 3D computer graphics, wh P : Orthographic transformations keep para Q : Orthographic transformations are affine Select the correct answer from the options g (a) Both P and Q (b) Neither P nor Q	ich of the following sta llel lines parallel. transformations. given below: (c) Only P	tements is/are TRUE ? (d) Only Q
59.	What is the output of the following JAVA propublic class Good { private int m; public Good (int m) {this·m = m;} public Boolean equals (Good n) {return public static void main (string args[]){ Good m_1 = new Good (22); Good m_2 = new Good (22); Object s_1 = new Good (22); Object s_2 = new Good (22); System·out·println (m_1 ·equals (m_2)); System·out·println (s_1 ·equals (s_2)); System·out·println (s_1 ·equals (s_2)); System·out·println (s_1 ·equals (m_2)); } (a) True, True, False, False (c) True, True, False, True	rogram ? n·m==m;}	True, False, True, False True, False, False, False
60.	Consider the following statements regarding $S_1: \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is a 2 × 2 matrix that reflects (not state on the state of the	g 2D transforms in com mirrors) only 2D point	aputer graphics: about the X-axis.
	$S_2: A 2 \times 2$ matrix which mirrors any 2D po What can you say about the statements S_1 and (a) Both S_1 and S_2 are true (c) Only S_2 is true	bint about the X-axis, is and S_2 ? (b) (d) Both S_1 and S_2 are	a rotation matrix. Only S ₁ is true e false
61.	Consider the following C++ function f(): unsigned int f (unsigned int n){ unsigned int b = 0; while (n){ b + = n & 1; n \gg = 1; } return b; } The function f() returns the int that represent integer n, where P is (a) number of 0's	ts thePin the (b) number of bits	binary representation of positive
	(c) number of consecutive 1's	(d) number of 1's	

62.	Consider the equation (a) 8	on $(146)_b + (313)_{b-2} = (146)_b + (313)_{b-2} = (146)_b + (14$	(246) ₈ . Which of the (c) 10	following is the value of <i>b</i> ? (d) 16
63.	Consider the completing two statements: $S_1 : P \subseteq CO - NP$ $S_2 : If NP \neq CO - N$ Which of the follow (a) Only S_1	exity class CO – NP as t P, then P \neq NP ing is/are correct ? (b) Only S ₂	the set of languages L (c) Both S_1 and S_2	such that $\overline{L} \in NP$, and the follow- (d) Neither S_1 nor S_2
64.	 Match List-I with LitList-I A. Greedy best-firs B. Lowest cost-firs C. A* algorithm Choose the correct of (a) A-1, B-2, C-3 	st-II: t t option from those giver (b) A-3, B-2, C-1	List-II 1. Minimal cost (p) 2. Minimal $h(p)$ 3. Minimal cost (p) below: (c) A-1, B-3, C-2	(d) A-2, B-3, C-1
65.	Software validation (a) use cases and us (b) implementation (c) detailed specific (d) functional specific	mainly checks for inco er requirements. and system design blue ations and user require fications and use cases.	onsistencies between eprints. ments.	
66.	K-mean clustering a as follows: C1:{(3, 3), (5, 5), (7) C2:{(0, 6), (6, 0), (3) C3:{(8, 8), (4, 4)} What will be the Ma tion ? (a) 2	Igorithm has clustered t (, 7)} (, 0)} nhattan distance for ob (b) $\sqrt{2}$	he given 8 observatio servation (4, 4) from (c) 0	ns into 3 clusters after 1 st iterations cluster centroid C1 in second itera- (d) 18
67.	Consider the Euler's $\phi(n) = n \prod_{p n} \left(1 - \frac{1}{p n} \right)$ where p runs over a (a) 3	s phi function given by $\frac{1}{p}$ ll the primes dividing n (b) 12	. What is the value of (c) 6	f \ \phi(45) ? (d) 24
68.	The fault can be eas taining the contents (a) flags and counte (c) flags and registe	ily diagnosed in the mic of rs rs	cro-program control u (b) registers and co (d) flags, registers a	unit using diagnostic tools by main- ounters and counters
69.	Consider the follow S_1 : For any integer S_2 : If <i>p</i> is prime, the Which one of the fo	ing statements: $n > 1, a^{\phi(n)} \equiv 1 \pmod{n}$ for all $a^p \equiv 1 \pmod{p}$ for all llowing is/are correct?	For all $a \in Z_n^*$, where ϕ l $a \in Z_p^*$.	(<i>n</i>) is Euler's phi function.

Which one of the following is/are correct ?(a) Only S_1 (b) Only S_2 (c) Both S_1 and S_2 (d) Neither S_1 nor S_2

70.	A fuzzy conjunction op form a dual pair if the	perator denoted as $t(x, y)$ satisfy the condition	y) and a fuzzy disjunct	ion operation denoted as $s(x, y)$		
	(a) $t(x, y) = 1 - s(x, y)$)	(b) $t(x, y) = s(1 - x, 1 - x)$	- y)		
	(c) $t(x, y) = 1 - s(1 - x)$	(1 - y)	(d) $t(x, y) = s(1+x, 1+x)$	+ y)		
71.	For a statement: A language $L \subseteq \Sigma^3$	* is recursive if there	exists some turing mac	hine M.		
	Which of the following	g conditions is satisfie	d for any string ω ?			
	(a) If $\omega \in L$, then <i>M</i> accepts ω and <i>M</i> will not halt.					
	(b) If $\omega \notin L$, then <i>M</i> a	ccepts ω and M will h	alt by reaching at final	state.		
	(c) If $\omega \notin L$, then <i>M</i> h	alts without reaching	to acceptable state.			
	(d) If $\omega \in L$, then <i>M</i> h	alts without reaching	to an acceptable state.			
72.	Consider the following	g two statements with	respect to IPv4 in com	puter networking:		
	P: The loopback (IP)	address is a member of	of class B network.			
	Q: The loopback (IP)	address is used to sen	d a packet from host to $\frac{1}{2}$	o itself.		
	(a) P-True O-False	(b) P-False O-True	(c) P-True O-True	(d) P-False O-False		
70						
73.	The minimum number	of page frames that mu	ist be allocated to a run	ining process in a virtual memory		
	(a) page size	lilled by	(b) physical size of m	nemory		
	(c) the instruction set	architecture	(d) number of process	ses in memory		
 74. Consider three CPU intensive processes, which require 10, 20 and 30 units of time and times 0, 2 and 6 respectively. How many context switches are needed if the operating systements a shortest remaining time first scheduling algorithm? Do not count the context s 			d 30 units of time and arrive at ed if the operating system imple- ot count the context switches at			
	time zero and at the er	id.	(a) 2			
75	(a) 4 Consider the following		(c) 3	(d) 1		
75.	S ₁ : Characterize the structure of an optimal solution. S ₂ : Compute the value of an optimal solution in bettern up fashion					
	S_2 . Compute the value Which of the step(s) is	are common to both	dynamic programming	and greedy algorithms ?		
	(a) Only S_1	(b) Only S ₂	(c) Both S_1 and S_2	(d) Neither S_1 nor S_2		
76.	Which of the followin and \cdot h as their extension	g UNIX/Linux pipes	will count the number ing directory ?	of lines in all the files having $\cdot c$		
	(a) $\operatorname{cat} * \cdot \operatorname{ch} \operatorname{wc} - 1$		(b) $cat * \cdot [c-h] wc - 1$			
	(c) $\operatorname{cat} * \cdot [\operatorname{ch}] \operatorname{1s} - 1$		(d) $\operatorname{cat} * \cdot [\operatorname{ch}] \operatorname{wc} - 1$			
77.	Following table has tw key and manager_id is	yo attributes Employed a foreign key referen	e_id and Manager_id, cing Employee_id with	where Employee_id is a primary on delete cascade:		

Employee_id	Manager_id
20	40
25	40
30	35
35	20
40	45
45	25

220

On deleting the table (20, 40), the set of other tuples that must be deleted to maintain the referential integrity of table is (a) (30, 35) only (b) (30, 35) and (35, 20) only (c) (35, 20) only (d) (40, 45) and (25, 40) only 78. The STRIPS representation is (a) a feature-centric representation. (b) an action-centric representation. (c) a combination of feature-centric and action-centric representations. (d) a hierarchical feature-centric representation. 79. How many address lines and data lines are required to provide a memory capacity of 16 K \times 16 ? (a) 10, 4 (b) 16.16 (c) 14, 16 (d) 4, 16 80. Which of the following is an example of unsupervised neural network ? (a) Back-propagation network (b) Hebb network (c) Associative memory network (d) Self-organizing feature map The value of the derivative of Sigmoid function given by $f(x) = \frac{1}{1 + e^{-2x}}$ at x = 0 is 81. (a) 0 (b) 1/2(c) 1/4 ∞ (b) 82. Which of the following statements is/are TRUE ? P : An XML document with correct syntax as specified by W3C is called "Well Formed". Q: An XML documented validated against a DTD is both "Well formed" and "Valid". R : <xml version = "1.0" encoding = "UTF-8"> is syntactly correct declaration for the version of anXML document. Select the correct answer from the options given below: (b) P and R only (c) Q and R only (a) P and Q only (d) All of P, Q and R For which values of *m* and *n* does the complete bipartite graph $k_{m,n}$ have a Hamilton circuit ? (a) $m \neq n, m, n \ge 2$ (b) $m \neq n, m, n \ge 3$ (c) $m = n, m, n \ge 2$ (d) $m = n, m, n \ge 3$ 83. 84. What is the name of the protocol that allows a client to send a broadcast message with its MAC address and receive an IP address in reply ? (a) ARP (b) DNS (c) RARP (d) ICMP 85. Which data structure is used by the compiler for managing variables and their attributes ? (a) Binary tree (b) Link list (c) Symbol table (d) Parse table Consider a raster system with resolution 640 by 480. What size is frame buffer (in bytes) for this 86. system to store 12 bits per pixel? (a) 450 kilobytes (b) 500 kilobytes (c) 350 kilobytes (d) 400 kilobytes Which of the following key constraints is required for functioning of foreign key in the context of 87. relational database ? (a) Unique key (b) Primary key (c) Candidate key (d) Check key 88. A processor can support a maximum memory of 4 GB where memory is word addressable and a word is 2 bytes. What will be the size of the address bus of the processor ? (a) At least 28 bits (b) At least 2 bytes (c) At least 31 bits (d) Minimum 4 bytes

89.	Which of the followin P : In a scripting lang Q : It is not possible to Select the correct answ (a) P only	g statements is/are TR uage like JavaScript, ty o show images on a we wer from the options g (b) Q only	UE ? ypes are typically assoce b page without the <ir iven below: (c) Both P and Q</ir 	ciated with values, not variables. ng> tag of HTML. (d) Neither P nor Q	
90.	Which of the followin (a) O(log n)	g is best running time (b) O(n)	to sort n integers in the (c) O(n log n)	e range 0 to $n^2 - 1$? (d) $O(n^2)$	
91.	Shift-reduce parser co (1) input buffer Choose the correct op (a) (1) and (2) only	onsists of(2) stackotion from those given(b) (1) and (3) only	(3) parse tablebelow:(c) (3) ony	(d) (1), (2) and (3)	
92.	How many ways are t (a) 70	there to place 8 indistin (b) 165	nguishable balls into for (c) ${}^{8}C_{4}$	our distinguishable bins ? (d) ${}^{8}P_{4}$	
93.	Consider the poset ({(a) There exists a greater (b) There exists a greater (c) There exists a leaser (d) There does not exist a leaser (d) The	3, 5, 9, 15, 24, 45},). atest element and a lea atest element but not a st element but not a gre ist a greatest element a	Which of the following st element. least element. eatest element. and a least element.	g is correct for the given poset ?	
94.	 In the context of software testing, which of the following statements is/are NOT correct ? P : A minimal test set that achieves 100 % path coverage will also achieve 100 % statement coverage. Q: A minimal test set that achieves 100 % path coverage will generally detect more faults than one that achieves 100 % statement coverage. R : A minimal test set that achieves 100 % statement coverage will generally detect more faults than one that achieves 100 % branch coverage. (a) R only (b) Q only (c) P and Q only (d) Q and R only 				
95.	Consider the LPP give Max $Z = 2x_1 - x_2 + 2$ subject to the constraint $2x_1 + x_2 \le 10$ $x_1 + 2x_2 - 2x_3 \le 20$ $x_1 + 2x_3 \le 5$ $x_1, x_2, x_3 \ge 0$ What shall be the solut (a) $x_1 = \frac{5}{2}, x_2 = 0, x_3$ (c) $x_1 = 0, x_2 = \frac{5}{2}, x_3$	en as x_3 ints ation of the LPP after a = 0, Z = 5 $= 0, Z = -\frac{5}{2}$	(b) $x_1 = 0, x_2 = 0, x_3 =$ (d) $x_1 = 0, x_2 = 0, x_3 =$	of the Simplex Method ? = $\frac{5}{2}$, $Z = 5$ =10, $Z = 20$	
96.	A Web application ar engineers estimate tha not contain sensitive o integrity of the web a (a) 0.625	ad its support environ t the likelihood of repe or controversial informa pplication? (b) 0.725	ment has not been ful elling an attack is only 3 ation, so the threat prob (c) 0.775	ly fortified against attack. Web 30 percent. The application does bability is 25 percent. What is the (d) 0.825	

97.	In the TCP/IP model (a) data link	, encryption and decryp (b) network	otion are functions of _ (c) transport	layer. (d) application
98.	How many different	Boolean functions of d	egree <i>n</i> are there ?	
	(a) 2^{2^n}	(b) $(2^2)^n$	(c) $2^{2^n} - 1$	(d) 2^n
99.	You need 500 subnet will you assign using (a) 255.255.255.252	ts, each with about 100 a class B network add (b) 255.255.255.128) usable host addresses lress ? (c) 255.255.255.0	(d) 255.255.254.0
100.	Match List-I with List List-I A. $p \rightarrow q$ B. $p \lor q$ C. $p \land q$ D. $\neg (p \rightarrow q)$ Choose the correct of (a) A-2, B-3, C-1, D (c) A-4, B-1, C-3, D	st-II: -4 -2	List-II 1. $\neg (q \rightarrow \neg p)$ 2. $p \land \neg q$ 3. $\neg p \rightarrow q$ 4. $\neg p \lor q$ below: (b) A-2, B-1, C-3, D (d) A-4, B-3, C-1, D	-4 -2
		L CAREER 6	ENDEAVOUF	